
Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementation of the 4D/RCS Architecture Within the Southwest Safe Transport Initiative

Page 1 of 8

IMPLEMENTATION OF THE 4D/RCS ARCHITECTURE WITHIN THE
SOUTHWEST SAFE TRANSPORT INITIATIVE

George McWilliams

Michael Brown
Southwest Research Institute

San Antonio, TX

ABSTRACT
Over time, the National Institute of Standards and Technology (NIST) has refined the 4Dimension / Real-time Control System

(4D/RCS) architecture for use in Unmanned Ground Vehicles (UGVs). This architecture, when applied to a fully autonomous
vehicle designed for missions in urban environments, can greatly assist in the process of saving time and lives by creating a more
intelligent vehicle that acts in a safer and more efficient manner. Southwest Research Institute (SwRI®) has undertaken the
Southwest Safe Transport Initiative (SSTI) aimed at investigating the development and commercialization of vehicle autonomy as
well as vehicle-based telemetry systems to improve active safety systems and autonomy. This paper will discuss the
implementation of the 4D/RCS architecture to the SSTI autonomous vehicle, a 2006 Ford Explorer.

INTRODUCTION

The Southwest Safe Transport Initiative (SSTI) was started
in 2006 and aimed at investigating the development and
commercialization of vehicle autonomy as well as vehicle-
based telemetry systems to improve safety and facilitate
traffic flow. The first phase of the program focused on
understanding the state-of-the-art. It was during this phase
that the 4D/RCS Architecture was selected as the software
architecture for the SSTI vehicle. The following sections
give a brief background on the 4D/RCS Architecture and the
SSTI program.

4D/RCS Architecture
4D/RCS is a reference model architecture for

conceptualizing, designing, engineering, integrating, and
testing intelligent control systems software for cognitive
systems in real-world environments. It is especially useful
in the development of vehicle systems with any degree of
autonomy, from manually operated to fully autonomous. The
4D/RCS architecture consists of a multi-resolution hierarchy
of feedback control loops between sensing and acting that
integrate reactive behavior with perception, cognition, world
modeling, decision-making, and planning, and forming a
hybrid deliberative/reactive system [1].

A 4D/RCS based architecture contains a hierarchy of
intelligent control nodes where each has a well defined role.
Each node operates on a specific time horizon that is
appropriate to the level, or echelon, in which the node exists.
Within the vehicle, there are 4 echelons that exist: Vehicle,
Subsystem, Primitive, and Servo. These levels are shown in
Figure 1.

P
ro

ce
ss

 M
a

n
ag

e
m

e
n

t

O
p

erato
r In

terfac
e

Figure 1. 4D/RCS Echelons

Each node acquires sensory input from nodes at a lower

level in the architecture, or directly from hardware
interfaces, and performs Sensory Processing (SP) on that
data. As a result, the SP module updates the World Model
(WM) for the node, which along with the Knowledge
Database (KD) and Value Judgment (VJ), are used by the
Behavior Generation (BG) module to create appropriate
actions. The actions generated by the BG module are
dependent on the location of the node in the hierarchy. For
example, the actions created at the Servo level of the
hierarchy will likely correspond to motor commands. The
actions created at the Navigation level will likely correspond
to a route or path generation. The internal structure of a
generic 4D/RCS node [2] is shown in Figure 2.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementation of the 4D/RCS Architecture Within the Southwest Safe Transport Initiative

Page 2 of 8

Figure 2. Internal Structure of a 4D/RCS Node

Each node provides processed sensory data and also status

information to the nodes above it in the hierarchy. Each node
also provides the generated behaviors and commanded
actions to the nodes below it in the hierarchy. Also note that
each node shares information with other nodes at the same
level of the hierarchy. This creates a system of nodes with
well-defined interfaces that when combined, can provide
both a reactive and a deliberative control loop.

The Southwest Safe Transport Initiative
The SSTI program is a Southwest Research Institute

(SwRI) internally-funded research project focusing on
advancing active safety and autonomous vehicle
technologies. The goal of SSTI is to integrate commercially
available sensors, software, and algorithms into an
autonomous vehicle. The program has integrated
commercially available equipment into a 2006 Ford Explorer
shown in Figure 3.

Figure 3. The SSTI 2006 Ford Explorer

The following components have been integrated into the
base vehicle platform to date:

 Ibeo Laser Scanners and Fusion System
 Oxford RT3052 Global Positioning System (GPS)

and Inertial Navigation System (INS)
 Electronic Mobility Controls (EMC) AEVIT Drive-

by-Wire System
 High Resolution Prosilica EC1350C Camera
 Intel Core 2 Duo Blade Cluster – ExtremeNode

EN-8740 by PCW MicroSystems
 Technocom 5.9 GHz Dedicated Short Range

Communication (DSRC) radio
 dSpace Autobox with MatLab Simulink/CarSim

The SSTI vehicle can follow predefined routes

autonomously while performing static and dynamic obstacle
recognition and avoidance. The vehicle’s route planning
algorithms utilize Route Network Definition File (RNDF)
files similar to the ones used in the Defense Advanced
Research Projects Agency (DARPA) Urban Challenge. An
operator can simply provide a destination within the RNDF
and the vehicle will safely travel there autonomously.

The vehicle can also communicate with an infrastructure
and other vehicles using a DSRC based Extra-Vehicle
Communications System (EVCS). The EVCS components
are able to communicate using either the Society of
Automotive Engineers (SAE) J2735 and or the SAE AS-4
Joint Architecture for Unmanned Systems (JAUS) messages.
This allows the vehicle to utilize information from external
systems as well as its own sensors to be more
knowledgeable of the surrounding environment.

IMPLEMENTATION OF 4D/RCS ARCHITECTURE

 While development on the SSTI vehicle is still in
progress, the development team has implemented a
preliminary version of the Servo, Primitive, Subsystem, and
Vehicle echelons of the 4D/RCS architecture. These
echelons are divided even further into nodes like the ones
described above. Each node accepts sensor data, commands
from higher-level nodes, and status from lower-level nodes.
The responsibility of each node is to enact a certain behavior
that is dependent upon this information that it receives. The
following sections describe the application of the 4D/RCS
architecture on the SSTI vehicle, including the various
echelons, the nodes contained in each echelon, and the
behaviors they enact.

Description of the Architecture Hierarchy
The Servo echelon is provided by the EMC drive-by-wire

system. This echelon performs the closed-loop control of
the servo motors and other actuators. It accepts commands

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementation of the 4D/RCS Architecture Within the Southwest Safe Transport Initiative

Page 3 of 8

to control the position of the steering motor, the position of
the throttle/brake motor, the position of the transmission (i.e.
Park, Reverse, Neutral, Drive), and states of other auxiliary
components like the windshield wipers and turn signals.
Since this system was purchased off-the-shelf, it is treated
like a black box by the rest of the system.

The Primitive echelon is implemented using a combination
of hardware and software to interface with the GPS sensor
and the drive-by-wire system. A dSpace Autobox serves as
the heart of the Primitive echelon and provides the low-level
command and control interface to send steering and
throttle/brake position commands to the drive-by-wire
system. It accepts local path and speed commands from the
higher echelons and ensures the vehicle maneuvers on the
path at the desired speed. The dSpace operating system
provides a real-time, deterministic platform to monitor
vehicle dynamics and provide immediate stability control
feedback.

The Subsystem Echelon is implemented on a blade server
cluster using software components developed using Real
Time Multisensor Advanced Prototyping Software
(RTMaps). These custom components, along with RTMaps
integrated components, provide an environment in which
algorithms can more easily be developed and explored to
optimize sensory processing and higher level vehicle
commands. Custom components acquire and process data
from the various sensors to develop a world model. This
world model utilizes a situational awareness system to fuse
the sensor data and generate vehicle trajectories. These
trajectories are realized in near-real-time by sending lower
level path segment commands to the dSpace Autobox to
perform.

The Vehicle Echelon, also implemented on the blade
cluster in the RTMaps environment, provides an interface
for the user to choose a destination on a map or provide the
vehicle with a mission by choosing an MDF file. It uses a
priori map data through an RNDF file in addition to the user
input to calculate a route from the vehicle’s current position
to the goal position. If the route is detected to be blocked by
the on-board sensors (from construction or otherwise), this
information can be passed up to the Vehicle echelon so it
can dynamically recompute a new route. This route
information, including any additional relevant map data (e.g.
passing lanes, intersections, etc.), is passed to the lower
echelons.

Hardware/Software Interfaces
The sensor processing modules perform preliminary

processing on the acquired data to determine if immediate
behaviors need to be implemented (e.g. for reflex actions).
This pre-processed data is then provided to higher level
situational awareness modules that further process the data
to build the vehicle’s World Model. The World Model is

used by the behavior generation components to implement
the vehicle’s behaviors (e.g. route planning and following,
obstacle avoidance). The primitive level of the behavior
generation software interfaces with the EMC drive-by-wire
system to control the vehicle while monitoring vehicle
dynamics and maintaining the safety of the system. A
diagram of the hardware and software interfaces of the
system components is shown in Figure 4.

F
irew

ire

E
th

ern
e

t

E
the

rne
t

E
th

ern
e

t

E
th

ern
et

Figure 4. SSTI 4D/RCS Subsystem Echelon

Implementation

Behavior Generation
The SSTI software architecture implements nodes that

operate within the Vehicle, Subsystem, and Primitive
4D/RCS echelons. Each node generates specific behaviors
according to its level within the behavior generation
hierarchy. This behavior hierarchy, along with the
corresponding 4D/RCS echelons and nodes are shown in
Figure 5. The following section describes each one of the
nodes in the software architecture. The section after that
describes each one of the behaviors in detail.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementation of the 4D/RCS Architecture Within the Southwest Safe Transport Initiative

Page 4 of 8

Figure 5. SSTI 4D/RCS Echelons, Nodes, and Behaviors

DESCRIPTION OF ARCHITECTURE NODES

Each echelon within the SSTI software architecture
contains one or more nodes perform functions for
autonomous navigation. These nodes include Route
Management, Advanced Navigation, Basic Mobility,
Vehicle Path, Vehicle Controller, and Vehicle Auxiliary.

Route Management
The Route Management Node is found at the Vehicle level

of the software architecture. Its primary responsibility is to
provide an interface to the user, allowing the user to choose
a configuration and a destination for the vehicle. The user
can be someone inside the vehicle or someone viewing the
interface remotely. The configuration means that the vehicle
could be a member of a convoy of vehicles. In the normal
operating configuration, this node will calculate the entire
route based on priori information (data from an RNDF file,
an online mapping program, or an on-board navigation
database). When the user selects the convoying
configuration, this node will determine its position in the
convoy and create the route based on the track of the vehicle
directly ahead of it in the convoy. This node also receives
user commands to switch from one configuration to another.
Once the route data is determined, it will then be sent to the
Advanced Navigation Node.

Advanced Navigation
The Advanced Navigation Node is found at the Subsystem

level of the software architecture. It receives commands (the
route and configuration) from the Route Management Node.
It uses this route data along with high-level object data to
generate high-level behaviors that will instruct the vehicle to
safely continue along the route while responding to vehicles,

pedestrians, and other objects. When in the convoying
configuration, it receives formation commands such as
desired following distance and lateral offsets from the path.
This node also ensures that the route will be continuous
when switching between the convoying configuration and
normal configuration. The commands generated by this
node will be sent to the Basic Mobility Node.

Basic Mobility
The Basic Mobility Node is found at the Subsystem level

of the software architecture. It receives commands from the
Advanced Navigation Node, which includes information
about the route. It uses data about the route along with
sensor information specific to vehicles, objects, and the road
around it. It generates behaviors that will allow the vehicle
to drive in a specific lane, change lanes, make turns, go
around objects, follow other vehicles, and stop at stop signs.
The commands generated from these behaviors will be sent
to the Vehicle Path Node.

Vehicle Path
The Vehicle Path Node is found at the Subsystem level of

the software architecture. It receives commands from the
Basic Mobility Node, which includes information about the
near-term desired route and speed the vehicle should travel.
It creates the path segments based on this information. It
sends these path segment commands to the Vehicle
Controller Node. It also generates desired states of the
vehicle’s auxiliary functions such as the turn signals and
shifter. It sends these commands to the Vehicle Auxiliary
Functions Node.

Vehicle Controller
The Vehicle Controller Node is found at the Primitive

level of the software architecture. It receives commands
from the Vehicle Path Node, which contains information
about the desired near-term path and speed profile of the
vehicle. It uses this information to generate desired steering
and speed commands at each point along the path. This
node also uses vehicle and sensor state information to
perform safety checks and generate safety behaviors. It
sends the steering information to the Steering Controller and
the speed information to the Speed Controller.

Vehicle Auxiliary
The Vehicle Auxiliary Node is found at the Primitive level

of the software architecture. It receives commands from the
Vehicle Path Node, which contains information about the
desired state of the auxiliary functions of the vehicle such as
the turn signals and the shifter. It then sends commands to
the Shifting Controller and Signal Controller.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementation of the 4D/RCS Architecture Within the Southwest Safe Transport Initiative

Page 5 of 8

DESCRIPTION OF BEHAVIORS
Each node described above receives information at various

levels of the World Model and generates a set of behaviors
to enact based on that information. Behaviors at the higher
levels contain behavior subsets. For example, when the
TrackVehicle behavior is generated at the Advanced
Navigation node, then its behavior subset (or behaviors that
can be generated by the Basic Mobility node) include
FollowVehicle and FollowModLane. Behaviors that include
lower level behaviors list those specific behaviors in the
Behavior Subset sections.

FollowRoute
The The FollowRoute behavior is generated at the Route

Management Node of the software architecture. The Route
Management Node will switch to this behavior when the
user selects a destination and commands the node to
generate a route to that destination. When the FollowRoute
behavior is selected, a command will be sent to the
Advanced Navigation Node that contains the route
information.

Behavior Subset: DriveOnRoad, PassVehicleInFront,
RespondToPedestrian, RespondToObject,
NegotiateIntersection, 3PointTurn

FollowConvoy
The FollowConvoy behavior is generated at the Route

Management Node of the software architecture. The Route
Management Node will switch to this behavior when the
user places the vehicle in convoy mode. The node then
decides the vehicle’s placement in the convoy and which
vehicle it needs to track. When the FollowConvoy behavior
is selected, a command will be sent to the Advanced
Navigation Node that contains the route information based
on the tracked vehicle.

Behavior Subset: TrackVehicle, RespondToPedestrian,
RespondToObject, NegotiateIntersection

DriveOnRoad
The DriveOnRoad behavior is generated at the Advanced

Navigation Node of the software architecture. The
Advanced Navigation Node will initially switch to this
behavior when it receives a FollowRoute command in
normal configuration from the Route Management Node. It
will also switch to this behavior when there are no objects or
pedestrians in the vehicle’s route, when the vehicle is not
trying to pass another vehicle, and when the vehicle is not at
an intersection. Essentially, this behavior acts as the default
behavior at the Advanced Navigation Node. When the
DriveOnRoad behavior is selected, a command will be sent
to the Basic Mobility Node that contains the route
information.

Behavior Subset: FollowLane, FollowVehicle,
MoveToRightLane, MoveToLeftLane

TrackVehicle
The TrackVehicle behavior is generated at the Advanced

Navigation Node of the software architecture. The
Advanced Navigation Node will only switch to this behavior
when it receives a FollowConvoy command from the Route
Management Node. In this behavior, the route will be
generated based on the track of the vehicle ahead of it in the
convoy. When the TrackVehicle behavior is selected, a
command will be sent to the Basic Mobility Node that
contains the route of the vehicle ahead of it.

Behavior Subset: FollowVehicle, FollowModLane

PassVehicleInFront
The PassVehicleInFront behavior is generated at the

Advanced Navigation Node of the software architecture.
This behavior is selected when another vehicle is detected in
front, a passing lane exists to the left (or the right), the
passing lane is clear, and the Advanced Navigation Node
determines the difference in speeds warrants a pass. When
the PassVehicleInFront behavior is selected, a command will
be sent to the Basic Mobility Node that contains information
about the route, the lanes, and the vehicle to pass.

Behavior Subset: FollowLane, FollowVehicle,
MoveToRightLane, MoveToLeftLane

RespondToPedestrian
The RespondToPedestrian behavior is generated at the

Advanced Navigation Node of the software architecture.
This behavior is selected when a pedestrian is detected that
is interfering with the vehicle route or may interfere with the
route in the future. When the RespondToPedestrian
behavior is selected, a command will be sent to the Basic
Mobility Node that contains information about the route and
the pedestrian(s) that may cause interference.

Behavior Subset: FollowLane, FollowModLane, StopAt

RespondToObject
The RespondToObject behavior is generated at the

Advanced Navigation Node of the software architecture.
This behavior is selected when an object is detected that is
interfering with the vehicle route or may interfere with the
route in the future. When the RespondToObject behavior is
selected, a command will be sent to the Basic Mobility Node
that contains information about the route and the object(s)
that may cause interference. This behavior differs from the
RespondToPedestrian behavior because there may be cases
where it is acceptable to swerve around or even hit the
object.

Behavior Subset: FollowLane, FollowModLane, StopAt

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementation of the 4D/RCS Architecture Within the Southwest Safe Transport Initiative

Page 6 of 8

NegotiateIntersection
The NegotiateIntersection behavior is generated at the

Advanced Navigation Node of the software architecture.
This behavior is selected when the vehicle is approaching an
intersection. When the NegotiateIntersection behavior is
selected, a command will be sent to the Basic Mobility Node
that contains information about the route and the intersection
type.

Behavior Subset: FollowLane, FollowModLane, StopAt,
FollowVehicle, TurnLeft, TurnRight

3PointTurn
The 3PointTurn behavior is generated at the Advanced

Navigation Node of the software architecture. This behavior
is selected when the road is blocked and the only way to
reach the destination is to turn around and ahead the
opposite direction on the same road. The vehicle will try to
perform a U-Turn and will revert to a 3PointTurn when there
is not enough space. When the 3PointTurn behavior is
selected, a command will be sent to the Basic Mobility Node
that contains information about the turn.

Behavior Subset: FollowModLane, StopAt

FollowLane
The FollowLane behavior is generated at the Basic

Mobility Node of the software architecture. This behavior is
selected for a variety of reasons depending on the state of the
Advanced Navigation Node. In general, this behavior is
selected when there are no vehicles, pedestrians, or other
objects in front of the vehicle, and the vehicle is not at an
intersection or changing lanes. Essentially, this behavior
acts as the default behavior at the Basic Mobility Node.
When the FollowLane behavior is selected, a command will
be sent to the Vehicle Path Node that contains information
about the route and the lane.

Behavior Subset: Normal, Reverse

FollowVehicle
The FollowVehicle behavior is generated at the Basic

Mobility Node of the software architecture. This behavior is
selected when another vehicle is traveling on the same route
at a speed lower than the desired speed. When the
FollowVehicle behavior is selected, a command will be sent
to the Vehicle Path Node that contains information about the
route, the lane, and the lead vehicle.

Behavior Subset: ACC

FollowModLane
The FollowModLane behavior is generated at the Basic

Mobility Node of the software architecture. This behavior is
selected when there is a reason to continue on the route, but
not follow a lane precisely. Potential reasons include
pedestrians or other objects in the vehicle’s lane. When the

FollowModLane behavior is selected, a command will be
sent to the Vehicle Path Node that contains information
about the route and the modified lane.

Behavior Subset: Normal, Reverse

MoveToLRLane
The MoveToLRLane behavior is generated at the Basic

Mobility Node of the software architecture. This behavior is
selected when the route requires a lane change, or when a
vehicle is being passed and a lane change is needed. The
lane is required to be clear. When the MoveToLRLane
behavior is selected, a command will be sent to the Vehicle
Path Node that contains information about the route and the
lane to move to.

Behavior Subset: Normal

TurnLR
The TurnLR behavior is generated at the Basic Mobility

Node of the software architecture. This behavior is selected
when a left or right turn is being made at an intersection.
When the TurnLR behavior is selected, a command will be
sent to the Vehicle Path Node that contains information
about the route, and a command will be sent to the Vehicle
Auxiliary Node that contains information about the turn
signals.

Behavior Subset: Normal, Stop, Resume

StopAt
The StopAt behavior is generated at the Basic Mobility

Node of the software architecture. This behavior is selected
for a variety of reasons depending on the state of the
Advanced Navigation Node. If the vehicle is negotiating an
intersection, then StopAt is selected when the vehicle is at a
stop sign or stop light or the vehicle is making a left turn and
another vehicle is in the way. If the vehicle is responding to
a pedestrian or object, then StopAt is selected when the
vehicle needs to stop and wait for the pedestrian or object to
move from the route. When the StopAt behavior is selected,
a command will be sent to the Vehicle Path Node that
contains information about the route, the lane, the speed, and
the stopping point.

Behavior Subset: Normal, Stop

BEHAVIOR TRANSITIONS
The SSTI vehicle implements complex behaviors by

combining lower level behaviors to implement mission
objectives. For example, following a route combines
behaviors that involve avoiding static and dynamic
obstacles, negotiating intersections, and parking, all while
obeying traffic laws and implementing the specific driving
strategy of the vehicle. A diagram illustrating the transition
between Advanced Navigation behaviors to implement the
FollowRoute behavior is shown in Figure 6.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementation of the 4D/RCS Architecture Within the Southwest Safe Transport Initiative

Page 7 of 8

Figure 6. FollowRoute State Transition Diagram

OPERATIONAL CONCEPT

Figure 7 shows an operational concept of the SSTI vehicle
in a convoying operation. This operational concept
highlights some of the behavior switching that occurs in a
UGV mission. In this operational concept, the UGV (the
SSTI vehicle) starts out in the FollowConvoy behavior and
is the last vehicle in a small three-vehicle convoy. While
convoying, the SSTI vehicle is instructed to modify its
formation by adjusting its target following distance. When
approaching an urban area, an incident occurs that separates
one of the vehicles from the convoy. After the incident, the
SSTI vehicle is instructed to take the lead through the urban
environment because it is deemed hazardous. The SSTI
vehicle enters the FollowRoute behavior and leads the now
two-vehicle convoy through the urban area, negotiating
intersections and stopping for any pedestrians or animals
crossing the street. The separated vehicle rejoins the UGV-
led convoy after the urban environment has been successful
navigated. When the convoy enters a safe area, the SSTI
vehicle is instructed to take a follower position and slows

down so a manned vehicle can re-take the lead. The SSTI
vehicle then enters back into FollowConvoy mode for the
rest of the mission.

Figure 7. Operational Concept of the Behavior Switching

of the SSTI Vehicle

LESSONS LEARNED
There still remains a considerable amount of development

and testing of the SSTI vehicle software, but the
development effort has already shed light on a number of
considerations that are important in the design and
implementation of a 4D/RCS based software architecture.
These include:

1. It was important to have well-defined interfaces

between the RCS nodes to allow parallel algorithm
development within separate echelons.

2. The nodes should be as loosely coupled as possible.

This was sometimes challenging in a 4D/RCS based
architecture as each node receives status input from
subordinate nodes as well as sends commands to them.

3. It was good to error on the side of passing too much

information between the nodes initially and tune for
performance later.

4. A graphical development environment such as

RTMaps and MATLAB/Simulink helped when
implementing a 4D/RCS based architecture as the nodes and
echelons can be visually represented.

CONCLUSION

In conclusion, the use of proven, real-time control system
architectures such as 4D/RCS helps in the process of
creating a vehicle that can act deliberatively as well as
reactively to environmental conditions. The hierarchical

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementation of the 4D/RCS Architecture Within the Southwest Safe Transport Initiative

Page 8 of 8

nature of 4D/RCS provides a system of nodes in which each
node operates within a time horizon appropriate for the
echelon in which it exists. This system of nodes creates a
vehicle system that can perform complex behaviors as well
as safety-critical behaviors in a timely fashion. Thus,
creating a vehicle that can act, or assist a human in acting, in
a safer and more efficient manner may save time and lives.

ACKNOWLEDGMENTS

The authors wish to acknowledge the technical
contributions from the following SSTI project team
members: Steve Dellenback, Ryan Lamm, Roger Lopez,
Dan Pomerening, Joe Steiber, Paul Avery, Kevin Alley,
Chris Mentzer, Kris Kozak, Bapi Surampudi, and Josh

Curtis. This research was funded under Southwest Research
Institute IR&D project 10-R9648.

REFERENCES

[1] R. Madhavan E. Messina, and J. Albus, “Intelligent
Vehicle Systems: A 4D/RCS Approach”, Nova Science
Publishers, January 15, 2007.

[2] J. Albus, “4D/RCS: A Reference Model Architecture for
Intelligent Ground Vehicles”, Proceedings of the SPIE
16th Annual International Symposium on
Aerospace/Defense Sensing Simulation, and Controls,
Orlando, FL, April 1-5, 2002.

