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ABSTRACT 
Over time, the National Institute of Standards and Technology (NIST) has refined the 4Dimension / Real-time Control System 

(4D/RCS) architecture for use in Unmanned Ground Vehicles (UGVs).  This architecture, when applied to a fully autonomous 
vehicle designed for missions in urban environments, can greatly assist in the process of saving time and lives by creating a more 
intelligent vehicle that acts in a safer and more efficient manner.  Southwest Research Institute (SwRI®) has undertaken the 
Southwest Safe Transport Initiative (SSTI) aimed at investigating the development and commercialization of vehicle autonomy as 
well as vehicle-based telemetry systems to improve active safety systems and autonomy.  This paper will discuss the 
implementation of the 4D/RCS architecture to the SSTI autonomous vehicle, a 2006 Ford Explorer. 

 
INTRODUCTION 

The Southwest Safe Transport Initiative (SSTI) was started 
in 2006 and aimed at investigating the development and 
commercialization of vehicle autonomy as well as vehicle-
based telemetry systems to improve safety and facilitate 
traffic flow.  The first phase of the program focused on 
understanding the state-of-the-art.  It was during this phase 
that the 4D/RCS Architecture was selected as the software 
architecture for the SSTI vehicle.  The following sections 
give a brief background on the 4D/RCS Architecture and the 
SSTI program. 

 
4D/RCS Architecture 
4D/RCS is a reference model architecture for 

conceptualizing, designing, engineering, integrating, and 
testing intelligent control systems software for cognitive 
systems in real-world environments.  It is especially useful 
in the development of vehicle systems with any degree of 
autonomy, from manually operated to fully autonomous. The 
4D/RCS architecture consists of a multi-resolution hierarchy 
of feedback control loops between sensing and acting that 
integrate reactive behavior with perception, cognition, world 
modeling, decision-making, and planning, and forming a 
hybrid deliberative/reactive system [1].   

A 4D/RCS based architecture contains a hierarchy of 
intelligent control nodes where each has a well defined role.  
Each node operates on a specific time horizon that is 
appropriate to the level, or echelon, in which the node exists.  
Within the vehicle, there are 4 echelons that exist: Vehicle, 
Subsystem, Primitive, and Servo.  These levels are shown in 
Figure 1. 
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Figure 1. 4D/RCS Echelons 

 
Each node acquires sensory input from nodes at a lower 

level in the architecture, or directly from hardware 
interfaces, and performs Sensory Processing (SP) on that 
data. As a result, the SP module updates the World Model 
(WM) for the node, which along with the Knowledge 
Database (KD) and Value Judgment (VJ), are used by the 
Behavior Generation (BG) module to create appropriate 
actions.  The actions generated by the BG module are 
dependent on the location of the node in the hierarchy.  For 
example, the actions created at the Servo level of the 
hierarchy will likely correspond to motor commands.  The 
actions created at the Navigation level will likely correspond 
to a route or path generation.  The internal structure of a 
generic 4D/RCS node [2] is shown in Figure 2. 

 



Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Implementation of the 4D/RCS Architecture Within the Southwest Safe Transport Initiative 
 

Page 2 of 8 

 
Figure 2. Internal Structure of a 4D/RCS Node 

 
Each node provides processed sensory data and also status 

information to the nodes above it in the hierarchy. Each node 
also provides the generated behaviors and commanded 
actions to the nodes below it in the hierarchy.  Also note that 
each node shares information with other nodes at the same 
level of the hierarchy.  This creates a system of nodes with 
well-defined interfaces that when combined, can provide 
both a reactive and a deliberative control loop. 

 
The Southwest Safe Transport Initiative 
The SSTI program is a Southwest Research Institute 

(SwRI) internally-funded research project focusing on 
advancing active safety and autonomous vehicle 
technologies.  The goal of SSTI is to integrate commercially 
available sensors, software, and algorithms into an 
autonomous vehicle.  The program has integrated 
commercially available equipment into a 2006 Ford Explorer 
shown in Figure 3. 

 

 
Figure 3.  The SSTI 2006 Ford Explorer 

The following components have been integrated into the 
base vehicle platform to date: 

 
 Ibeo Laser Scanners and Fusion System 
 Oxford RT3052 Global Positioning System (GPS) 

and Inertial Navigation System (INS) 
 Electronic Mobility Controls (EMC) AEVIT Drive-

by-Wire System 
 High Resolution Prosilica EC1350C Camera 
 Intel Core 2 Duo Blade Cluster – ExtremeNode 

EN-8740 by PCW MicroSystems 
 Technocom 5.9 GHz Dedicated Short Range 

Communication (DSRC) radio 
 dSpace Autobox with MatLab Simulink/CarSim 

 
The SSTI vehicle can follow predefined routes 

autonomously while performing static and dynamic obstacle 
recognition and avoidance.  The vehicle’s route planning 
algorithms utilize Route Network Definition File (RNDF) 
files similar to the ones used in the Defense Advanced 
Research Projects Agency (DARPA) Urban Challenge.  An 
operator can simply provide a destination within the RNDF 
and the vehicle will safely travel there autonomously.   

The vehicle can also communicate with an infrastructure 
and other vehicles using a DSRC based Extra-Vehicle 
Communications System (EVCS).  The EVCS components 
are able to communicate using either the Society of 
Automotive Engineers (SAE) J2735 and or the SAE AS-4 
Joint Architecture for Unmanned Systems (JAUS) messages.  
This allows the vehicle to utilize information from external 
systems as well as its own sensors to be more 
knowledgeable of the surrounding environment. 

 
IMPLEMENTATION OF 4D/RCS ARCHITECTURE 

  While development on the SSTI vehicle is still in 
progress, the development team has implemented a 
preliminary version of the Servo, Primitive, Subsystem, and 
Vehicle echelons of the 4D/RCS architecture.  These 
echelons are divided even further into nodes like the ones 
described above.  Each node accepts sensor data, commands 
from higher-level nodes, and status from lower-level nodes.  
The responsibility of each node is to enact a certain behavior 
that is dependent upon this information that it receives.  The 
following sections describe the application of the 4D/RCS 
architecture on the SSTI vehicle, including the various 
echelons, the nodes contained in each echelon, and the 
behaviors they enact. 

 
Description of the Architecture Hierarchy 
The Servo echelon is provided by the EMC drive-by-wire 

system.  This echelon performs the closed-loop control of 
the servo motors and other actuators.  It accepts commands 
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to control the position of the steering motor, the position of 
the throttle/brake motor, the position of the transmission (i.e. 
Park, Reverse, Neutral, Drive), and states of other auxiliary 
components like the windshield wipers and turn signals.  
Since this system was purchased off-the-shelf, it is treated 
like a black box by the rest of the system. 

The Primitive echelon is implemented using a combination 
of hardware and software to interface with the GPS sensor 
and the drive-by-wire system.  A dSpace Autobox serves as 
the heart of the Primitive echelon and provides the low-level 
command and control interface to send steering and 
throttle/brake position commands to the drive-by-wire 
system.  It accepts local path and speed commands from the 
higher echelons and ensures the vehicle maneuvers on the 
path at the desired speed. The dSpace operating system 
provides a real-time, deterministic platform to monitor 
vehicle dynamics and provide immediate stability control 
feedback.   

The Subsystem Echelon is implemented on a blade server 
cluster using software components developed using Real 
Time Multisensor Advanced Prototyping Software 
(RTMaps).  These custom components, along with RTMaps 
integrated components, provide an environment in which 
algorithms can more easily be developed and explored to 
optimize sensory processing and higher level vehicle 
commands.  Custom components acquire and process data 
from the various sensors to develop a world model.  This 
world model utilizes a situational awareness system to fuse 
the sensor data and generate vehicle trajectories.  These 
trajectories are realized in near-real-time by sending lower 
level path segment commands to the dSpace Autobox to 
perform.   

The Vehicle Echelon, also implemented on the blade 
cluster in the RTMaps environment, provides an interface 
for the user to choose a destination on a map or provide the 
vehicle with a mission by choosing an MDF file.  It uses a 
priori map data through an RNDF file in addition to the user 
input to calculate a route from the vehicle’s current position 
to the goal position.  If the route is detected to be blocked by 
the on-board sensors (from construction or otherwise), this 
information can be passed up to the Vehicle echelon so it 
can dynamically recompute a new route.  This route 
information, including any additional relevant map data (e.g. 
passing lanes, intersections, etc.), is passed to the lower 
echelons. 

 
Hardware/Software Interfaces 
The sensor processing modules perform preliminary 

processing on the acquired data to determine if immediate 
behaviors need to be implemented (e.g. for reflex actions).  
This pre-processed data is then provided to higher level 
situational awareness modules that further process the data 
to build the vehicle’s World Model.  The World Model is 

used by the behavior generation components to implement 
the vehicle’s behaviors (e.g. route planning and following, 
obstacle avoidance).  The primitive level of the behavior 
generation software interfaces with the EMC drive-by-wire 
system to control the vehicle while monitoring vehicle 
dynamics and maintaining the safety of the system. A 
diagram of the hardware and software interfaces of the 
system components is shown in Figure 4. 
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Figure 4.  SSTI 4D/RCS Subsystem Echelon 

Implementation 

Behavior Generation 
The SSTI software architecture implements nodes that 

operate within the Vehicle, Subsystem, and Primitive 
4D/RCS echelons.  Each node generates specific behaviors 
according to its level within the behavior generation 
hierarchy.  This behavior hierarchy, along with the 
corresponding 4D/RCS echelons and nodes are shown in 
Figure 5.  The following section describes each one of the 
nodes in the software architecture.  The section after that 
describes each one of the behaviors in detail. 
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Figure 5. SSTI 4D/RCS Echelons, Nodes, and Behaviors 

 
DESCRIPTION OF ARCHITECTURE NODES 

Each echelon within the SSTI software architecture 
contains one or more nodes perform functions for 
autonomous navigation.  These nodes include Route 
Management, Advanced Navigation, Basic Mobility, 
Vehicle Path, Vehicle Controller, and Vehicle Auxiliary. 

 
Route Management 
The Route Management Node is found at the Vehicle level 

of the software architecture.  Its primary responsibility is to 
provide an interface to the user, allowing the user to choose 
a configuration and a destination for the vehicle.  The user 
can be someone inside the vehicle or someone viewing the 
interface remotely.  The configuration means that the vehicle 
could be a member of a convoy of vehicles.  In the normal 
operating configuration, this node will calculate the entire 
route based on priori information (data from an RNDF file, 
an online mapping program, or an on-board navigation 
database).  When the user selects the convoying 
configuration, this node will determine its position in the 
convoy and create the route based on the track of the vehicle 
directly ahead of it in the convoy.  This node also receives 
user commands to switch from one configuration to another.  
Once the route data is determined, it will then be sent to the 
Advanced Navigation Node. 

 
Advanced Navigation 
The Advanced Navigation Node is found at the Subsystem 

level of the software architecture.  It receives commands (the 
route and configuration) from the Route Management Node.  
It uses this route data along with high-level object data to 
generate high-level behaviors that will instruct the vehicle to 
safely continue along the route while responding to vehicles, 

pedestrians, and other objects.  When in the convoying 
configuration, it receives formation commands such as 
desired following distance and lateral offsets from the path.  
This node also ensures that the route will be continuous 
when switching between the convoying configuration and 
normal configuration.  The commands generated by this 
node will be sent to the Basic Mobility Node. 

 
Basic Mobility 
The Basic Mobility Node is found at the Subsystem level 

of the software architecture.  It receives commands from the 
Advanced Navigation Node, which includes information 
about the route.  It uses data about the route along with 
sensor information specific to vehicles, objects, and the road 
around it.  It generates behaviors that will allow the vehicle 
to drive in a specific lane, change lanes, make turns, go 
around objects, follow other vehicles, and stop at stop signs.  
The commands generated from these behaviors will be sent 
to the Vehicle Path Node. 

 
Vehicle Path 
The Vehicle Path Node is found at the Subsystem level of 

the software architecture.  It receives commands from the 
Basic Mobility Node, which includes information about the 
near-term desired route and speed the vehicle should travel.  
It creates the path segments based on this information.  It 
sends these path segment commands to the Vehicle 
Controller Node.  It also generates desired states of the 
vehicle’s auxiliary functions such as the turn signals and 
shifter.  It sends these commands to the Vehicle Auxiliary 
Functions Node. 

 
Vehicle Controller 
The Vehicle Controller Node is found at the Primitive 

level of the software architecture.  It receives commands 
from the Vehicle Path Node, which contains information 
about the desired near-term path and speed profile of the 
vehicle.  It uses this information to generate desired steering 
and speed commands at each point along the path.  This 
node also uses vehicle and sensor state information to 
perform safety checks and generate safety behaviors.  It 
sends the steering information to the Steering Controller and 
the speed information to the Speed Controller. 

 
Vehicle Auxiliary 
The Vehicle Auxiliary Node is found at the Primitive level 

of the software architecture.  It receives commands from the 
Vehicle Path Node, which contains information about the 
desired state of the auxiliary functions of the vehicle such as 
the turn signals and the shifter.  It then sends commands to 
the Shifting Controller and Signal Controller. 
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DESCRIPTION OF BEHAVIORS 
Each node described above receives information at various 

levels of the World Model and generates a set of behaviors 
to enact based on that information.  Behaviors at the higher 
levels contain behavior subsets.  For example, when the 
TrackVehicle behavior is generated at the Advanced 
Navigation node, then its behavior subset (or behaviors that 
can be generated by the Basic Mobility node) include 
FollowVehicle and FollowModLane.  Behaviors that include 
lower level behaviors list those specific behaviors in the 
Behavior Subset sections. 

 
FollowRoute 
The The FollowRoute behavior is generated at the Route 

Management Node of the software architecture.  The Route 
Management Node will switch to this behavior when the 
user selects a destination and commands the node to 
generate a route to that destination.  When the FollowRoute 
behavior is selected, a command will be sent to the 
Advanced Navigation Node that contains the route 
information. 

Behavior Subset: DriveOnRoad, PassVehicleInFront, 
RespondToPedestrian, RespondToObject, 
NegotiateIntersection, 3PointTurn 

 
FollowConvoy 
The FollowConvoy behavior is generated at the Route 

Management Node of the software architecture.  The Route 
Management Node will switch to this behavior when the 
user places the vehicle in convoy mode.  The node then 
decides the vehicle’s placement in the convoy and which 
vehicle it needs to track.  When the FollowConvoy behavior 
is selected, a command will be sent to the Advanced 
Navigation Node that contains the route information based 
on the tracked vehicle. 

Behavior Subset:  TrackVehicle, RespondToPedestrian, 
RespondToObject, NegotiateIntersection 

 
DriveOnRoad 
The DriveOnRoad behavior is generated at the Advanced 

Navigation Node of the software architecture.  The 
Advanced Navigation Node will initially switch to this 
behavior when it receives a FollowRoute command in 
normal configuration from the Route Management Node.  It 
will also switch to this behavior when there are no objects or 
pedestrians in the vehicle’s route, when the vehicle is not 
trying to pass another vehicle, and when the vehicle is not at 
an intersection.  Essentially, this behavior acts as the default 
behavior at the Advanced Navigation Node.  When the 
DriveOnRoad behavior is selected, a command will be sent 
to the Basic Mobility Node that contains the route 
information. 

Behavior Subset: FollowLane, FollowVehicle, 
MoveToRightLane, MoveToLeftLane 

 
TrackVehicle 
The TrackVehicle behavior is generated at the Advanced 

Navigation Node of the software architecture.  The 
Advanced Navigation Node will only switch to this behavior 
when it receives a FollowConvoy command from the Route 
Management Node.  In this behavior, the route will be 
generated based on the track of the vehicle ahead of it in the 
convoy.  When the TrackVehicle behavior is selected, a 
command will be sent to the Basic Mobility Node that 
contains the route of the vehicle ahead of it. 

Behavior Subset:  FollowVehicle, FollowModLane 
 
PassVehicleInFront 
The PassVehicleInFront behavior is generated at the 

Advanced Navigation Node of the software architecture.  
This behavior is selected when another vehicle is detected in 
front, a passing lane exists to the left (or the right), the 
passing lane is clear, and the Advanced Navigation Node 
determines the difference in speeds warrants a pass.  When 
the PassVehicleInFront behavior is selected, a command will 
be sent to the Basic Mobility Node that contains information 
about the route, the lanes, and the vehicle to pass. 

Behavior Subset: FollowLane, FollowVehicle, 
MoveToRightLane, MoveToLeftLane 

 
RespondToPedestrian 
The RespondToPedestrian behavior is generated at the 

Advanced Navigation Node of the software architecture.  
This behavior is selected when a pedestrian is detected that 
is interfering with the vehicle route or may interfere with the 
route in the future.  When the RespondToPedestrian 
behavior is selected, a command will be sent to the Basic 
Mobility Node that contains information about the route and 
the pedestrian(s) that may cause interference. 

Behavior Subset: FollowLane, FollowModLane, StopAt 
 
RespondToObject 
The RespondToObject behavior is generated at the 

Advanced Navigation Node of the software architecture.  
This behavior is selected when an object is detected that is 
interfering with the vehicle route or may interfere with the 
route in the future.  When the RespondToObject behavior is 
selected, a command will be sent to the Basic Mobility Node 
that contains information about the route and the object(s) 
that may cause interference.  This behavior differs from the 
RespondToPedestrian behavior because there may be cases 
where it is acceptable to swerve around or even hit the 
object. 

Behavior Subset: FollowLane, FollowModLane, StopAt 
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NegotiateIntersection 
The NegotiateIntersection behavior is generated at the 

Advanced Navigation Node of the software architecture.  
This behavior is selected when the vehicle is approaching an 
intersection.  When the NegotiateIntersection behavior is 
selected, a command will be sent to the Basic Mobility Node 
that contains information about the route and the intersection 
type. 

Behavior Subset: FollowLane, FollowModLane, StopAt, 
FollowVehicle, TurnLeft, TurnRight 

 
3PointTurn 
The 3PointTurn behavior is generated at the Advanced 

Navigation Node of the software architecture.  This behavior 
is selected when the road is blocked and the only way to 
reach the destination is to turn around and ahead the 
opposite direction on the same road.  The vehicle will try to 
perform a U-Turn and will revert to a 3PointTurn when there 
is not enough space. When the 3PointTurn behavior is 
selected, a command will be sent to the Basic Mobility Node 
that contains information about the turn. 

Behavior Subset:  FollowModLane,  StopAt 
 
FollowLane 
The FollowLane behavior is generated at the Basic 

Mobility Node of the software architecture.  This behavior is 
selected for a variety of reasons depending on the state of the 
Advanced Navigation Node.  In general, this behavior is 
selected when there are no vehicles, pedestrians, or other 
objects in front of the vehicle, and the vehicle is not at an 
intersection or changing lanes.  Essentially, this behavior 
acts as the default behavior at the Basic Mobility Node.  
When the FollowLane behavior is selected, a command will 
be sent to the Vehicle Path Node that contains information 
about the route and the lane.   

Behavior Subset: Normal, Reverse 
 
FollowVehicle 
The FollowVehicle behavior is generated at the Basic 

Mobility Node of the software architecture.  This behavior is 
selected when another vehicle is traveling on the same route 
at a speed lower than the desired speed.  When the 
FollowVehicle behavior is selected, a command will be sent 
to the Vehicle Path Node that contains information about the 
route, the lane, and the lead vehicle.   

Behavior Subset: ACC 
 
FollowModLane 
The FollowModLane behavior is generated at the Basic 

Mobility Node of the software architecture.  This behavior is 
selected when there is a reason to continue on the route, but 
not follow a lane precisely.  Potential reasons include 
pedestrians or other objects in the vehicle’s lane.  When the 

FollowModLane behavior is selected, a command will be 
sent to the Vehicle Path Node that contains information 
about the route and the modified lane.   

Behavior Subset: Normal, Reverse 
 
MoveToLRLane 
The MoveToLRLane behavior is generated at the Basic 

Mobility Node of the software architecture.  This behavior is 
selected when the route requires a lane change, or when a 
vehicle is being passed and a lane change is needed.  The 
lane is required to be clear.  When the MoveToLRLane 
behavior is selected, a command will be sent to the Vehicle 
Path Node that contains information about the route and the 
lane to move to.   

Behavior Subset: Normal 
 
TurnLR 
The TurnLR behavior is generated at the Basic Mobility 

Node of the software architecture.  This behavior is selected 
when a left or right turn is being made at an intersection.  
When the TurnLR behavior is selected, a command will be 
sent to the Vehicle Path Node that contains information 
about the route, and a command will be sent to the Vehicle 
Auxiliary Node that contains information about the turn 
signals.   

Behavior Subset: Normal, Stop, Resume 
 
StopAt 
The StopAt behavior is generated at the Basic Mobility 

Node of the software architecture.  This behavior is selected 
for a variety of reasons depending on the state of the 
Advanced Navigation Node.  If the vehicle is negotiating an 
intersection, then StopAt is selected when the vehicle is at a 
stop sign or stop light or the vehicle is making a left turn and 
another vehicle is in the way.  If the vehicle is responding to 
a pedestrian or object, then StopAt is selected when the 
vehicle needs to stop and wait for the pedestrian or object to 
move from the route.  When the StopAt behavior is selected, 
a command will be sent to the Vehicle Path Node that 
contains information about the route, the lane, the speed, and 
the stopping point.   

Behavior Subset: Normal, Stop 
 

BEHAVIOR TRANSITIONS 
The SSTI vehicle implements complex behaviors by 

combining lower level behaviors to implement mission 
objectives.  For example, following a route combines 
behaviors that involve avoiding static and dynamic 
obstacles, negotiating intersections, and parking, all while 
obeying traffic laws and implementing the specific driving 
strategy of the vehicle.  A diagram illustrating the transition 
between Advanced Navigation behaviors to implement the 
FollowRoute behavior is shown in Figure 6. 



Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Implementation of the 4D/RCS Architecture Within the Southwest Safe Transport Initiative 
 

Page 7 of 8 

 

 

 
Figure 6.  FollowRoute State Transition Diagram 

 
OPERATIONAL CONCEPT 

Figure 7 shows an operational concept of the SSTI vehicle 
in a convoying operation.  This operational concept 
highlights some of the behavior switching that occurs in a 
UGV mission.  In this operational concept, the UGV (the 
SSTI vehicle) starts out in the FollowConvoy behavior and 
is the last vehicle in a small three-vehicle convoy.  While 
convoying, the SSTI vehicle is instructed to modify its 
formation by adjusting its target following distance.  When 
approaching an urban area, an incident occurs that separates 
one of the vehicles from the convoy.  After the incident, the 
SSTI vehicle is instructed to take the lead through the urban 
environment because it is deemed hazardous.  The SSTI 
vehicle enters the FollowRoute behavior and leads the now 
two-vehicle convoy through the urban area, negotiating 
intersections and stopping for any pedestrians or animals 
crossing the street.  The separated vehicle rejoins the UGV-
led convoy after the urban environment has been successful 
navigated.  When the convoy enters a safe area, the SSTI 
vehicle is instructed to take a follower position and slows 

down so a manned vehicle can re-take the lead.  The SSTI 
vehicle then enters back into FollowConvoy mode for the 
rest of the mission. 

 

 
Figure 7.  Operational Concept of the Behavior Switching 

of the SSTI Vehicle 

LESSONS LEARNED 
There still remains a considerable amount of development 

and testing of the SSTI vehicle software, but the 
development effort has already shed light on a number of 
considerations that are important in the design and 
implementation of a 4D/RCS based software architecture.  
These include: 

 
1. It was important to have well-defined interfaces 

between the RCS nodes to allow parallel algorithm 
development within separate echelons. 

 
2. The nodes should be as loosely coupled as possible.  

This was sometimes challenging in a 4D/RCS based 
architecture as each node receives status input from 
subordinate nodes as well as sends commands to them. 

 
3. It was good to error on the side of passing too much 

information between the nodes initially and tune for 
performance later. 

 
4. A graphical development environment such as 

RTMaps and MATLAB/Simulink helped when 
implementing a 4D/RCS based architecture as the nodes and 
echelons can be visually represented.   

 
CONCLUSION 

In conclusion, the use of proven, real-time control system 
architectures such as 4D/RCS helps in the process of 
creating a vehicle that can act deliberatively as well as 
reactively to environmental conditions.  The hierarchical 
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nature of 4D/RCS provides a system of nodes in which each 
node operates within a time horizon appropriate for the 
echelon in which it exists.  This system of nodes creates a 
vehicle system that can perform complex behaviors as well 
as safety-critical behaviors in a timely fashion.  Thus, 
creating a vehicle that can act, or assist a human in acting, in 
a safer and more efficient manner may save time and lives. 
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