
2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM

AUGUST 17-19 DEARBORN, MICHIGAN

ACHIEVING SEMI-AUTONOMOUS ROBOTIC BEHAVIORS USING THE SOAR
COGNITIVE ARCHITECTURE

Robert Marinier, PhD
Robert Bechtel, PhD

Andrew Dallas
Soar Technology, Inc.

Ann Arbor, MI

ABSTRACT

The Soar Cognitive Architecture is a reasoning system that enables knowledge-rich, mission focused
reasoning including integration of bottom-up, sensor-driven reasoning and top-down, context-driven reasoning,
and more intelligent use of existing sensors. This reasoning is a combination of deliberate (e.g., planning) and
reactive (e.g., hard-coded) behaviors. We are applying Soar on a current effort to (1) increase autonomy and (2)
achieve equivalent or superior performance while controlling weight, energy, and costs.

INTRODUCTION

Autonomy requires understanding the situation and
generating appropriate behaviors. Understanding a complex
situation requires the integration of bottom-up (e.g., image
processing) and top-down (e.g., contextualized reasoning)
processes to achieve satisfactory performance. This
integration may include top-down hints to bottom-up
processing algorithms, top-down selection of bottom-up
processing algorithms, or even top-down control of sensor
hardware (e.g., changing shutter speed based on conditions).
Similarly, bottom-up processing may present the reasoning
system with options (e.g., possible object classifications)
that it may select from. Behaving in a complex world
requires that autonomous behaviors be robustly and
adaptively executed using general context-based reasoning.
Robustness requires leveraging broad knowledge of tactics,
doctrine, platform capabilities, and the mission to plan and
discover novel solutions in the face of unforeseen difficulties
and uncertainty.

Moreover, intelligent leveraging of existing sensors and
technology can positively impact weight, energy, and cost
factors by reducing or eliminating the need to "upgrade" to
more expensive sensors. For example, image processing may
have a hard time distinguishing between a rock and a bush
given a low-resolution camera, but if the reasoner is told it is
either a rock or a bush, and it also knows that it is in
mountainous terrain with little vegetation, it will conclude
that it is probably a rock.

The Soar Cognitive Architecture is a reasoning system that
enables these sorts of knowledge-rich, mission focused

reasoning. This reasoning is a combination of deliberate
(e.g., planning) and reactive (e.g., hard-coded) behaviors.
We are applying Soar on a current effort to (1) increase
autonomy and (2) achieve equivalent or superior
performance while controlling weight, energy, and costs.

THE ROBOT CONTROL STACK

 A robot control stack contains multiple levels of control
(Figure 1). These system levels provide a means for each
level to specialize the kinds of computation it is performing
(e.g., regulating voltage across a motor vs. mission-level
planning), but also provide a means for interaction between
levels.

At the lowest level, there is a robot architecture that
interfaces with the hardware, which in turn interfaces with
the environment. Most existing non-hardware robotics work
is focused on this level. The robot architecture processes raw
sensor information for consumption by higher-level
processes, and also converts higher-level commands into
actuator commands (e.g., translating “move forward at speed
X” into smoothly changing voltages across motors). Other
algorithms at this level include local obstacle avoidance, and
mapping an area. Even higher-level algorithms, like
navigation beyond the near-field, are still focused on direct
robot control.

Existing interfaces such as Player abstract away the
hardware, allowing the same driver software to support
interaction between real robots and the real world, simulated
robots in simulated worlds, or even a mixture of the two.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Achieving Robotic Behaviors using the Soar Cognitive Architecture, Marinier, et al.

Page 2 of 5

The next level up is the robot behavior level. This is the
level that manages the mission that that robot is trying to
accomplish. For example, a sophisticated robot architecture
may be able to navigate to a specified location, but some
higher-level component must still determine which location
the robot should go to and under what conditions the robot
should go elsewhere. Additionally, the behavior level may
be responsible for integrating information from non-organic
sensors (e.g., information received about the far-field).
These decisions could be reactive (e.g., if performing
mission X and sense Y, do Z) or it could be the result of
reasoning (e.g., planning). Furthermore, this level can
provide top-down context to the robotic architecture level
(e.g., the sensors cannot distinguish between a rock and a
bush, but the intelligent behavior architecture knows that in
this terrain rocks are far more common than bushes, so it is
probably a bush). This top-down control can also provide the
ability to reconfigure the sensor and motor systems in cases
where the combination of the current situation and mission
dictate an alternative configuration (e.g., adjusting the
shutter speed and zoom of one camera to compensate for
another damaged camera in order to best perceive nearby
moving objects).

In order to drive these behaviors, the behavior level needs
both an intelligent architecture and knowledge specific to the
mission it is trying to accomplish. For example, suppose a
robot is trying to get supplies to a unit. It encounters a
dangerous situation enroute (e.g., terrain it isn’t certain it can
traverse, or hostile activity). If the supply mission is non-
critical, the robot may give up and return to base, or select a

new route that is much longer but safer. On the other hand, if
the supply mission is critical (e.g., the unit is under attack
and running out of ammo) then the robot may decide to take
the risk, since that is the only way the supplies can possibly
reach the unit on time. The next section of this paper focuses
on a possible intelligent robotic behavior architecture.

The final level is the human interface level. Realistically,
the vast majority of robots, even highly autonomous ones,
will interact with humans at some level; thus, we describe
this approach as applicable to achieving semi-autonomous
behaviors, where the exact level of autonomy may vary
widely. At one extreme, the interaction is essentially
teleoperation, with the human directly controlling the robot.
At another extreme, the human merely gives the robot its
orders (e.g., via speech), and the robot performs them
autonomously. Intermediate levels allow for human-robot
teams, where the robot can perform many tasks on its own,
but looks to the human for guidance in difficult situations.
For example, one vision for robots with weapons is that the
robot can perform maneuvering, but a human is required to
pull the trigger. At the human interface level, interfaces exist
to allow for the possibility of simulated operators or
otherwise modeling an operator, primarily for development
and testing purposes.

SOAR: AN INTELLIGENT ROBOTIC BEHAVIOR
INTERFACE

Soar is a cognitive architecture designed with the goal of
achieving human level behavior [1]. Cognitive architectures
are different from other agent architectures in that the
guiding principle is that complex behavior arises from the
interactions of simple, domain- and task-independent
components combined with knowledge. For example, while
an agent architecture might contain a planning module that
performs a specific kind of Partial Order Planning (POP)
algorithm, Soar contains general computational mechanisms
that can be “programmed” to perform a specific kind of POP
planning via the addition of knowledge about how to do that.

Figure 2: The Soar Cognitive Architecture

Figure 1: Robot Control Stack

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Achieving Robotic Behaviors using the Soar Cognitive Architecture, Marinier, et al.

Page 3 of 5

One way to view this is that Soar is both? a virtual machine
and a programming language. What separates it from other
general purpose languages like Java and C++ is that its
mechanisms and primitives are designed to support behavior
generation, and thus it provides a more useful abstraction of
the underlying machine for behavior development.

An advantage of this behavior-centric, knowledge driven
approach is that, e.g., a Soar system may have knowledge
many planning approaches that are seamlessly applied and
even interwoven as the situation changes, thus changing
which knowledge is most applicable for the current situation.

While Soar is inspired by human architecture (e.g., the
brain) and the ways humans perform various tasks, its focus
is on maximizing functionality. This is in contrast to other
cognitive architectures (e.g., ACT-R; [2]) that focus on
fidelity to human behavior, including timing and errors.
Those architectures are primarily focused on understanding
human psychology, rather than on advancing artificial
intelligence.

Figure 2 shows the current Soar architecture. We will not
describe every component in detail, but will touch on a few
key aspects.

Soar’s working memory is a symbolic graph structure
containing a description of the current situation. Other
components interact primarily by reading from and writing
to working memory. Soar contains perception and action
modules that provide a means for external systems to
provide information to Soar, and for Soar to provide
commands to external systems. This information may be
transduced directly from sensors (e.g., location information),
or may involve complex processing (e.g., object detection
and identification). Actions at this level tend to be at the
highest level that the underlying robot architecture can
understand (e.g., “go to X”).

In order to generate actions in response to perceptions,
there are several long-term memories that contain
knowledge of what to do in various situations. The
knowledge combined with the architecture is called the
agent. Procedural memory contains rules of the form “if
working memory contains pattern X, then make changes Y
to working memory”. For example, “if the robot’s mission
is to go from X to Y to Z, and the robot has reached location
Y, set the robot’s destination to Z”. While the
implementation is literally rules, a better way to think about
it is that procedural memory is an associative memory – that
patterns in working memory trigger the retrieval of
knowledge.

Whereas procedural knowledge encodes how to do things,
the semantic and episodic memories contain declarative
knowledge that describes things. Semantic knowledge
encodes facts (e.g., the series of waypoints the robot is
supposed to visit, what frequencies to communicate on, etc.),
whereas episodic knowledge encodes memories of specific

situations (e.g., where the robot was a few minutes ago and
what it saw when it was there). One way to think about this
distinction is that semantic knowledge encodes what you
know, whereas episodic knowledge encodes what you
remember. In Soar, retrieving knowledge from semantic or
episodic memory is a deliberate action, meaning that the
agent’s procedural knowledge triggers the retrievals under
conditions specified by the procedural knowledge. This
retrieved knowledge is added to working memory, which
can then trigger additional procedural knowledge (which
may perform additional retrievals).

Each memory has associated learning mechanisms. For
semantic memory, procedural knowledge can deliberately
encode new facts, or update existing facts. For episodic
memory, the state of working memory is automatically
recorded periodically. Procedural memory actually has two
learning mechanisms. One, called chunking, is a way of
capturing a long sequence of rule firings in a single rule.
Essentially, this captures the results of reasoning, thus
avoiding having to repeat similar reasoning in the future.
The other is reinforcement learning. In addition to
knowledge about how to do things, procedural memory also
contains knowledge about how to resolve potential conflicts
(e.g., when multiple actions are possible). Reinforcement
learning provides a way to tweak this knowledge so that
better decisions are made as the agent gains more
experience.

The interactions of these mechanisms are controlled by
Soar’s decision procedure. The decision procedure
essentially follows an OODA (Observe, Orient, Decide, Act)
loop. First, new perceptions arrive in working memory
(Observe). Then knowledge is retrieved from procedural
memory that enumerates the various possible actions,
including both external actions like moving, and internal

Figure 3: A partial task hierarchy from TacAir-
Soar. An example path from mission to behavior is
highlighted.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Achieving Robotic Behaviors using the Soar Cognitive Architecture, Marinier, et al.

Page 4 of 5

actions like retrieving knowledge from semantic or episodic
memory, or manipulating goal structures (Orient). The agent
combines these possibilities with preference knowledge
specifying which actions are best in which situations to
determine which action it should execute next (Decide). The
agent then executes that action; for example, sends
commands to external systems, performs a retrieval from
semantic or episodic, memory, or makes changes to working
memory (Act). This loop executes ~20 times per second,
providing the ability to quickly react to a dynamic situation.
Furthermore, this loop can execute at multiple levels of
abstraction. The agent’s tasks are typically organized in a
hierarchy, and this processing loop is executed to break
down high-level tasks (starting with the mission) into lower-
level tasks. Figure 3 shows a partial task hierarchy for an
agent called TacAir-Soar, which flies simulated fixed-wing
aircraft. The highlighted path shows an example transition
from mission to behavior, which would have been chosen
based on the particulars of the current situation.

GETTING KNOWLEDGE INTO SOAR

The Soar Cognitive Architecture provides a domain- and
task-general framework for providing intelligence to a robot.
This means that, in order to do anything useful, the various
memories have to be loaded with knowledge about the
specific domains the robot will operate in and the specific
tasks it is to perform. Since Soar is task-independent, it does
not impose any requirements on the particular level of
abstraction that tasks are specified at – Soar can be used to
execute tasks at the mission level (e.g., planning which
locations to go to, reasoning about commander’s intent,
etc.), at the tactical level (e.g., reacting to obstacles in a path,
or real-time changes in the environment), or any other level.
The difference is in the robotic architecture interface that
Soar has to work with, and the knowledge required to take
advantage of that interface for the purposes of the task, and
the domain knowledge required (e.g., to reason about
environment dynamics).

The process for doing this is called KAKE and involves
two basic steps: Knowledge Acquisition and Knowledge
Engineering. Knowledge acquisition is the process of
extracting knowledge about the domain and task from
various sources including experts, training materials, SOPs,
etc. For example, if we are designing a robot to perform
resupply in mountainous terrain under threat from
insurgents, we would interview experts who have performed
resupply missions under those conditions to try to elicit the
various situations that would have to be dealt with, and how
those situations are handled. This includes identification of
the tasks and subtasks that arise during the mission, the
conditions under which they arise, and the actions that
should be taken to accomplish those tasks. As in the TacAir-

Soar example shown in Figure 3, this should lead to a task
hierarchy.

Knowledge engineering is the process of encoding that
acquired knowledge into rules and facts that Soar can
execute. This may also include the development of some
supporting infrastructure for managing the knowledge,
although Soar already provides architectural support for
much of this, and reusable libraries and tools exist to help
develop the rest.

The KAKE process is iterative; once knowledge is
acquired and encoded, new questions and issues inevitably
arise that require additional knowledge acquisition, and
changes to the encoding. In general, developing complex
behaviors is a time-consuming process, but tools exist to
help streamline this, and others are under development.

AN EXAMPLE

Let’s walk through an example. The robot’s mission is to
bring supplies from a forward operating base to a squad in
the field. Essentially, it has to navigate from the base to a
rendezvous point, and then return to base. Enroute, the robot
sees a person in a red shirt, but as this is irrelevant to the
mission, the robot does nothing in response to this
observation. Later, the robot receives a message: “New
insurgent group active in the area. Distinctive markings
include a red shirt.” Upon receiving this message, the
agent’s procedural memory triggers an episodic memory
retrieval to see if the robot has encountered these insurgents.
The memory of the person in the red shirt is retrieved. The
robot executes actions to send a message reporting the
sighting, and update the map used by the navigation system
to include the insurgent locations. The navigation system
plots an alternative route back to the base to avoid this
location. Upon arriving at the rendezvous point, the squad
loads a seriously injured solider in the vehicle. This person
must reach base as soon as possible, but dangerous activity
and rough terrain in the area precludes performing an aerial
withdrawl. Thus, the agent determines, via the application of
procedural knowledge, that the vehicle should take the most
direct route back to base, even though it will pass by the
insurgent location. The alternative route would mean certain
death. Enroute, the vehicle comes under fire, losing one of
its camera sensors. The agent adjusts the settings on the
remaining camera to compensate, providing a better view
than that camera would provide with its default settings. The
vehicle makes it back to base, and the solider is saved.

EXISTING SOAR SYSTEMS

The application of Soar to robotic systems is not new.
There are several existing Soar systems that demonstrate the
approach described above. [3] describes recent thinking in
this area

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Achieving Robotic Behaviors using the Soar Cognitive Architecture, Marinier, et al.

Page 5 of 5

The largest such system is TacAir-Soar [4]. TacAir-Soar
flies simulated fixed-wing aircraft; it supports all military
missions. While this system is simulated, it contains the
same basic interfaces to an underlying platform – inputs with
processed sensor data (e.g., “bogey at heading X and
distance Y”), and outputs with high-level commands (e.g.,
“turn to heading X”).

Another relevant system is ECGF, which provides a
consistent interface between high-level commands and low-
level execution. In our description of the robot stack above,
we drew the line between the behaviors and the underlying
robot architecture in a particular place, but the reality is that
this is a gray area. For example, some robotic architectures
may support navigation in the far field, while others may
not. ECGF [5] exposes an interface that makes it look like
all underlying systems support navigation in the far-field
(among other behaviors), and implements this navigation for
those systems that do not actually support it using their
available primitives. This makes higher-level reasoning
more portable across platforms.

Soar has also been connected to real robots. Early work on
such systems included Robo-Soar and Hero-Soar [6]. These
systems performed simple tasks involving manipulating
blocks, but demonstrated key aspects of robotic control,
including reactivity, planning, and learning within the Soar
architecture. Currently, SoarTech is involved in the SUMET
program under ONR, which aims to have robotic vehicles
perform militarily relevant missions such as resupplying
units in the field. Additionally, SoarTech’s Robotic
Wingman paper at this symposium [7] describes the
application of Soar to a robotic system intended to enhance
the effectiveness of combat platoons.

CONCLUSION

We have described a robot control stack that includes
interaction between low-level hardware control and high-

level mission control. We argued that interaction between
these levels is critical in taking the next step in autonomous,
affordable (in terms of energy, size, and cost) robotics, since
more intelligent high-level control will result in more
effective use of low-level capabilities. We described the
Soar cognitive architecture as a system capable of fulfilling
the role of high-level mission control. Finally, we described
existing systems that take steps in this direction.

REFERENCES
[1] J. Laird, “Extending the Soar Cognitive Architecture”,

Proceedings of the First Conference on Artificial
General Intelligence, 2008.

[2] J. Anderson, “How Can the Human Mind Exist in the
Physical Universe?”, Oxford University Press, New
York, 2007.

[3] J. Laird, “Toward Cognitive Robotics”, SPIE Defense
and Sensing Conferences, 2009.

[4] R. Jones, J. Laird, P. Nielsen, K. Coulter, P. Kenny, F.
Koss, “Automated Intelligent Pilots for Combat Flight
Simulation”, AI Magazine, 20(1), 1999.

[5] B. Stensrud, G. Taylor, B. Schricker, J. Montefusco, J.
Maddox. “An Intelligent User Interface for Enhancing
Computer Generated Forces”, Proceedings of the 2008
Fall Simulation Interoperability Workshop, 2008.

[6] J. Laird, P and Rosenbloom, “Integrating Execution,
Planning, and Learning in Soar for External
Environments”, AAAI-90 Proceedings, 1990.

[7] J. Lane, F. Antenori, and A. Dallas. “Robotic
Wingman”, 2010 NDIA Ground Vehicle Systems
Engineering and Technology Symposium, 2010.

