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ABSTRACT 

The Soar Cognitive Architecture is a reasoning system that enables knowledge-rich, mission focused 
reasoning including integration of bottom-up, sensor-driven reasoning and top-down, context-driven reasoning, 
and more intelligent use of existing sensors. This reasoning is a combination of deliberate (e.g., planning) and 
reactive (e.g., hard-coded) behaviors. We are applying Soar on a current effort to (1) increase autonomy and (2) 
achieve equivalent or superior performance while controlling weight, energy, and costs. 

 
INTRODUCTION 

Autonomy requires understanding the situation and 
generating appropriate behaviors. Understanding a complex 
situation requires the integration of bottom-up (e.g., image 
processing) and top-down (e.g., contextualized reasoning) 
processes to achieve satisfactory performance. This 
integration may include top-down hints to bottom-up 
processing algorithms, top-down selection of bottom-up 
processing algorithms, or even top-down control of sensor 
hardware (e.g., changing shutter speed based on conditions). 
Similarly, bottom-up processing may present the reasoning 
system with options (e.g., possible object classifications) 
that it may select from. Behaving in a complex world 
requires that autonomous behaviors be robustly and 
adaptively executed using general context-based reasoning. 
Robustness requires leveraging broad knowledge of tactics, 
doctrine, platform capabilities, and the mission to plan and 
discover novel solutions in the face of unforeseen difficulties 
and uncertainty.  

Moreover, intelligent leveraging of existing sensors and 
technology can positively impact weight, energy, and cost 
factors by reducing or eliminating the need to "upgrade" to 
more expensive sensors. For example, image processing may 
have a hard time distinguishing between a rock and a bush 
given a low-resolution camera, but if the reasoner is told it is 
either a rock or a bush, and it also knows that it is in 
mountainous terrain with little vegetation, it will conclude 
that it is probably a rock. 

The Soar Cognitive Architecture is a reasoning system that 
enables these sorts of knowledge-rich, mission focused 

reasoning. This reasoning is a combination of deliberate 
(e.g., planning) and reactive (e.g., hard-coded) behaviors. 
We are applying Soar on a current effort to (1) increase 
autonomy and (2) achieve equivalent or superior 
performance while controlling weight, energy, and costs. 

 
THE ROBOT CONTROL STACK 

  A robot control stack contains multiple levels of control 
(Figure 1). These system levels provide a means for each 
level to specialize the kinds of computation it is performing 
(e.g., regulating voltage across a motor vs. mission-level 
planning), but also provide a means for interaction between 
levels. 

At the lowest level, there is a robot architecture that 
interfaces with the hardware, which in turn interfaces with 
the environment. Most existing non-hardware robotics work 
is focused on this level. The robot architecture processes raw 
sensor information for consumption by higher-level 
processes, and also converts higher-level commands into 
actuator commands (e.g., translating “move forward at speed 
X” into smoothly changing voltages across motors). Other 
algorithms at this level include local obstacle avoidance, and 
mapping an area. Even higher-level algorithms, like 
navigation beyond the near-field, are still focused on direct 
robot control. 

Existing interfaces such as Player abstract away the 
hardware, allowing the same driver software to support 
interaction between real robots and the real world, simulated 
robots in simulated worlds, or even a mixture of the two.  
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The next level up is the robot behavior level. This is the 
level that manages the mission that that robot is trying to 
accomplish. For example, a sophisticated robot architecture 
may be able to navigate to a specified location, but some 
higher-level component must still determine which location 
the robot should go to and under what conditions the robot 
should go elsewhere. Additionally, the behavior level may 
be responsible for integrating information from non-organic 
sensors (e.g., information received about the far-field). 
These decisions could be reactive (e.g., if performing 
mission X and sense Y, do Z) or it could be the result of 
reasoning (e.g., planning). Furthermore, this level can 
provide top-down context to the robotic architecture level 
(e.g., the sensors cannot distinguish between a rock and a 
bush, but the intelligent behavior architecture knows that in 
this terrain rocks are far more common than bushes, so it is 
probably a bush). This top-down control can also provide the 
ability to reconfigure the sensor and motor systems in cases 
where the combination of the current situation and mission 
dictate an alternative configuration (e.g., adjusting the 
shutter speed and zoom of one camera  to compensate for 
another damaged camera in order to best perceive nearby 
moving objects). 

In order to drive these behaviors, the behavior level needs 
both an intelligent architecture and knowledge specific to the 
mission it is trying to accomplish. For example, suppose a 
robot is trying to get supplies to a unit. It encounters a 
dangerous situation enroute (e.g., terrain it isn’t certain it can 
traverse, or hostile activity). If the supply mission is non-
critical, the robot may give up and return to base, or select a 

new route that is much longer but safer. On the other hand, if 
the supply mission is critical (e.g., the unit is under attack 
and running out of ammo) then the robot may decide to take 
the risk, since that is the only way the supplies can possibly 
reach the unit on time. The next section of this paper focuses 
on a possible intelligent robotic behavior architecture. 

The final level is the human interface level. Realistically, 
the vast majority of robots, even highly autonomous ones, 
will interact with humans at some level; thus, we describe 
this approach as applicable to achieving semi-autonomous 
behaviors, where the exact level of autonomy may vary 
widely. At one extreme, the interaction is essentially 
teleoperation, with the human directly controlling the robot. 
At another extreme, the human merely gives the robot its 
orders (e.g., via speech), and the robot performs them 
autonomously. Intermediate levels allow for human-robot 
teams, where the robot can perform many tasks on its own, 
but looks to the human for guidance in difficult situations. 
For example, one vision for robots with weapons is that the 
robot can perform maneuvering, but a human is required to 
pull the trigger. At the human interface level, interfaces exist 
to allow for the possibility of simulated operators or 
otherwise modeling an operator, primarily for development 
and testing purposes. 

 
SOAR: AN INTELLIGENT ROBOTIC BEHAVIOR 
INTERFACE 

Soar is a cognitive architecture designed with the goal of 
achieving human level behavior [1]. Cognitive architectures 
are different from other agent architectures in that the 
guiding principle is that complex behavior arises from the 
interactions of simple, domain- and task-independent 
components combined with knowledge. For example, while 
an agent architecture might contain a planning module that 
performs a specific kind of Partial Order Planning (POP) 
algorithm, Soar contains general computational mechanisms 
that can be “programmed” to perform a specific kind of POP 
planning via the addition of knowledge about how to do that. 

Figure 2: The Soar Cognitive Architecture 

Figure 1: Robot Control Stack 
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One way to view this is that Soar is both? a virtual machine 
and a programming language. What separates it from other 
general purpose languages like Java and C++ is that its 
mechanisms and primitives are designed to support behavior 
generation, and thus it provides a more useful abstraction of 
the underlying machine for behavior development. 

An advantage of this behavior-centric, knowledge driven 
approach is that, e.g., a Soar system may have knowledge 
many planning approaches that are seamlessly applied and 
even interwoven as the situation changes, thus changing 
which knowledge is most applicable for the current situation. 

While Soar is inspired by human architecture (e.g., the 
brain) and the ways humans perform various tasks, its focus 
is on maximizing functionality. This is in contrast to other 
cognitive architectures (e.g., ACT-R; [2]) that focus on 
fidelity to human behavior, including timing and errors. 
Those architectures are primarily focused on understanding 
human psychology, rather than on advancing artificial 
intelligence. 

Figure 2 shows the current Soar architecture. We will not 
describe every component in detail, but will touch on a few 
key aspects. 

Soar’s working memory is a symbolic graph structure 
containing a description of the current situation. Other 
components interact primarily by reading from and writing 
to working memory. Soar contains perception and action 
modules that provide a means for external systems to 
provide information to Soar, and for Soar to provide 
commands to external systems. This information may be 
transduced directly from sensors (e.g., location information), 
or may involve complex processing (e.g., object detection 
and identification). Actions at this level tend to be at the 
highest level that the underlying robot architecture can 
understand (e.g., “go to X”). 

In order to generate actions in response to perceptions, 
there are several long-term memories that contain 
knowledge of what to do in various situations. The 
knowledge combined with the architecture is called the 
agent. Procedural memory contains rules of the form “if 
working memory contains pattern X, then make changes Y 
to working memory”.  For example, “if the robot’s mission 
is to go from X to Y to Z, and the robot has reached location 
Y, set the robot’s destination to Z”. While the 
implementation is literally rules, a better way to think about 
it is that procedural memory is an associative memory – that 
patterns in working memory trigger the retrieval of 
knowledge. 

Whereas procedural knowledge encodes how to do things, 
the semantic and episodic memories contain declarative 
knowledge that describes things. Semantic knowledge 
encodes facts (e.g., the series of waypoints the robot is 
supposed to visit, what frequencies to communicate on, etc.), 
whereas episodic knowledge encodes memories of specific 

situations (e.g., where the robot was a few minutes ago and 
what it saw when it was there). One way to think about this 
distinction is that semantic knowledge encodes what you 
know, whereas episodic knowledge encodes what you 
remember. In Soar, retrieving knowledge from semantic or 
episodic memory is a deliberate action, meaning that the 
agent’s procedural knowledge triggers the retrievals under 
conditions specified by the procedural knowledge. This 
retrieved knowledge is added to working memory, which 
can then trigger additional procedural knowledge (which 
may perform additional retrievals). 

Each memory has associated learning mechanisms. For 
semantic memory, procedural knowledge can deliberately 
encode new facts, or update existing facts. For episodic 
memory, the state of working memory is automatically 
recorded periodically. Procedural memory actually has two 
learning mechanisms. One, called chunking, is a way of 
capturing a long sequence of rule firings in a single rule. 
Essentially, this captures the results of reasoning, thus 
avoiding having to repeat similar reasoning in the future. 
The other is reinforcement learning. In addition to 
knowledge about how to do things, procedural memory also 
contains knowledge about how to resolve potential conflicts 
(e.g., when multiple actions are possible). Reinforcement 
learning provides a way to tweak this knowledge so that 
better decisions are made as the agent gains more 
experience. 

The interactions of these mechanisms are controlled by 
Soar’s decision procedure. The decision procedure 
essentially follows an OODA (Observe, Orient, Decide, Act) 
loop. First, new perceptions arrive in working memory 
(Observe). Then knowledge is retrieved from procedural 
memory that enumerates the various possible actions, 
including both external actions like moving, and internal 

Figure 3: A partial task hierarchy from TacAir-
Soar. An example path from mission to behavior is
highlighted. 
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actions like retrieving knowledge from semantic or episodic 
memory, or manipulating goal structures (Orient). The agent 
combines these possibilities with preference knowledge 
specifying which actions are best in which situations to 
determine which action it should execute next (Decide). The 
agent then executes that action; for example, sends 
commands to external systems, performs a retrieval from 
semantic or episodic, memory, or makes changes to working 
memory (Act). This loop executes ~20 times per second, 
providing the ability to quickly react to a dynamic situation. 
Furthermore, this loop can execute at multiple levels of 
abstraction. The agent’s tasks are typically organized in a 
hierarchy, and this processing loop is executed to break 
down high-level tasks (starting with the mission) into lower-
level tasks. Figure 3 shows a partial task hierarchy for an 
agent called TacAir-Soar, which flies simulated fixed-wing 
aircraft. The highlighted path shows an example transition 
from mission to behavior, which would have been chosen 
based on the particulars of the current situation. 

 
GETTING KNOWLEDGE INTO SOAR 

The Soar Cognitive Architecture provides a domain- and 
task-general framework for providing intelligence to a robot. 
This means that, in order to do anything useful, the various 
memories have to be loaded with knowledge about the 
specific domains the robot will operate in and the specific 
tasks it is to perform. Since Soar is task-independent, it does 
not impose any requirements on the particular level of 
abstraction that tasks are specified at – Soar can be used to 
execute tasks at the mission level (e.g., planning which 
locations to go to, reasoning about commander’s intent, 
etc.), at the tactical level (e.g., reacting to obstacles in a path, 
or real-time changes in the environment), or any other level. 
The difference is in the robotic architecture interface that 
Soar has to work with, and the knowledge required to take 
advantage of that interface for the purposes of the task, and 
the domain knowledge required (e.g., to reason about 
environment dynamics). 

The process for doing this is called KAKE and involves 
two basic steps: Knowledge Acquisition and Knowledge 
Engineering. Knowledge acquisition is the process of 
extracting knowledge about the domain and task from 
various sources including experts, training materials, SOPs, 
etc. For example, if we are designing a robot to perform 
resupply in mountainous terrain under threat from 
insurgents, we would interview experts who have performed 
resupply missions under those conditions to try to elicit the 
various situations that would have to be dealt with, and how 
those situations are handled. This includes identification of 
the tasks and subtasks that arise during the mission, the 
conditions under which they arise, and the actions that 
should be taken to accomplish those tasks. As in the TacAir-

Soar example shown in Figure 3, this should lead to a task 
hierarchy. 

Knowledge engineering is the process of encoding that 
acquired knowledge into rules and facts that Soar can 
execute. This may also include the development of some 
supporting infrastructure for managing the knowledge, 
although Soar already provides architectural support for 
much of this, and reusable libraries and tools exist to help 
develop the rest. 

The KAKE process is iterative; once knowledge is 
acquired and encoded, new questions and issues inevitably 
arise that require additional knowledge acquisition, and 
changes to the encoding. In general, developing complex 
behaviors is a time-consuming process, but tools exist to 
help streamline this, and others are under development. 

 
AN EXAMPLE 

Let’s walk through an example. The robot’s mission is to 
bring supplies from a forward operating base to a squad in 
the field. Essentially, it has to navigate from the base to a 
rendezvous point, and then return to base. Enroute, the robot 
sees a person in a red shirt, but as this is irrelevant to the 
mission, the robot does nothing in response to this 
observation. Later, the robot receives a message: “New 
insurgent group active in the area. Distinctive markings 
include a red shirt.” Upon receiving this message, the 
agent’s procedural memory triggers an episodic memory 
retrieval to see if the robot has encountered these insurgents. 
The memory of the person in the red shirt is retrieved. The 
robot executes actions to send a message reporting the 
sighting, and update the map used by the navigation system 
to include the insurgent locations. The navigation system 
plots an alternative route back to the base to avoid this 
location. Upon arriving at the rendezvous point, the squad 
loads a seriously injured solider in the vehicle. This person 
must reach base as soon as possible, but dangerous activity 
and rough terrain in the area precludes performing an aerial 
withdrawl. Thus, the agent determines, via the application of 
procedural knowledge, that the vehicle should take the most 
direct route back to base, even though it will pass by the 
insurgent location. The alternative route would mean certain 
death. Enroute, the vehicle comes under fire, losing one of 
its camera sensors. The agent adjusts the settings on the 
remaining camera to compensate, providing a better view 
than that camera would provide with its default settings. The 
vehicle makes it back to base, and the solider is saved. 

 
EXISTING SOAR SYSTEMS 

The application of Soar to robotic systems is not new. 
There are several existing Soar systems that demonstrate the 
approach described above. [3] describes recent thinking in 
this area  
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The largest such system is TacAir-Soar [4]. TacAir-Soar 
flies simulated fixed-wing aircraft; it supports all military 
missions. While this system is simulated, it contains the 
same basic interfaces to an underlying platform – inputs with 
processed sensor data (e.g., “bogey at heading X and 
distance Y”), and outputs with high-level commands (e.g., 
“turn to heading X”).  

Another relevant system is ECGF, which provides a 
consistent interface between high-level commands and low-
level execution. In our description of the robot stack above, 
we drew the line between the behaviors and the underlying 
robot architecture in a particular place, but the reality is that 
this is a gray area. For example, some robotic architectures 
may support navigation in the far field, while others may 
not. ECGF [5] exposes an interface that makes it look like 
all underlying systems support navigation in the far-field 
(among other behaviors), and implements this navigation for 
those systems that do not actually support it using their 
available primitives. This makes higher-level reasoning 
more portable across platforms. 

Soar has also been connected to real robots. Early work on 
such systems included Robo-Soar and Hero-Soar [6]. These 
systems performed simple tasks involving manipulating 
blocks, but demonstrated key aspects of robotic control, 
including reactivity, planning, and learning within the Soar 
architecture. Currently, SoarTech is involved in the SUMET 
program under ONR, which aims to have robotic vehicles 
perform militarily relevant missions such as resupplying 
units in the field. Additionally, SoarTech’s Robotic 
Wingman paper at this symposium [7] describes the 
application of Soar to a robotic system intended to enhance 
the effectiveness of combat platoons. 

 
CONCLUSION 

We have described a robot control stack that includes 
interaction between low-level hardware control and high-

level mission control. We argued that interaction between 
these levels is critical in taking the next step in autonomous, 
affordable (in terms of energy, size, and cost) robotics, since 
more intelligent high-level control will result in more 
effective use of low-level capabilities. We described the 
Soar cognitive architecture as a system capable of fulfilling 
the role of high-level mission control. Finally, we described 
existing systems that take steps in this direction. 
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