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ABSTRACT 

We have developed techniques for a robot to compute its expected myopic gain in performance from 

asking its operator specific questions, such as questions about how risky a particular movement action is around 

pedestrians. Coupled with a model of the operator’s costs for responding to inquiries, these techniques form the 

core of a new algorithm that iteratively allows the robot to decide what questions are in expectation most 

valuable to ask the operator and whether their value justifies potentially interrupting the operator. We have 

performed experiments in simple simulated robotic domains that illustrate the effectiveness of our approach. 

 

INTRODUCTION 
Safe operations in environments that include potentially 

dangerous artifacts as well as humans whose intent and 

capacities are unknown pose challenges both to robots as 

well as to their human operators. In such environments, the 

multitude of demands on an operator's attention necessitate 

periods of autonomous behavior by the robot. To operate 

safely, such a robot must be able to reason about its 

knowledge so that it can decide when it has confidence in its 

ability to act autonomously, and when it should seek help 

from the operator.   

The work we briefly describe in this paper concentrates on 

how an autonomous robotic vehicle can make well-founded 

decisions about when to seek operator input and what input 

to ask for, given what it knows about its environment and 

the value of the operator’s attention.  In the following 

sections, we first summarize how the robot models its 

environment and its uncertainty.  We then describe a general 

technique for computing expected myopic gain (EMG) in 

reducing particular points of uncertainty, and how EMG 

allows decisions about the desirability of seeking 

information from the operator.  Afterward, we show how 

EMG selectively acquires operator knowledge for several 

different types of uncertainty, and summarize its empirical 

performance.  We conclude by describing our ongoing work. 

 

ENVIRONMENT MODELS AND UNCERTAINTY 
  A robot models its interaction with its environment as a 

Markov decision process (MDP), which defines the possible 

states the robot can be in, actions it can take, transition 

probabilities (likelihood of being in state s' if action a is 

taken in state s, for all combinations of states and actions), 

and rewards for each combination of state and action taken. 

A very simple example is shown in Figure 1, where the 

states are numbered 0 through 6 (the robot starts in 0), and 

the actions are either “solid” or “dashed.” Simple example 

transition probabilities are that the solid action moves to the 

rightside next state with probability .9 (.1 to the left), while 

the dashed moves to the leftside with probability .9 (.1 to the 

right).  More generally, the actions could have different 

transition probabilities at each of the states. The rewards of 

states 3-6 are shown, and are zero for states 0-2. 

With all of this information, the robot could compute the 

optimal policy using standard MDP techniques (e.g., 

Bellman backup), to find the optimal policy of choosing the 

solid action in state 0, solid in state 2, and dashed in state 1 

(which it has a probability of .1 of reaching).  The expected 

reward of following this policy beginning in state 0 is 0.846 

(reaching state 6 with probability .81 and state 3 with 

probability .09). 

While this example is very small, most interesting 

environments require large models, such that asking an 

operator to articulate the full model to the robot is 

impractical. Instead, the robot will have only (what the 

operator believes is the most useful) partial model 

information. The robot thus captures its uncertainty about 

the complete environment as a probability distribution over 

full MDPs.  

 

EXPECTED MYOPIC GAIN 
Given this formulation, the robot can infer the expected 

gain of getting more information to improve its model. We 

define the expected myopic gain (EMG) as follows: 

 
Figure 1: Simple Example 
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   (1) 

 

Here, θ represents the state of partial knowledge, so the 

expected gain in reward if the agent asks question Q about 

state s' is a sum of the gain for each of the possible answers 

it might get back times the probability of getting that answer.  

The (expected) gain if the agent is currently in state s for an 

answer x is: 

 

      (2) 

 

That is, the gain of learning answer x is the difference 

between the expected value of following the optimal policy 

with that additional knowledge given the more complete 

model, and the expected value of following the previous 

(less informed) optimal policy if the world is as the more 

complete model specifies. 

Applying equations (1) and (2) requires the development 

of the underlying machinery to tractably compute the 

equations’ components.  For example, efficiently computing 

the posterior probability distribution over possible MDP 

models given an answer to a question in general requires 

using compact representations [1] (e.g., a factored Dirichlet 

parameterization). Similarly, computing the optimal policy 

for a distribution of MDPs is computationally challenging, 

and we have experimented with several approaches. 

The EMG strategy is to ask the question for the state that, 

in expectation, has the largest gain.  The approach is myopic 

because it does not reason about how a follow-up question 

could affect the expected gain of a first question [2]. 

Nonetheless, we can approximate a good sequence of 

questions by repeatedly applying EMG. 

Figure 2 shows example results of applying EMG to the 

problem in Figure 1, where the robot initially does not know 

the transition probabilities of any of the actions, meaning 

that it has 6 possible questions (about “solid” or “dashed” in 

states 0-2).  The graph shows how the robot’s expected 

utility grows as it asks more of these questions.  The lower 

curve corresponds to picking which question to ask next 

randomly, while the upper curve is where the robot uses 

EMG. In this case, notice how EMG picks better questions 

first, achieving near maximum utility after just 2 questions. 

OPERATOR COST 
Figure 2 illustrates that, if selected well, asking successive 

questions might have diminishing returns, suggesting that if 

asking a question incurs cost (distracting the operator from 

other duties), then the robot can take this into account and 

decide to stop asking questions when cost exceeds benefit. 

Figure 3, left, shows another simple domain, where the 

robot can move around a grid-like environment.  Some 

locations are rewarding, while others have severe penalties 

(such as blundering into a crowd of people). Under the same 

assumption that the robot lacks knowledge of transition 

probabilities, EMG for this problem focuses its first 

questions on states next to the penalizing state, in essence 

selectively acquiring information most critical to safe 

operations.  As shown in Figure 3, right, different costs 

associated with asking questions would lead the robot to 

limit its questions (stopping as soon as a curve’s expected 

utility stops climbing).  That is, the robot will always find it 

useful to ask about risky locations, but as the costs of asking 

the operator rise it becomes more willing to wander more 

ignorantly in benign areas of the world. 

 

CONCLUSIONS 
Our past and ongoing research has been extending the 

approaches in this paper to wider varieties of problems, 

including more complex environments and worlds where 

operator responses might be more ambiguous.  Our goal is to 

introduce these techniques into real robots that can 

autonomously determine when to seek operator assistance. 
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Figure 2: EMG for Simple Example 

 
Figure 3: Grid-World Performance with Question Costs 


