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ABSTRACT 

Operating safely in cluttered environments is critical to future autonomous robotic operations as 

exemplified by FCS Risk 213.  In support of this requirement, the Robotics Collaborative Technology Alliance 

(RCTA) program, sponsored by the Army Research Lab (ARL), has supported research tasks and corresponding 

integration and test events from 2006 through 2009. Multiple sensor systems, including scanning LADARs and 

stereo camera pairs, have been used to detect, track, and predict the future motion of obstacles in the close 

proximity of unmanned ground vehicles.  These sensors produce frames of data at rates ranging from 6 to 30 

Hertz.  Resulting algorithm outputs are correlated to the local world and detection results both above and below 

the thresholds of the individual algorithms are recorded in a common format. This paper describes two methods 

for fusing the detection data.  The first is a simplistic approach which implements a majority voting scheme 

amongst the algorithm results.  The second, more rigorous, approach uses a “Strength-of-Detection” (SoD) 

method that utilizes an association step incorporating an error covariance model for each sensor, and also 

allows for cases where only a subset of the sensors report a detection. Results show that fused detection 

performance is far better than any single output due to the uncorrelated nature of single-sensor false alarms.  

We present representative results for both individual sensors and fused outputs. 

 

INTRODUCTION 
 Safe Operations represents a critical goal for autonomous 

ground vehicles.  The Robotics Collaborative Technology 

Alliance (RCTA) has been supporting research in support of 

this goal since 2006.  The research includes tasks for 

detecting and recognizing humans in the vicinity of a ground 

vehicle using LADARS, EO/IR stereo cameras, and radars.  

The primary emphasis for each task has been on the use of 

an algorithmic approach operating on the output of a single 

sensor to achieve the best possible detection performance 

while suppressing false alarms. 

However, it is well known that the fusion of multiple 

sensors offers great potential for improvement over the 

performance of any single sensor modality because the 

various sensors tend to have complementary strengths and 

weaknesses.  For example, LADARs provide very good 

range information, but do not discriminate on appearance as 

well as high resolution imaging sensors.  Conversely, 

cameras provide much better appearance data but, even 

using stereo pairs, provide comparatively coarse range 

accuracy. 

Consequently, we have undertaken an effort to fuse the 

results of multiple sensor-algorithm outputs. Here we 

describe two efforts to implement detection-level fusion.  

One is a simple “majority vote” approach; which we show 

has achieved results better than any single-source approach.  

The second more rigorous approach is currently under 

development.  It is a non-parametric Bayesian approach that 

makes more complete use of the single-sensor results and 

leads to an unbiased ROC curve for which performance can 

be optimized. 

In the balance of this paper, we first describe the Safe 

Operations experiments we have conducted this year to 

evaluate both single-sensor and fused detection performance.  

We then discuss human detection results obtained for 

individual algorithms operating on single-sensor data.  Next 

we describe various possible approaches to fusion and 

address the issue of associating individual detection results.  

We describe the technical approach and results to date for 

our majority vote fusion approach.  We also describe our 

non-parametric Bayesian fusion approach and conclude with 

discussion of plans for future research. 
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SAFE OPERATIONS EXPERIMENT DESCRIPTION 
  The RCTA program has conducted a series of Safe 

Operations experiments beginning in 2006.  The experiment 

described here occurred on January 21 – 23, 2009 at the 

National Institute of Standards and Technology (NIST) 

facility in Gaithersburg, MD. It was conducted by personnel 

from the Army Research Laboratory (ARL), NIST, and 

General Dynamics Robotic Systems (GDRS), which is the 

Lead Industrial Organization for RCTA.  The sensor test 

vehicle was a Chevrolet Suburban equipped with the 

following sensors (Fig. 1):  

• 2 GDRS Fourth Generation scanning LADARs 

(Gen IV) which each produce approximately 10 

frames per second (fps) over a 90 degree 

horizontal field of view (FOV) and together 

provide nearly 180 degree FOV in front of the 

vehicle. 

• A Sick LADAR which produces approximately 

18.5 frames per second over a 100 degree 

horizontal FOV and 1 degree vertical FOV.  

• A stereo pair of Hitachi HV-F31 Progressive Scan 

Color 3-CCD Cameras that produce raw color 

imagery (1024 x 768) at 15 fps with a horizontal 

FOV of approximately 60 degrees. 

 

 
Figure 1: Sensor test vehicle used in Safe Operations 

experiments at NIST in January, 2009 
 

The NIST test site included approximately 300 meters of 

two-lane paved streets, including an intersection where the 

test vehicle turned.  The test consisted of 40 runs, each with 

eight human test subjects who were moving on the paths 

indicated in Figure 2.  The test vehicle moved at either 15 

kph (20 Runs) or 30 kph (20 Runs).  The tests included two 

levels of clutter, which we refer to as “open” and “cluttered” 

and are shown in Figures 3 and 5. 

 

 
Figure 2: (Left) Overhead imagery of Safe Operations 

experiment location at NIST in January, 2009.  (Right) Test vehicle 

path (in black) and paths of eight moving humans (in color). 

 

In order to generate ground truth data, we used an 

automated position recording system as described in [1].  

Throughout the testing, all human subjects wore helmets 

equipped with transceivers for the ground truthing system as 

shown in Figure 3. 

 

SINGLE SENSOR RESULTS 
  Figure 4 shows human detection results from four 

sensor/algorithm sources corresponding to the “open” 

conditions of Figure 3.  It is important to note that the 

individual results depicted here are on a frame by frame 

basis.  Better individual results can be, and have been, 

obtained using temporal information. 

The results are from two algorithms processing GDRS Gen 

IV LADAR data, an algorithm processing Sick data, and 

another algorithm processing data from a stereo camera pair.  

The LADAR results are all quite good for the Open 

configuration. Descriptions of the stereo vision algorithms 

and results on prior data are given in [2].  The LADAR 

processing algorithms and results on previous data 

collections have been reported [3.4]. 

 



Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Fusion of Multiple Sensors for Safe Operations, Haley, et al. 

 

Page 3 of 7 

 
Figure 3: “Open” configuration for Safe Operations experiment at 

NIST in January, 2009 
 

 

 

 
Figure 4: ROC curves for four sensor/algorithm outputs using the 
“Open” configuration for the Safe Operations experiment at NIST 

in January, 2009 
 

The stereo vision detection results reported here were 

degraded by sensor misalignment as well as occlusion 

issues.  We did not attempt to correct these problems 

because the focus here is on fusing the results with those 

from other algorithms. 

Figure 6 shows human detection results from the same four 

sensor/algorithm sources, but now corresponding to the 

“cluttered” conditions of Figure 5.  Again we note that the 

individual results depicted here are on a frame by frame 

basis and that better individual results can be obtained using 

temporal information. 

vehicles, barrels, 

crates

Cluttered Run
 

Figure 5: “Cluttered” configuration for Safe Operations 
experiment at NIST in January, 2009.  Note vehicles, barrels, 

crates, and other objects not present in the “open” configuration. 
 

The LADAR results are all degraded compared to the 

“open” results.  This is expected since the LADAR data do 

not support appearance-based classification as well as video 

data do.  The Sick results are affected most strongly, 

probably because of the sensor’s limited vertical FOV. 

It is noteworthy that the stereo vision results are actually 

better for the cluttered configuration.  This is probably due 

to both the more robust appearance-based classification with 

more pixels on target, and to a richer set of features for 

stereo processing. 

This variation in performance across sensors and 

algorithms provides motivation to fuse the results together.  

The four sources considered here tend to be correlated for 

targets, while being uncorrelated for false alarms.  The 

future addition of other sensors such as IR and radar should 

provide further complementary capabilities that enhance the 

value of fusion processing. 

 

 
Figure 6:  ROC curves for four sensor/algorithm outputs using 
the “Cluttered” configuration for the Safe Operations experiment at 

NIST in January, 2009 
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PROMISE AND CHALLENGE OF SENSOR FUSION 
  Despite the obvious potential advantages of sensor 

fusion, there are significant challenges as well.  Attempting 

fusion at the sensor/data level is theoretically best but is 

computationally daunting and is not addressed here.  Other 

options are feature-level and detection-level fusion.   

Thus far we have addressed detection-level fusion because 

it is computationally tractable and has produced the 

promising results shown below.  A key challenge for 

detection-level fusion is the correct spatial and temporal 

association of the detections from the various 

sensor/algorithm sources, which we discuss next.   

 

Association of Multi-Sensor Detections 
Incorrect associations of detections can produce results 

that are worse than single-source results.  Failure to 

associate two detections of the same object can produce a 

false alarm.  Incorrect association of two detections that 

actually correspond to distinct objects can produce missed 

target detection. 

Consequently, we have devoted a great deal of effort to 

intrinsic and extrinsic calibration of sensors to minimize 

sensor pointing errors.  We also model and account for 

remaining errors during the data association process.   

Shown in Figure 7 is the association process for one frame 

of results from the January ’09 RCTA Safe Operations 

experiments.  The inset at the lower left shows detections 

from each source using the color key above the inset.  The 

arrows represent velocities of movers. The blue circled set of 

detections is expanded at the upper right to show all five 

responses in this case.   

 

 

 

# Humans 

reported by 

each algorithm

# Humans 

reported by 

each algorithm

Association

Majority Vote Results

 
 

Figure 7: Association of multi-source detections are shown in the 
inset, with one example association expanded to illustrate all 

responses to the same ground truth object.  Also shown are the 

fusion results using the Majority Vote approach. 
 

 

After the association process, we have a list of detections 

where, for each detection, there is one of 3 outcomes for 

each of N sensor/algorithm sources: 

1. Response above threshold (target), with SoD – this 
increments rh, the counter for human detections  

2. Response below threshold (clutter), with SoD – this 
increment rc, the counter for clutter detections 

3. No response – this increments rx 

 

The response set must satisfy 

 

(1) 

 

 

MAJORITY VOTE FUSION 
 
Our Majority Vote approach for fusion is quite simple, but 

is proving to be effective.  It does not consider the strength 

of detection (SoD), and does not explicitly consider the 

number of responses or which sensor/algorithm responded.  

A fused detection is declared if the response set satisfies: 

 

 

(2) 

 
Results using the Majority Vote approach are shown in 

Figures 8 and 9. The ROC curves represent the fused result 

while the points are the operating points for each individual 

algorithm. The fused curves allow us to select an operating 

point that is superior to each of the individual ones. 

 

 
Figure 8: Fusion results using the Majority Vote approach for the 
“open” configuration of the RCTA ’09 Safe Operations experiment. 
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Figure 9: Fusion results using the Majority Vote approach for the 
“cluttered” configuration of the RCTA ’09 Safe Operations 

experiment. 
 

NON-PARAMETRIC BAYESIAN FUSION 
Although the previously described results using simple 

majority vote fusion are encouraging, this approach suffers 

from a number of weaknesses: 

• It does not explicitly use the number of responses. 

Thus if we have 4 cuers, for example, the case of two 

target responses with the other two cuers not 

responding (rh=2, rx =2) is treated the same as four 

target responses (rh=4). 

• No direct use is made of the SoD values from the 

cuers so that a detection barely above threshold is 

treated the same as a very strong detection. 

• Conversely, a response whose strength is just below 

target threshold for that cuer is treated the same as one 

with a very low SoD value. 

• All sources are treated equally so there is no 

weighting of results even though analysis of 

individual results may indicate good reason to do so.  

A certain response set (with SoDs) might be strongly 

indicative of a true target even though majority voting 

would tend to reject it. 

Consequently, we are also pursuing a more rigorous fusion 

approach, which is described next.  In this approach, we 

consider an isolated object in the field of view of N different 

collinearly mounted (or nearly collinearly mounted) sensors 

with associated detection processing algorithms.  Depending 

on various factors there are conceptually 2
N
 responses of 

these sensor/algorithm pairs as to whether they declare a 

detection.  All N may respond, none may respond or any r 

out of N may respond.  We assume that each algorithm puts 

out an SoD, qi, giving its strength of detection.  Let kS , k = 1 

to 2
N
-1, be sets giving the indices of qi for all possible 

responses of the N algorithms.  We need not model the null 

response.  For example if N = 3 then the Sk would be defined 

as 

 

   [ ]1231 ≡S  

   [ ]122 ≡S  

   [ ]133 ≡S  

   [ ]234 ≡S  (3) 

   [ ]15 ≡S  

   [ ]26 ≡S  

   [ ]37 ≡S  

 

In this fusion approach, we construct joint densities 

modeling the SoD response of the algorithms to targets and 

False Alarms.  We define 

 

( )kT qf   =  density of q for index set k over targets    (4) 

   ( )kFA qf  =  density of q for index set k over False      (5) 

 Alarms 

 

 

Then a fusion algorithm can be implemented by first 

determining k and then comparing 

 

 (((( ))))qkr   =   ( )kT qf  / ( )kFA qf   (6) 

 

to a threshold and declaring a target if the threshold is 

exceeded. 

  The SoD is a measure of how strongly a particular 

algorithm rates an object as being a target.  Targets should 

have large SoDs while false alarms should have small SoDs.  

If one can compute a valid ROC curve that is everywhere 

concave, then one can use the parameter implementing the 

ROC curve as an SoD value. 

  Because not all of the individual algorithms whose results 

we are fusing can readily produce SoDs with the desired 

properties, we have developed and implemented procedures 

to remap each dimension of the sample features (SoDs) to 

the uniform density for both target and false alarm features.  

We also detect point mass components of the features and 

insert in the cumulative map an interval proportional to their 

number at appropriate points.  An example of this remapping 

is shown in Figures 10 and 11. 

We next combine linearly the Target cumulative map and 

the False Alarm cumulative map as a convex combination 

for each dimension of the feature space.  We apply this map 

to the feature data of Targets and False Alarms and replace 

the point mass components by uniformly distributed pseudo 

data in proportion to the point mass values at the appropriate 
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intervals.  This produces two new remapped sets of feature 

data across Targets and False Alarms.  An example of the 

remapping corresponding to Figures 10 and 11 is shown in 

Figure 12. 
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Figure 10:  Example histogram of target feature. 
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Figure 11:  Example histogram of target feature mapped to 

uniform density. 
 

Finally we construct a filter which is a hypercube in the n-

dimensional space whose dimension is the number of 

responses to be fused.  The size of the filter in each 

dimension constitutes the smoothing for that input result to 

fusion processing.  The final fusion result is the convolution 

of the filter with the previously described joint density 

function. 
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Figure 12:  Example histogram of normalized target feature after 

weighting remapping. 

   

  Training our non-parametric Bayesian Fusion Classifier 

requires statistics for the 2
N-1
 response sets resulting from N 

(for the current usable data set N = 4) different cuers 

detecting commonly sensed objects. Hence algorithms were 

developed to match ground truth data with tracks to mark the 

track as a target or non-target and then to accumulate 

statistics on the value and source of each SoD value attached 

to the track to generate joint statistics over 15 different 

response sets.  Below in Table 1 is a listing of the number of 

detections that fell into each set for a particular run of tests 

conducted in September, 2007.  For these 28 test runs there 

were over 68,000 target instances in the data as well as 

nearly 500,000 non-target instances. 

 

 
Response 

Sets 

Cuer 1 Cuer 2 Cuer 3 Cuer 4 Targets Non-

targets 

1 X    600 31570 

2  X   1322 28576 

3 X X   8684 78229 

4   X  11031 285142 

5 X  X  344 6442 

6  X X  13148 26207 

7 X X X  20148 34294 

8    X 23 388 

9 X   X 3 111 

10  X  X 5 409 

11 X X  X 41 1342 

12   X X 60 411 

13 X  X X 31 373 

14  X X X 306 326 

15 X X X X 12533 2202 

Totals     68279 496022 

  
 

Table 1:  Response set data for RCTA Safe Operations testing 
conducted in September, 2007. 

 

For each response set the number of variates is equal to the 

number of columns marked with ‘X’ in a row.  For each 

response set a density for the corresponding SoD values over 
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the target and non-target sets is estimated and the Bayesian 

classifier is implemented using those densities 

Our non-parametric Bayesian fusion algorithm requires 

very little computation at runtime.  The computationally 

intensive portion is the off-line training of the classifier.  The 

algorithm consists of the following steps: 

 

1. Obtain SoDs at time tk 
2. Determine response set k on non-empty SoD pattern 
3. Pick up all tables associated with the response set k 
4. Make decision as follows: 

• If zero density target set � declare False Alarm 

• If zero density false alarm set � declare Target 

• Else map q to qmap using previously defined 

mapping and compute from density tables 

 

 

             ( )
mapk qr   =   ( )

kmapT qf  / ( )
kmapFA qf        (7) 

 

and declare Target if  

 

                          ( )
dthresholmapk rqr ≥                 (8) 

 

The approach of using a mutually exclusive response set 

Bayesian classifier offers a number of gains.  First, the 

response set parsing of detection outcomes even without 

SoD values yields 15 points on the system ROC curve using 

ratios of true detections and false alarms for each response 

set.  Adding SoD values spreads these 15 points via the 

associated likelihood ratio.  By the Neyman-Pearson lemma, 

this will be as good, or better, than the original 15-point 

curve. 

Second, the mutually exclusive response set parsing makes 

optimal use of detection outcomes versus simplistic “OR”ing 

which improves Pd at the expense of increased false alarms 

or versus “AND”ing which reduces false alarms at the 

expense of pd. 

Third, the common use of likelihood ratio across ROC 

curves specific to each set permits calculation of a system 

ROC curve via addition of target cumulative sums across 

each set and addition of false alarm cumulative sums across 

each set.  

 

CONCLUSION 
Our work is based on Safe Operations experiments being 

conducted by the Robotics Collaborative Technology 

Alliance program.  To date the focus of those experiments 

has been on individual sensor modalities and algorithms.  As 

a basis for our fusion processing, we first present individual 

results from an experiment in January 2009 using the GDRS 

Gen IV scanning LADAR, a Sick LADAR, and a stereo 

vision system.  Then we describe a simple majority vote 

fusion approach and present ROC curves demonstrating its 

use.  Finally we describe a more rigorous non-parametric 

Bayesian fusion approach that use the strength of detection 

(SoD) reported by each of N contributing sensor/algorithm 

inputs.  This approach models the resulting 2
N
 – 1 response 

sets as joint densities based on prior ground truthed results.  

We report the application of this approach to an 

experimental data set from 2007.  We will report final results 

on that and other data in future work. 
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