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ABSTRACT
Although bio-inspired legged robots have advantageous mobility, they can be very inefficient. Their intrinsic walking mobility is 

sometimes outweighed by the inefficiency of their drive-train. Some of these inefficiencies are due to collision losses, but they are 
also due to suboptimal powering schemes. This paper addresses the powering schemes and seeks to clearly delineate an optimal 
solution to powering the walking motion of a two-legged or biped walker. We examine a simplified model of locomotion called the 
“rocket car” to extract the meaningful parameters that affect time and energy cost. Using Pontryagin’s Maximum Principle, we 
dissect the cost function, the state equation, co-state equation, and control input constraints to describe the optimal control. The 
result of the paper shows a “bang-off” control, and we describe the “coasting line” between these extremes. It is not possible to 
find a complete closed-form solution for the problem, and numerical methods, such as dynamic programming must be used for
future simulation and visualization of the results.  

INTRODUCTION
Legged Robotics has long held the promise of mobility [1].  

Until recently, most research in legged robotics has focused 
on stability.  Recent research [2] has come to the conclusion 
that stability is a necessary, but not sufficient condition.  
Efficiency is a key factor that must not be overlooked.  
Particularly, we examine efficiency in the powering scheme 
of a legged robot.

As a rough order of magnitude (ROM) estimate, we 
approximate the powering scheme for a legged system with 
the so-called “rocket car” problem [3].  This deliberately
simplifies the problem by leaving out potential energy 
changes in the system.  We will adjust the problem to reach 
the origin with maximum velocity, instead of zero velocity, 
to simulate the transport of mass as quickly as possible 
through a single stride.  

Poyntryagin’s Maximum Principle (PMP) will be used to
study the control scheme, which is the foundation of modern 
control theory and has its roots in the solutions of problems 
required for space technology (hence the name “rocket car”).  
This is an arcane mathematical principle, which is best 
understood from an economics point of view.  The interested 
reader is directed to a few lucid treatments in [4-5].

POSITIONING PROBLEM WITH A TIME AND 
KINETIC ENERGY COST FUNCTION 

In the textbook treatment of the rocket car problem 
problem, the cost function, , is assumed to be for a time 

optimal problem (TOP), fuel, energy, or a mixed case of 
these.  The standard treatment for the energy cost function is 

2u  , which turns out to be  the case if u is a current 

source.  In this paper, we derive a treatment for energy 
where u is a control force instead.  We show that the cost 

function for energy is uv  .

Given:

Figure 1: Positioning Problem
Required:
Drive the mass back to the origin at 0x  with maximum 

velocity, while minimizing some integral-type cost, J , 
where:

 
0

,
T

J u dt  x                            (1)

In this problem, we choose two components for the cost 
(time and energy)

J dt dE                               (2)

Substituting for power

dE
J dt dt

dt
                           (3)

mx
u
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Substituting for kinetic energy

21

2

dE d
dt mv dt

dt dt
   
                  (4)

Noting that mv ma u 

mvvdt uvdt                             (5)

Finally, substitute the above result into (1) to yield

 
0

T

J k uv dt                            (6)

Where k is a positive constant.  Thus we have two 

components for the cost, with a constant k to measure the 
relative importance between the two.

POYNTRYAGIN’S MAXIMUM PRINCIPLE (PMP)
1st step in the Poyntryagin Maximum Principle: Treat cost 

as an additional state.  The state equations are thus given by:

0 2

1 2

2

x k uv k ux

x v x

x u u

      
            
     
     

x



 



              (7)

Since we want to approach the origin with maximum 
velocity, u is bounded by zero [6].

1 0u                                         (8)

In other words, while you may want to back off the gas, 
you would never want to apply the brakes.

2nd step in the Poyntryagin Maximum Principle: We 
introduce the co-state variables to form the Hamiltonian:

0 0 1 1 2 2H z x z x z x                             (9)

Substituting (7) we see that

 0 2 1 2 2H z k ux z x z u                   (10)

The co-state equations are prescribed by Hamilton’s 
equations:

0
0

0
H

z
x


  


                 (11)

1
1

0
H

z
x


  


                             (12)

2 1 0
2

H
z z z u

x


    


 (13)

3rd step in the Poyntryagin Maximum Principle
Solve the above co-state equations.  The equation for 

0z shows that 0z const , and the PMP requires that this 

constant should be negative.  Without loss of generality we 

can choose 0 1z   .  The two solutions to (11) and (12)

are thus:

0 1z   1z A     (14)

The solution to the last equation (13) is given by 

substituting (14), which yields 2z u A  , and the solution

becomes

2z udt At B                        (15)

We’ve previously shown 0udt mv mv  , so that

2 2 0z mx B mv At                    (16)

4th step in the Poyntryagin Maximum Principle: Find the 
supremum of H as a function of u .  The Hamiltonian is 
given by substituting (14), (16), and (7) into (10):

 2 2 2 0H k ux Ax u mx B mv At        (17)

To maximize H as a function of u , we must maximize 
the term uq where

  2 01q m x B mv At                (18)

If 1m  then ' 'q B At  where 0'B B mv  and 

since 'q is a linear function of t there is at most one zero 

crossing for 'q .  Thus

1

0
u


      

if

if
     

' 0

' 0

q

q




                      (19)

PMP has thus shown that we have “bang-off” control with 
a single switch.  This makes intuitive sense, since we would 
want to apply the force early on in order to gain the time 
savings accrued throughout the stride, but we would want to 
shut the force off after some time period in order to save 
energy.
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OPTIMAL COST

We desire to find the optimal cost J  .  We assume the 
optimal solution is “bang-off” as described in the previous 
section.  First, we proceed with a bang, i.e., from the initial 
position X to the switching position s we apply full reverse 

force ( 1u   ), and then at s , we cut the engines off 

( 0u  ) and coast through the origin with a cruising speed 
of “a.” as shown in the phase plot in Figure 1.

Figure 2: The Switching Curve

We can rewrite the cost integral (6) as a function of x
instead of t :

 
2 2

1 10

x xT

x x

dx
J k uv dt k udx

v
                (20)

where we have used the definition of velocity 
dx

v
dt

 and 

the definition of work E F ds udx    .

Working backwards from the initial position X at zero 
velocity until the switch at position s and velocity a , the 
time cost becomes:

0 0 1

s a a

X

dx dv dv
k km km kma

v u
   

        (21)

which uses the physics result ads vdv recast as 

udx mvdv .
The energy cost for this period is given by:

2

0 2

s a

X

ma
udx m vdv                   (22)

There is only time cost as we cruise at velocity a from 
position s to the origin:

0

s

dx ks
k

a a
                                (23)

Putting together the above three equations we get the 
optimal cost:

2

2

a s
J kma m k

a
                       (24)

This will always be positive since a is negative. 
We really would like a result that is only in terms of the 

initial conditions.  So we seek a formula that relates s to a .  

Integrating udx mvdv :

0 1

s a

X

mvdv
dx 

                         (25)

We find the relation:
2

2

ma
s X                           (26)

Substituting the above result for s into (24):
2 2

2 2

a k ma
J kma m X

a
  
     

 
     (27)

Simplifying:
2

2

2 2

2 2

a k kma
J kma m X

a

kma a kX
m

a

     

   
      (28)

We desire a result that minimizes ( )J a :

2
0

2

dJ km kX
ma

da a



                 (29)

We can check this result using implicit differentiation of 
(24)

2

'
0

dJ s s
km ma k

da a a

        
 

      (30)

Which we substitute into (30) along with 's ma  :

2
0

2

X m
km ma k m

a

            
   (31)

a

s X

v

x
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Simplifying:

2

2

0
2

0
2

X m
km ma km k

a

km kX
ma

a

       
 

   
      (32)

which is the same as (29)

This result yields the following cubic equation for a :

3 2 0
2

km
ma a kX                     (33)

This equation must be solved numerically to describe the 
“coasting line” shown in Figure 2, in terms of the initial 
conditions of the problem.

CONCLUSIONS AND FUTURE WORK
Describing the “coasting line” only gives an initial insight 

into the problem.  This must be followed by numerical 
analysis to check these results, and verify the theory.  Other 
models including friction, position uncertainty, and 
disturbance would add to the richness of the problem and 

increase its difficulty.  The authors wish to thank Grant 
Gerhart and Rob Karlsen for funding this research through 
the In-Lab Innovative Research (ILIR) program at US Army 
RDECOM/TARDEC.
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