
Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

PRODUCT LINE PARADIGM FOR ROBOTIC SYSTEM SOFTWARE, W. Smuda, PhD, et al.

Page 1 of 8

PRODUCT LINE PARADIGM FOR ROBOTIC SYSTEM SOFTWARE

William Smuda, PhD
US Army
TARDEC

 Matthew Skalny
US Army
TARDEC

 Leif Magowan

US Army
TARDEC

ABSTRACT

Software systems, like physical systems, require explicit architectural descriptions to increase system

level comprehension. Developing networked robotic systems of diverse physical assets is a continuing challenge

to developers. Problems often multiply when adding new hardware/software artifacts or when reconfiguring

existing systems. This work describes a method to create reconfigurable software for Army robotic systems via

model-based, graphical domain-specific languages and reusable components. The paradigm makes use of

feature models, the basis for product line software that describes and constrains variable aspects of the robotic

system’s hardware and associated software. Domain-specific languages use terms understandable to domain

engineers and technicians. Users of the modeling environment are able to stay at a high level of abstraction and

need not concern themselves with the details of the composed and generated code.

INTRODUCTION

“Robotics” is a word that infers different meanings to

different people, and also to the same person at different

times. In this paper we will use the word “robotics”

abstractly to infer to a collection of activities necessary to

create a useful robot. These activities encompass the entire

life cycle of the robot. The collection of activities can be

highly structured, structured within a specific phase, ad-hoc

or any combination of above. Structured activities are the

basis of Systems Engineering. The Product Line Paradigm

provides a framework for a set of interconnected structured

activities across the life cycle.

Robots, as many other modern devices are collections of

embedded systems. Today’s cars, trucks and construction

equipment are also collections of embedded systems. Most

modern automobiles have 20 to 70 electronic control units

with 100 to 1000 million object code instructions.
1
 Software

provides much of the value added to the devices we use day

to day, with some estimates of 80% or more in the

automotive industry. If we consider commercial vehicles as

a starting point, we can see that the number of software

instructions can be immense as seen in Figure 1: System

Size vs Deployment (after 1). Aircraft navigation systems

are another good example of a baseline system that requires

large efforts for on-board software development, as well as

ground support systems. If we consider a commercial air

platform as our baseline, we begin to understand the

problem of adding specific mission package software. If we

consider a commercial truck as our base platform, we may

argue that the problem is of an even greater magnitude.

There is no existing ground support structure for

autonomous vehicles, while airplanes enjoy a “little airplane,

big sky” environment. Autonomous ground vehicles are

required to operate in a dynamic, cluttered environment.

Figure 1: System Size vs Deployment (after 1)

The cost of building effective embedded software is not

directly related to the number of units produced. It takes

approximately the same effort to produce software for a

single system as it does for a fleet. Robotics has all the

issues that current commercial systems have. Safety is of

course a major concern, since the human is not the prime

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

PRODUCT LINE PARADIGM FOR ROBOTIC SYSTEM SOFTWARE, W. Smuda, PhD, et al.

Page 2 of 8

controller. Reliability, security, computational resources and

heterogeneity, as well as real-time concerns all also play a

large role. Furthermore, robotic system may be modified

over time, particularly in military systems. The software

needs to be accessible and understandable.

Department of Defense (DoD) robotics practitioners are

involved at every stage of the lifecycle from concept to use

to repair and upgrades. As noted earlier, robotics is a

collection of activities. Ad-hoc development is both

expensive and time consuming. Vendor internal procedures

are not always well known. In order for DoD robotics

practitioners to provide maximum value to the taxpayer, a

structured systems engineering approach is necessary.

Although this paper focuses on robotic software, we will

also touch on other aspects where they are relevant. The

approach we suggest is the Product Line paradigm.

Product Lines
 Product Lines are a familiar concept for consumer

products. They are often used to describe a base platform

and available options. Usually, consumers use product line

descriptions to buy a car or electronics component with the

features they desire. Manufactures use product lines to allow

consumer choice at reasonable cost by introducing common

components into multiple product lines.

Feature Models
Product lines are succinctly defied using feature models.

This modeling technique, introduced about two decades

ago
2
, has both a graphical notation

4
 and a textual notation

with associated grammar
3
. Designers need to be cognizant of

how features are related and of where new features should

appear. At domain analysis time, analysts create a feature

model. It is a tool for domain analysis to communicate

information between developers and users and, if preserved,

a temporal tool to determine what the original developers

were thinking during a previous spiral.

Feature models present software developers with a tool,

much like an assembly diagram for a mechanical developer.

As Czarnecki and Eisenecker state in their chapter on feature

modeling in their book, Generative Programming
4
, “Feature

Models provide an abstract, concise and explicit

representation of the variability present in the software.”

One should note that the feature model, like the assembly

drawing, is not a full representation of the system; it

combines with other models for full system representation.

A software feature model may have other diagrams and

analysis, such as timing constraints, state transition diagrams

and object diagrams.

The standard example of a feature model is a

representation of a car (Figure 2):

 Mandatory features: engine and transmission

 Optional features: sunroof

 Alternate features: manual or automatic

transmission and

 Or-Features: Electric motor, an internal combustion

engine or both (hybrid).

Features are the building blocks used to describe concepts.

Features are configurable reusable requirements of a

concept. The feature modeling process is a study of

variability in domain concepts. The process is continuous

and iterative, involving identifying as many Use cases,

existing feature models, system requirements and additional

UML models as possible to identify potential variability

points. It also involves recording all supporting information

as features become available to the concept. Addressing

variability is a key issue in creating reusable software.

Decomposition decisions that address the variability

discovered in feature modeling result in software with a high

level of reusability.

The feature model is the foundation of the product line

paradigm
5
. Formalized feature models can automate

segments of the prototyping process. Annotating features

Figure 2: Feature Diagram for a CAR

Car

Engine Transmission Sunroof

Automatic Manual

Optional Feature Mandatory Feature Alternative
Features

(Choose

only one)

Or
Features

(Choose one or more)

Legend

Electric

Gasoline

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

PRODUCT LINE PARADIGM FOR ROBOTIC SYSTEM SOFTWARE, W. Smuda, PhD, et al.

Page 3 of 8

and translating models preserves information, defines data

and component storage, and automates many segments of

the process. In particular, by automating the integration of

concrete realizations of features using components, a

prototyping environment can present domain engineers with

constrained choices that will greatly simplify the task of

assembling software to construct prototype robotic systems.

Feature models contain a great deal of information. The

top-level, visible feature diagram, presents an uncluttered

view of the concept in all its variants. From an engineering

standpoint, this allows analysis of tradeoffs at variability

points. Depending on the type of variability, feature models

highlight where the system instances are compile time, or

run-time-dependent. Additionally, feature models show

where concept instances diverge; this may lead to areas

where parallel development teams may be able to work

without a great deal of coupling. Conversely, feature models

also illustrate areas where instances of a concept are

common. An important note is that feature diagrams of

concepts can be graphs. This indicates that sub-features may

be associated with more than one parent feature. The product

line can reuse these areas for other instances of a concept or

for future extensions to a concept.

Domain Specific Language
 Feature models enable Model Driven Engineering. Model-

driven Engineering combines Feature models and

constraints. Constraints can be part of the Meta-model to

guide the domain modeler. Constraints can also be applied

when the domain model output is processed to analyze

systems or for temporary restrictions. For instance, an

automobile model is constrained to a single transmission by

noting a cardinality of 1..1 (must have one, must not have

more than one) for the transmission model element. A

temporary constraint may indicate that a particular model of

the engine is not available until some future date.

Domain Specific Languages are described in a Meta-

model, often graphical, that defines the relationships of

abstractions in the domain. The Meta-model is in essence a

feature model. Engineers create the Meta-models in UML,

the language of the software engineer, and transform them

into a constrained design environment, usually using

graphical icons that pictorially describe the abstractions in

terms understandable by domain engineers. Domain

Specific Languages in turn enable code generation and

composition. Software components are constructed to

conform to specific design patterns and assembled with

Domain-specific Languages.

In essence, a Domain Specific Language is composed of:

 Elements, which typically contain sub-elements and

attributes

 Connections and

 Constraints.

A single Domain Specific Languages may be used to

generate additional models and analysis. For instance, with

proper annotation and repository information, a single

instance of a domain model created with a Domain Specific

Language has the potential to generate code, generate test

cases, compose simulation models, analyze power

requirements and build cost estimates.

Tool Support
In recent years, several tools have emerged to support

Feature Modeling and Domain Specific Languages. Two

that are used in TARDEC IGS are the Generic Modeling

Environment
6
 (GME) and Eclipse

7
.

When TARDEC researchers started this effort, they

decided to use tools readily available to DoD engineers and

scientists, wanting to avoid the complexity of supporting

multiple proprietary tools and environments. The first

consideration was to use tools that were developed for the

DoD under any of a number of contracts. In particular, they

were concerned that the tools should not have a significant

initial cost and should not have significant recurring support

costs. In particular, researchers wanted to use freely

available software with little or no license restrictions for

government use. The Generic Modeling Environment

(GME) is one of the tools that fit the requirements; funding

for GME in part came from the DARPA Information

Exploitation Office (DARPA/IXO).

GME is a design environment specifically designed to be

configurable to a wide range of domains. GME is

configured by creating Meta-models that specify a paradigm

for modeling in an application domain. The Meta-models

are composed of syntactic, semantic, and presentation

information, as well as organization, construction, and

constraint information. The paradigm created in the Meta-

model defines a family of application-specific models. In the

GME Environment, the Meta-model of a specific paradigm

is used to automatically gene a target domain-modeling

environment.

GME supports a variety of modeling concepts
8
 that

engineers use to create an architectural description or Meta-

model. These concepts include hierarchy, multiple aspects,

sets, references and constraints. These concepts, when

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

PRODUCT LINE PARADIGM FOR ROBOTIC SYSTEM SOFTWARE, W. Smuda, PhD, et al.

Page 4 of 8

composed in a meaningful way, specify software

architecture
9
.

A GME Meta-model is defined as a project, that has a set

of folders to help organize complex models. Folders contain

models, which are composed of other models, atoms,

references, connections and sets. Models, atoms, references,

connections and sets are all GME “First Class Objects”

(FCO). The number and kind of FCOs that are allowed in a

model is determined by the modeling paradigm under

construction and is defined by a containment connection.

Contained objects can also be defined with an inheritance

relationship. Atoms are elementary objects; they represent

the lowest-level element of a model hierarchy. GME objects

have attributes associated with the basic concept, such as

role, name and kind. GME has a facility where additional

attributes can be defined during Meta-modeling. The

attributes that can be associated with an object include field

(text, integer and double), Boolean and enumerated. If the

attributes defined are associated with the parent object in an

inheritance hierarchy, then the sub-objects inherit those

attributes.

Relationships are modeled by creating a connection

between two objects. These connections may be defined as

directional or bi-directional. Two objects must have the

same parent and be visible within the same aspect. Several

kinds of connections can be defined in a single paradigm.

The connections determine which objects can participate in a

particular relationship, and connections can have attributes

and cardinality. If it becomes necessary to associate objects

in different parts of the model hierarchy, GME provides a

Reference object that can be used exactly as other GME

FCO. Any FCO except a connection may be referred to by a

Reference.

GME models are similar to classes in Java. They can be

sub-typed and instantiated as many times as needed. In

order to promote reuse and simplify model maintenance,

designers restrict changes that propagate down in the model.

Attribute values of model instances can be changes, but no

parts can be added or deleted. Sub-typed models may have

new parts added, but parts from the parent model cannot be

deleted.

GME’s Meta-modeling paradigm is based on the Unified

Modeling Language (UML). Syntactic definitions are

modeled using UML class diagrams, while semantics are

specified using the Object Constraint Language (OCL).

There are tools emerging to translate between different

environments, specifically between GME and Eclipse
10

.

Eclipse offers a widely used and well supported IDE and

set of tools. Eclipse is open source and based on plugins,

and thus offers a wide degree of flexibility and different

projects that can be utilized in a Product Line Paradigm for

robotics software. Specifically, the Graphical Modeling

Framework (GMF) and Equinox projects offer tools of

particular interest that can support a product line paradigm

for software product creation.

GMF offers similar capabilities to those described for the

Generic Modeling Environment. GMF provides a

generative component and rutime infrastructure for

developing graphical editors based on the Eclise Modeling

Framework (EMF) and the Graphical Editing Framework

(GEF)
7,15

. GMF utilizes three primary models – the domain

model, the graphical definition model, and the tooling

definition model. The domain model definition is similar to

the GME meta-model – it utilizes EMF meta models for

describing models, and can define relationships between

elements in those models. The graphical definition model

defines the various graphical figures that will be used to

graphically edit a model, such as figures, nodes, and links.

The tooling definition model is used to specify palette,

creation tools, actions, etc. for the graphical elements used in

a model. All three of these models are binded together using

a mapping definition model that maps the graphical elements

and tools to the domain model. Code can then ultimately be

generated from the models created.

Equinox
7
 is the Eclipse implementation of the OSGi R4

core framework specification
16

. Current versions of the

Eclipse are now built on top of equinox, where features are

plugins consisting of multiple OSGi bundles. In the case of

a production line approach to the development and

deployment of robotics capabilities, these bundles can be

seen as the core components that might be stored in a

repository. Bundles can include items like serial

communications, a sensor adaptor, or a map rendering

service. One bundle may have a dependency on other

bundles, and can import and export services (i.e. a JAUS

communications service). These bundles can also be

provisioned to remote OSGi runtimes, which can not only be

useful in rapid prototyping type situations, but also

potentially for upgrading production line robotic systems

quickly in response to rapidly occurring changes in

requirements.

There is considerable Product Line Paradigm enabling

research conducted under Model-driven Design and Model-

driven Architecture. The Object management Group’s

(OMG) Unified Modeling Language
11

 (UML) 2.0 provides

increased support. The Generic Modeling Environment

from the ISIS center at Vanderbilt University provides a

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

PRODUCT LINE PARADIGM FOR ROBOTIC SYSTEM SOFTWARE, W. Smuda, PhD, et al.

Page 5 of 8

platform for developing Model-driven designs and the

embedded systems community has recognized the power of

Model-driven design for developing software product lines

for automotive, signal and aerospace applications. The

Eclipse Foundation has several projects focusing on Model-

driven paradigms.

Rapid Prototyping Example

The design and implementation of software for network

systems of diverse physical assets is a continuing challenge

to sensor network developers. The problems are often

multiplied when adding new elements, and when

reconfiguring existing systems. The worst and often typical

case is that we need to integrate a collection of artifacts that

we can only access via external interfaces. The engineers

and scientists are usually robotic or unmanned sensor

specialists with a smattering of software knowledge.

Experienced software engineers and experienced robotic and

unattended sensor engineers with intensive software

engineering experience are in short supply.

The objective is to provide a software engineering tool to

capture and extend the Software Engineer’s knowledge into

the realm of the Domain Engineer. This provides consistent

high quality prototype development. This research, coupled

with well defined object oriented design practices, software

reuse and code composition will enable the Product Line

Paradigm and hence, system extensibility.

For software systems, like physical systems, explicit

architectural descriptions increase system level

comprehension. Our research is based on model driven

design architecture. High level system models are defined in

the Unified Modeling Language (UML), the language of the

software engineer. Figure 3 shows a software engineering

level meta-model for a family of simple robotic systems.

However, since most experimental work is done by non-

software specialists, (electronics Engineers, Mechanical

Engineers and technicians) the model is translated into a

graphical, domain specific model. Figure 4 shows a simple

robotic system created from the meta-model in Figure 3.

Components are presented as domain specific icons, and

constraints from the UML model are propagated into the

domain model. Domain specialists manipulate the domain

model, which then composes software elements needed at

each node to create an aggregate system.

Figure 3: Meta-Model for a Product Line

Figure 4: Domain model for Product Line Robot Instance

This particular Domain Specific Language is hierarchical.

Each icon in Figure 4 can be opened for configuration.

Figure 5 shows two examples of the items opened for

configuration. In each case, there is an adaptor, and at least

one communications component. The adaptor converts the

legacy protocol of the artifact to and from an XML JAUS

format to allow the legacy artifact to interact with the

wrapper. The XML JAUS is used within the wrapper to

interact with a set of user selectable XML aware

instrumentation components. Finally, the communications

components convert the XML JAUS format to and from the

binary JAUS wire protocol.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

PRODUCT LINE PARADIGM FOR ROBOTIC SYSTEM SOFTWARE, W. Smuda, PhD, et al.

Page 6 of 8

Figure 5: Domain Engineer adds Adaptor,

Communications and Optional Software Components that

Configure the Artifact Wrappers

Our overall objective is to develop guidelines, methods

and tools to:

 Capture Software Engineering Expertise

 Transfer this knowledge to Domain Engineers

 Capture software elements for reuse

 Capture configuration and execution data and

 Provide tools to simplify the integration process.

Figure 6 illustrates how we propose to incorporate Systems

Engineering principles in the prototyping process. In the

figure, we find a Use Case diagram representation of the

proposed system. A use case is a simple diagram of high-

level abstractions. There is little concrete information about

implementation. The use case shows how we separate

concerns. There are various technical experts, interacting

with their own work products. These include a Meta-

modeling environment, a domain model, a component

repository, and rule set, and the product.

The Meta-modeling environment is the realm of the

software engineer in consultation with the robotics domain

engineer. The Meta-model is created in GME for this work.

The Meta-model is derived directly from a feature model,

using UML instead of feature modeling notation. Elements

from a feature model are represented as Models if they

contain other elements or Atoms if they are leaf nodes.

Domain-specific modeling is the realm of the robotics

engineer. The domain model is also a GME artifact. The

domain modeling environment is generated from a GME

Meta-model. This provides traceability between domain

model and its parent Meta-model.

The Component Repository is currently a collection of

reusable software components with documentation. It is a

collection of software modules that are created by one or

more programmers under the direction of the software

engineer. For every component, there is an associated

documentation file. This file holds instructions on how the

module is used, and on what the physical assets are.

Physical assets are items such as special cables needed to

use the module as well as historical information. In the

future, the Repository may grow to include simulation

components, material lists or other data.

A rule set is created by the software engineer. It

encapsulates software engineering knowledge to operate on

the Repository and produce a product. The rule set is

triggered by the completed domain model. A completed

domain model is exported as XML. The XML is processed

by the rule set and the rule set creates the appropriate

software to assemble a prototype system.

 Rule sets are coupled to a particular Meta-model and

hence a Product Line. Rule sets have two main functions:

 parse the domain model and

 create a product.

A particular rule-set will operate with any domain-model

instance created by its associated Meta-model.

 The product is the realm of the user. At the current state of

our research, the product is a set of programs, one for each

node in the prototype system. The programs run on

computing devices attached to a legacy node, or on a

computer platform dedicated to the node.

Platform Wrapper

 Control Wrapper

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

PRODUCT LINE PARADIGM FOR ROBOTIC SYSTEM SOFTWARE, W. Smuda, PhD, et al.

Page 7 of 8

Product Lines in Production Software

Product lines in production software can be defined as a

set of software-intensive systems that share a common,

managed set of features that meet the requirements of a

particular mission and are developed from a common set of

core components in a prescribed way
12

. The ultimate goal of

product lines in the creation of software products is to

increase the efficiency and reduce the cost and time at which

software products and groups of related products can be

produced, as well as separating the process of developing the

core components required for many products from the actual

product development itself
13

.

There three essential activities for doing product line

development for production software: core asset

development, product development, and management
14

.

Core asset development is the process of developing the

capability to produce products. In the context of software

production, these core assets will be items such as reusable

software components with an associated process for using

them within product lines, domain models, requirements

specifications, etc. Product development is the actual use of

the core assets to develop a software product. Management

is required to support both the core asset development and

product development.

Production lines for production software are currently used

in a variety of domains, including military, medical,

automotive, and others
13

. The product line paradigm for

production software quite naturally extends into the field of

robotics. Elements of production lines can be seen in some

specialized robotics software, but they are still mostly setup

for the same group of software engineers to do both the

development of core assets and production level software.

Our focus is on taking this to the next level, and providing a

clear separation between the roles of the asset developers

(i.e. the software engineer or the programmers seen in figure

6) and the user or domain engineer. This can be done by

expanding on the Rapid Prototyping Example provided, and

is the focus of our ongoing research.

Conclusions

We believe that the Product Line Paradigm is essential to a

Systems Engineering approach to robotic development. In a

Systems Engineering approach, there are multiple and

diverse stakeholders. These stakeholders need to work

together, but should not be required to become expert in

each others fields. Emerging tool support facilitates not only

the interdisciplinary communications via model translation,

but also provides repositories to store intermediate work

products. The Product Line Paradigm allows DoD engineers

and scientists to abstract vendor processes and products,

while enabling analysis and review at all stages of the life

cycle.

Disclaimer: Reference herein to any specific commercial

company, product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or

favoring by the United States Government or the

Department of the Army (DoA). The opinions of the authors

expressed herein do not necessarily state or reflect those of

the United States Government or the DoA, and shall not be

used for advertising or product endorsement purposes.

REFERENCES

1
 C. Ebert and C. Jones, Embedded Software: Facts, Figures,

and Future, IEEE Computer, April 2009, pp42-52.
2
 K. Kang, S. Cohen, J. Hess, W. Novak and S. Peterson,

Feature-Oriented Domain Analysis (FODA) – Feasibility

Study, Report number CMU/SEI-90-TR-21, 1990.
3
 B. Dawes, “Feature Model Diagrams in text and HTML,”

http://www.boost.org/more/feature_model_diagrams.htm

, 09 April 2007.
4
 K. Czarnecki, U. Eisenecker, “Generative Programming:

Methods, Tools, and Applications,” Boston, MA,

Addison-Wesley, 2000.

Figure 6: Top Level Design - Use Case

http://www.boost.org/more/feature_model_diagrams.htm
http://www.boost.org/more/feature_model_diagrams.htm

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

PRODUCT LINE PARADIGM FOR ROBOTIC SYSTEM SOFTWARE, W. Smuda, PhD, et al.

Page 8 of 8

5
 W. Smuda, “Rapid Prototyping of Robotic Systems”,

Naval Postgraduate School Dissertation, June 2007.
6
 Generic Modeling Environment,

http://www.isis.vanderbilt.edu/projects/gme, 09 April

2007.
7
 Eclipse, http://www.eclipse.org/, 09 April 2007.

8
 A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, c.

C. Thomason, G. Nordstrom, J. Sprinkle, P. Volgyesi,

“The Generic Modeling Environment,” Proceedings of

IEEE WISP’2001, Budapest, Hungary, May 2001.
9
 D. Perry, A. Wolf, “Foundations for the study of Software

Architecture,” ACM Software Engineering Notes, vol

17, no 4, 1992, pp. 40-52.
10

 J. Bezivin, C. Brunette, R. Chevrel, F. Joualt and I.

Kurtev, Bridging the Generic Modeling Environment and

the Eclipse Modeling Framework, Proceedings of the

Best Practices for Model Driven Software Development

at OOPSLA'05, San Diego, California, USA,

http://www.softmetaware.com/oopsla2005/bezivin2.pdf
11

 D’Souzaand D.,. Wills A, “Objects Components and

Frameworks with UML,” Addison Wesley, 1999.
12

 Clements, P. and Northrop, L. “Software Product Lines:

Practices and Patterns,” Addison-Wesley, 2002.
13

 Chastek, G., Donohoe, P., and McGreggor, J. “A Study of

Product Production in Software Product Lines,” Carnegie

Mellon Univserity Software Engineering Institute, 2004.
14

 “A Framework for Software Product Line Practice”,

Carnegie Mellon University Software Engineering

Institute,

http://www.sei.cmu.edu/productlines/framework.html.
15

 GMF Tutorial,

http://wiki.eclipse.org/index.php/GMF_Tutorial
16

 OSGi Alliance, http://osgi.org

http://www.isis.vanderbilt.edu/projects/gme
http://www.eclipse.org/
http://www.sei.cmu.edu/productlines/framework.html
http://wiki.eclipse.org/index.php/GMF_Tutorial

