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Abstract: 

The Team Cybernet vehicle for the 2007 DARPA Urban Challenge
1
 incorporated a route planning 

approach that uses sensed obstacles in the environment as the basis for potential turn placement prior to performing 

path search.  The path search is confined to finding a set of straight-line tangents that connect circles of maximum 

curvature that are constructed adjacent to sensed obstacles.  This approach is substantially different from 

traditional approaches in that the complexity of the search space is not based on the length of the path, but rather 

on the number of obstacles in the field.  For sparse obstacle fields, this approach allows for very fast plan 

generation and results in paths that are guaranteed by construction to not violate steering constraints.

                                                 
1
 DISCLAIMER: The information contained in this paper does not represent the official policies, either expressed 

or implied, of the Defense Advanced Research Projects Agency (DARPA) or the Department of Defense. DARPA 

does not guarantee the accuracy or reliability of the information in this paper. 
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Introduction 

In the 2007 DARPA Urban Challenge, one of the 

qualification criteria was the ability for the 

autonomous vehicle to traverse bounded, open 

“zones” containing obstacles and parking spaces.  A 

typical zone mission involved entering the zone from 

a roadway, navigating to a parking space within the 

zone, pulling into a parking space, backing out of the 

parking space, and then proceeding to a defined zone 

exit point (see Figure 1). 

 

 

Figure 1: A Typical Zone Mission.  The dotted line 

represents a potential vehicle path, where each dot 

represents one node in the search tree.  The circles 

and the lines that link them show a path generated 

with our approach. 

 

Our over-arching vehicle design philosophy was to 

solve exactly the problems we had to, and not go any 

further.  Scoring for this event was based on avoiding 

obstacles (including lines on parking spaces), 

providing a cushion of at least 1 meter around all 

other vehicles, reaching the destination checkpoints, 

and not pausing for more than 5 seconds
2
.  This 

guided our choice of solution.  We made certain 

assumptions about the context in which the planning 

was to take place.  We assumed that the area would 

                                                 

2
 The complete scoring documentation for the 2007 Urban 

Challenge can be found at 

http://www.darpa.mil/GRANDCHALLENGE/rules.asp. 

be typical of a “real” parking lot, i.e. large (100x50 

meters was a working baseline), flat (no obstacles 

obscured by the ground), and most importantly that 

the nature of the obstacles would be islands that 

needed to be driven around, rather than forming a 

maze that had to be driven through.  We also 

assumed that DARPA might add a cul-de-sac to the 

zone to test the vehicle’s ability to plan out of local 

minima. 

  

Figure 2: Team Cybernet Urban Challenge 

Vehicle 

This motivated the path planning algorithm 

to be described in this paper.  The algorithm 

constrains the planning process to find paths that 

achieve the minimum obstacle avoidance distance 

and that do not require turns smaller than the 

vehicle’s minimum turning radius to follow.  The two 

constraints can be used to generate a reduced 

planning graph space to be searched as compared to 

more traditional discrete grid quantization of the 

space, and because the space is not quantized, allow 

any possible smooth path that meets the constraints to 

be generated. 

Previous Work 

Before beginning implementation, we reviewed 

previous work for route planning of nonholonomic 

(steering constrained) vehicles.  Fundamental 

inspiration for our planner came from Dubins [1] and 

Reeds and Shepp [2] who provided clear pictorial 

http://www.darpa.mil/GRANDCHALLENGE/rules.asp
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illustrations of their underlying mathematics
3
.  

However, these were concerned with reachability and 

optimal path length and did not discuss the problem 

of obstacles in the field.  Considerable work has been 

done to extend this work to address obstacles.  

Backer [3] considers obstacles, but in order to restrict 

search space (and make the problem complexity 

polynomial) he only considers paths inside a 

restrictive narrow corridor.  Others, including 

Esquivel [4], Graf [5], Jiang [6], and Agarwal [7], 

perform path planning by first finding the shortest 

unrestricted path, and then attempt to fix the path by 

applying curvature constraints.  This two-step process 

is done to guarantee finding the shortest steering-

constrained path.  Boissonnat [8] gives a polynomial 

time algorithm for constructing a path amid 

“moderate” obstacles
4
 and proves that the path is the 

shortest feasible path.  The restriction to moderate 

disjoint obstacles does not allow for one of our key 

assumptions, which is the cul-de-sac obstacle.  One 

can create a moderate obstacle by constructing an 

artificial perimeter around an existing non-moderate 

obstacle, but in doing so may eliminate the only 

feasible path. 

One other approach that dispenses with all 

of the constraints on obstacle shape is to build a 

search tree incrementally with nodes that represent a 

maximal left turn, maximal right turn, or straight line 

segment over some short time interval.  Such a search 

tree will provide an arbitrarily close to optimum 

solution, but the size of the search space grows as the 

length of the path (and not as a function of obstacle 

field complexity).  The algorithmic performance of 

searching this space is highly sensitive to the quality 

of the heuristics employed.  Unlike the polynomial-

time algorithms cited above, the search tree algorithm 

has a runtime complexity that is exponential in path 

length. 

Our approach 

Our planning process builds a graph consisting of 

nodes representing arc sections, and edges 

representing straight line segments that connect the 

                                                 

3
 We did not use the extensions for reverse driving found in 

[2] – Our vehicle only used reverse for special maneuvers, 

and did not need to plan reverse paths in general. 

4
 The definition of “moderate” obstacles is convex and with 

a boundary that is differentiable and made up of line 

segments and circular arcs of unit radius. 

arcs at tangent points.  We then perform traditional 

graph search.  The process is given below: 

Step 1: For the starting configuration, 

construct two “navigation circles” of minimum turn 

radius, tangent to the starting point.  One of the 

circles is directed clockwise, the other counter-

clockwise so that the direction of travel is preserved. 

Step 2: The same is done for the goal 

configuration. 

Step 3: Scan the area with our laser range 

finder (working range out to about 80 meters). 

Step 4: Convert the points detected by the 

scanner into line segments. 

Step 5: Construct “pad circles” with a radius 

of the minimum clearance allowed centered on the 

endpoints of each line segment (Figure 3).  The 

Urban Challenge rules stipulated a 1-meter clearance 

between vehicles and all obstacles. 

 

Figure 3: Construction of navigation circles 

around the end of an obstacle line segment. 

Step 6: For each pad circle, construct 6 

navigation circles tangent to the pad circle, and 

evenly distributed around it (Figure 4).  The number 

of navigation circles was chosen empirically as 

providing a good balance between providing enough 

potential travel paths and expanding the size of the 

search space. 
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Figure 4: Completed construction of navigation 

circles.  Each of the circles shown represents both 

a clockwise and counter-clockwise circle. 

Step 7: For each vertex of the polygon that 

makes up the boundary of the zone, create a 

navigation circle sufficiently far inside the zone so 

that the nearest points of the circle to the boundary 

are <minimum clearance distance> away. 

Step 8: For each navigation circle created in 

the previous steps, construct arcs by intersecting the 

circles with obstacle and perimeter line segments.  

Any arcs that lie outside the perimeter are discarded.  

In Figure 5, the circle has been divided into two arcs 

by cutting it with the obstacle line segment. 

Step 9: For each arc, attempt to find a 

permissible tangent line segment to every other arc.  

A segment is permissible if it does not intersect any 

of the pad circles and does not intersect any of the 

obstacle or perimeter line segments.  Store each of 

these tangents in a list associated with the source arc.  

Note that the set of arcs and permissible tangents 

forms a directed graph (digraph) of potential paths 

that the vehicle can follow.  Not all of these paths are 

legal, however; In Figure 5, a path starting with 

segment 1 could not leave the arc on segment 2, 

because segment 2’s tangent point lies “upstream” of 

segment 1’s tangent point.  The path entering on 

segment 1 and exiting on segment 3 is allowed.  The 

path entering on segment 1 and exiting on segment 4 

is not allowed, because segment 4 is actually part of a 

completely separate arc.   

 

Figure 5: Tangents into and out of a pair of 

directed arcs.  Note that it is not valid to enter the 

arc on segment 1 and exit on 2 or 4. 

Step 10: Beginning at one of the arcs (either 

clockwise or counter-clockwise) tangent to the start 

point, search the digraph created in the previous step.  

Then repeat for the other (counter-clockwise or 

clockwise) beginning arc.  The search succeeds when 

the last arc in the path is tangent to the goal point and 

the goal point lies “downstream” from the point 

where the segment entered the arc.  We used a depth-

first search with iterative deepening. 

Analysis 

The graph construction process (steps 1-9) is 

polynomial in the number of obstacle and perimeter 

points as follows: 

Steps 1,2, 3, and 4 are constant time 

operations.  Steps 5 and 6 are linear in the number of 

line segments (n) detected.  Step 7 is linear in the 

number of perimeter points (m) that describe the 

boundary of the zone.  Step 8 is linear in (n+m).  Step 

9 is quadratic in (n+m).  So the graph to search can 

be constructed in polynomial time O((n+m)
2
). 

The search (step 10) is a traditional tree 

search, and so is exponential in search depth (d), with 

a branching factor (b) on the order of (n+m).  Search 

depth is the number of arcs that must be visited to 

reach the goal, excluding the starting arc.  That is 

equivalent to saying that the search depth is the 

number of obstacles (or zone perimeter segments) 

that must be avoided to reach the goal configuration 

from the start configuration.   
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Results 

In practice, the number of line segments created from 

a scan was less than 30.  The number of perimeter 

points for the zones varied from 4 to 14.  The number 

of obstacles that was actually in the way of our goal 

configuration was typically around 3.  This means 

that our entire search process was on the order of 

(44)^3 = 85,000 operations.  In the National 

Qualifying Event (NQE), three zones were navigated.  

We successfully traversed these, and did not incur 

any “stop and stare” penalties.  Our algorithm was 

implemented in Java on a 2 GHz dual core Pentium 

system. 

Figures 6 and 7 show the algorithm in 

progress (imagery reconstructed from stored path 

telemetry from Cybernet’s second pass through Test 

Area B at the 2007 Urban Challenge in Victorville, 

California).

  

           

Figure 6: Path planned through the starting zone at the 2007 Urban Challenge Test Area B. 
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Figure 7: Paths planned through the 

first parking area and out of the zone in 

2007 Urban Challenge Test Area B. 

 

 

Shortcomings 

Our approach is not complete.  There may be a 

feasible path that our planner does not find, because 

it only plans along circles that are generated from the 

obstacles and perimeter.  Because the zones 

presented in the Urban Challenge were 

uncomplicated and uncluttered, we never failed to 

find a solution. 

Our approach is not optimal.  Although we 

select the shortest path of those that we consider, 

because we do not generate all possible paths, we 

most likely do not generate the shortest path
5
.  The 

                                                 

5
 In the absence of obstacles, and when there is a direct 

path from start configuration to end configuration that does 

not intersect the perimeter of the zone, the planner trivially 

generates the CSC curve that Dubins proved was optimal.  

This is a special case. 

lack of optimality was tolerable because we tend to 

generate paths that are not far from optimal. 

Our approach still contains an exponential 

term in the computational complexity.  The search 

space of our approach grows exponentially with the 

number of turns that must be made to reach the goal.  

For the simple zones given in the Urban Challenge, a 

depth of 5 was adequate.  For more general obstacle 

fields, this will not be the case and we will need to 

make assumptions about the obstacles so that we can 

avail ourselves of one of the polynomial time 

algorithms. 

Conclusion and Future Work 

We have presented our implementation of a model-

based path planner that is able to plan around 

obstacles that can be represented as line segments.  

The planner generates plans that do not violate 

curvature constraints, and can generate plans 
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sufficiently fast to avoid being penalized under the 

DARPA “stop-and-stare” rules. 

As a future project, we will implement the 

Boissonnat algorithm and run it on data sets gathered 

during the Urban Challenge to see how it compares to 

what we did.  This will require that we make some 

decisions about how the perimeter of the zone is 

treated (it is not necessarily convex).  We will also 

investigate the conversion of the obstacles that we 

encountered into moderate obstacles so that the 

algorithm can be applied. 
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