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ABSTRACT 

Route planning plays an integral role in mission planning for ground vehicle operations in urban areas.   
Determining the optimum path through an urban area is a well understood problem for traditional ground vehicles; 
however, in the case of autonomous unmanned ground vehicles (UGVs), additional factors must be considered.  For 
a UGV, perception, rather than mobility, will be the limiting factor in determining operational areas.  Current 
ground vehicle route planning techniques do not take perception concerns into account, and these techniques are 
not suited for route planning for UGVs.   For this study, perception was incorporated into the route planning 
process by including expected sensor accuracy for GPS, LIDAR, and inertial sensors into the path planning 
algorithm.  The path planner also accounts for additional factors related to UGV performance capabilities that 
affect autonomous navigation. 

 
INTRODUCTION 

In general, route planning for ground vehicles through a 
known area of interest involves finding the shortest path 
between two points that contains no obstacles [1].  Several 
methods have been developed to find the optimal path 
between two points, the most popular of which remains the 
A* algorithm first developed by Hart, Nilsson, and Rapheal 
in 1968 [2] and its multiple variants found in [3].  
Trafficability obstacles can be defined in many ways 
depending on the capabilities of the ground vehicles in 
question, i.e.,  sharp turns, steep slopes, rough terrain, etc, 
and for manned ground vehicles the problem of path 
planning is considered solved. 

However, these path planning algorithms do not provide a 
complete solution for the case of autonomous unmanned 
ground vehicles (UGVs).  Additional factors affect 
autonomous navigation beyond those that affect traditional 
ground vehicle mobility, and the best route for an 
autonomous UGV is not necessarily the shortest path.  The 
limiting factor for autonomous operations will most likely be 
perception, not platform mobility.  The UGV’s ability to 
accurately sense its environment determines its ability to 
successfully navigate a path; therefore, an ideal path 
planning algorithm for UGVs should take into account the 

accuracy of the sensor outputs used to drive autonomy 
algorithms. 

Furthermore, what constitutes an obstacle for an 
autonomous ground vehicle is not clearly defined.  Most 
autonomy systems have some built-in fault tolerance and 
performance limitations that cannot be fully captured using 
binary go-nogo obstacle definitions.  For example, when 
defining obstacles for a UGV that can handle some GPS 
drop-out, quantifying ’some’ GPS drop out is a difficult task.  
Or in the case of an autonomous navigation system that can 
handle ’moderately sharp’ but not ’very sharp’ turns.  A 
successful path planner for autonomous UGVs must take 
into account the performance capabilities and limitations 
inherent in autonomy systems. 

This paper presents the development and implementation 
of a new path planning algorithm for autonomous UGV 
operations in urban environments.  Average sensor error 
values for the most common sensors used for autonomous 
navigation, i.e., a laser range finder, an inertial measurement 
unit, and a GPS receiver, were calculated using high-fidelity 
sensor simulations.  Details on the sensor errors, their 
calculation, and the simulation environment used can be 
found in the Experiment section.  The error values at each 
point within the urban area were fused into a single map grid 
cell, or node, cost.  Likewise, to handle qualitative inputs 
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related to autonomy algorithm performance limitations, 
fuzzy set theory was used to create a set of rules to further 
refine the route planning process.  The resulting path 
planning algorithm and its application for UGV route 
planning is presented in Route Planning Section.  Lastly, the 
Conclusions section provides some conclusions and 
recommendations for future efforts. 

 
EXPERIMENT 

 
High-Fidelity Sensor Simulations 
  The data for this study were generated using the Virtual 

Autonomous Navigation Environment (VANE) 
computational testbed (CTB), a high-fidelity, physics-based 
simulation environment for the design, development, and 
evaluation of autonomous UGVs developed by the US Army 
Engineer Research and Development Center (ERDC).  By 
leveraging advances in High Performance Computing (HPC) 
tools, VANE can be run in a practical time frame, with 
simulations running 5 to 15 times slower than real time.  
Using ERDCs Cray XE6, VANE performs parallel 
computations of radiative transfer for simulations of GPS 
and LIDAR sensors.  VANE also uses complex vehicle-
terrain interaction models to produce highly realistic inertial 
measurement unit (IMU) sensor simulations.  These high-
fidelity sensor simulations are then used to simulate the 
outputs for sensor packages commonly found on robotics 
vehicles. 

An in-depth review of the VANE CTB is beyond the scope 
of this paper; a full description of the VANE CTB can be 
found in [4] and [5].  In particular, this study leveraged the 
physics-based sensor models contained within the VANE 
CTB, which are described in detail in [6].  For this study, 
LIDAR, GPS, and IMU sensor data were generated along 
the road network of a typical urban environment. 

 
Simulation Scene 
Figures 1 and 2 show the urban environment that was used 

as the simulation scene.  The scene chosen was a typical 
urban cityscape roughly two km by two km and containing 
approximately 1700 buildings.  The scene was chosen 
because it contains many features known to challenge 
autonomous navigation systems.  These features include 
urban canyons (narrow roadways surrounded by tall 
buildings which result in significant GPS dropout), tight 
turns, narrow and constricted roads, and barriers made of 
razor wire, which is especially difficult for LIDAR to detect. 

The urban scene must first be translated into a go-nogo 
matrix to be input into the path planning algorithm.  This 
was accomplished by first down-sampling the urban height 
map to generate a six-meter resolution digital elevation map 
(DEM).  Then, each cell that was occupied by an object 
(building, street lamp, etc.) was assigned a node value of -1.  

This process created the base set on which the standard A* 
path planning algorithm would operate, wherein every node 
with a value of -1 was taken to be an obstacle.  When 
applied to this input set, the A* algorithm returns simply the 
path which minimizes distance.  The base road network for 
the scene is show in Figure 3. 

 

 
Figure 1.   The urban scene. 
 

 
Figure 2.   An overhead view of the scene.   The yellow 

box contains the area of interest selected for route planning. 
 
Simulating Sensor Errors 
The GPS position was simulated along the six-meter road 

network grid at a height of three meters above the ground.  
To generate the average GPS error values, the GPS was 
simulated collecting stationary position data at each node for 
two hours.  The output receiver position was compared to 
the true receiver position within the scene, and the average 
GPS error for each grid cell was determined using the 
equation below. 

𝐺𝑃𝑆𝑒𝑟𝑟(𝑥, 𝑦) =  
1
𝑁
�𝐺𝑃𝑆𝑠𝑖𝑚(𝑥, 𝑦, 𝑡𝑖) −  (𝑥𝑡𝑟𝑢𝑒 ,𝑦𝑡𝑟𝑢𝑒)
𝑁

𝑖=1
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Figure 3.  The road network contained within the yellow 

box in Figure 2.    
  
Note that the GPS error does not take into account errors in 

the z-direction.  This exclusion is due to the large errors 
inherent within GPS altitude measurements, and GPS 
altitude measurements are rarely used by autonomous 
navigation systems.  Once calculated, the GPS errors were 
normalized to have maximum value of one in the case of 
GPS dropout and scaled values of 0.99 to 0.01 for grid cells 
with GPS returns.  Figure 4 shows the GPS errors along the 
road network. 
 

 
Figure 4.  The predicted GPS error along the road 

network. 
 

The LIDAR sensor error was generated using a method 
similar to that of the GPS sensor.  For each node along the 
road network, one LIDAR scan was performed using a 3D 

LIDAR sensor.  The simulated point cloud was then 
compared to the point cloud generated using an ’ideal’ 
LIDAR, i.e., one that does not suffer from beam divergence 
and reflects perfectly from all surfaces.  The average error at 
each grid cell was computed in the same fashion as the GPS 
error, as can be seen in the equation below.  Figure 5 shows 
the LIDAR errors along the road network, which have been 
normalized to a maximum value of one. 
𝐿𝐼𝐷𝐴𝑅𝑒𝑟𝑟(𝑥, 𝑦, 𝑧)

=  
1
𝑁
��(𝑥𝑠𝑖𝑚 − 𝑥𝑖𝑑𝑒𝑎𝑙)𝑖2 + (𝑦𝑠𝑖𝑚 − 𝑦𝑖𝑑𝑒𝑎𝑙)𝑖2 + (𝑧𝑠𝑖𝑚 − 𝑧𝑖𝑑𝑒𝑎𝑙)𝑖2
𝑁

𝑖=1

 

 

 
Figure 5.  The predicted LIDAR error along the road 

network. 
 
Because of the physical performance limitations of the 

accelerometers used in these systems, all IMU sensors suffer 
from drift, scale, and bias effects.  Therefore, the greater the 
distance traveled or the longer the time of operation, the 
more the IMU position estimate will degenerate.  Given that 
most commercial IMU units will be calibrated to 
compensate for scale and bias, the IMU error was estimated 
as the drift in the sensor multiplied by the total distance 
traveled, and the error values where then normalized.  Figure 
6 shows the IMU errors along the road network, with the 
assumption that the sensor is traveling at a constant speed 
starting at the bottom right corner of the map and moving 
towards the top left corner. 

 
ROUTE PLANNING 

For manned ground vehicles, path planning can be fully 
realized using nodes that are either closed (contain 
obstacles) or open, and the A* algorithm is used to find the 
shortest open path between the start and goal points. 
Therefore, the natural starting point for the development of a 
new route planning methodology is the application of A* to 
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the urban road network shown in Figure 2 to determine the 
base case. Figure 7 shows the optimal path determined by 
A* in the absence of sensor errors. The path was chosen to 
have a start point of (12, 5) and a goal point of (157, 157). It 
has a total distance traveled of 213 nodes and a total path 
cost as defined in [1] of 256.08.  These cost and distance 
values serve as the ’best case’ values, and subsequent paths 
planned will require some tradeoff between cost, distance 
traveled, and avoidance of sensor errors. 

 

 
Figure 6.  The predicted IMU sensor error along the road 

network. 
 

 
Figure 7.  The shortest route between the start and goal 

points. 
 
The simplest way to incorporate sensor accuracy into the 

path planner is to add the total sensor error values at each 
node along the road network and make the cost of traveling 
to each node the total sensor errors.  In this case, A* will 

return the path with the lowest total cumulative sensor error 
while also attempting to follow the shortest path; therefore, 
the path returned is the shortest path that minimizes sensor  

 
Figure 8.  The route with minimum cumulative sensor 

errors. 
 

error, and not necessarily the path with the absolute 
minimum total cumulative error.  The route planned between 
the start and goal points in this case is shown in Figure 8.  
From a mobility standpoint, this is a less optimum path, 
having a total distance traveled of 226 grid cells and a total 
path cost of 306.48.  Furthermore, this path can be 
qualitatively described as having many sharp turns, a 
switchback, and following several narrow roadways. 

The specific means of combining the sensor errors into a 
node cost is highly dependent on the UGV platform and 
autonomy algorithms, and different combinations will be 
better suited for different situations. A more interesting and 
ultimately more useful tool is a set of rules for further 
refining what an ’optimal’ path is. Using some techniques 
from fuzzy set theory [7], a few simple rules can be defined 
and applied to the route planning algorithm. 

For example, many autonomous UGVs make use of a 
combination of GPS and IMU data for localization.  As 
such, the system can handle large GPS errors as long as the 
IMU errors remain low.  Figure 9 shows the route planned in 
case of following a route with low GPS error unless IMU 
error is low.  The path skirts around the large area of GPS 
drop-out near the starting point, and this path is much better 
for the case of an autonomy system that requires a high-
fidelity localization.  Similarly, many autonomy algorithms 
require highly accurate LIDAR and positioning data, and 
these systems cannot tolerate high errors in both LIDAR and 
positioning data.  Figure 10 shows the road network with 
node costs for a UGV that requires either highly accurate 
LIDAR or highly accurate positioning data at each node.  As 
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Figure 10 shows, a UGV with this limitation could not 
navigate between the start and goal points (no open path 
exists between the start and goal points). 

 
Figure 9.  The route chosen when allowing for high GPS 

error when IMU error is low.  This route successfully avoids 
the large area of GPS dropout near the bottom right corner of 
the AOI. 

 

 
Figure 10.  The road network with node costs for a UGV 

that requires either highly accurate LIDAR or highly 
accurate IMU/GPS data.  Red nodes have a cost of -1 and 
are closed, and no route exists between the start and goal 
points in this case. 

 
One interesting application of the fuzzy route planner is 

that it can be retrospectively applied to a path. That is, for a 
given path through the scene, what errors where present and 
what rules where followed in the generation of that path?  
Performance evaluation for autonomous UGVs is an active 
research area with many outstanding problems, and this 

could provide some insight into how a UGV’s performance 
could be assessed. Given that a UGV navigated 
autonomously through an area, and provided with the 
UGV’s chosen path, it is possible to measure how ’good’ of 
a path the autonomous navigation algorithm chose and what 
factors most impacted the UGV’s choice of path. 

For example, Figure 11 shows the path of least distance 
between the nodes (140, 3) and (3, 151). The path has a total 
distance of 203 nodes with 103 nodes containing GPS 
dropout, so this path is clearly not optimized for a UGV that 
is dependent on GPS data.  However, a UGV that traveled 
this path can be said to be capable of handling prolonged 
periods of GPS denial. 

 

 
Figure 11.  A random path through the AOI.  By applying 

the route planner retrospectively, this path is shown to be 
sub-optimal for a UGV dependant on GPS data. 
 
CONCLUSIONS 

In many cases, traditional methods of route planning and 
performance prediction for ground vehicle operations prove 
insufficient for autonomous UGVs.  The current mission 
planning and performance assessment tools prove 
inextensible to autonomous systems, and new methods must 
be developed.  One such area in which traditional methods 
are not well suited to autonomous operations is route 
planning through urban areas.  For traditional ground 
vehicles, paths can be planned using well understood 
mobility concerns and obstacle definitions.  On the other 
hand, for autonomous navigation, the impact of sensor 
outputs and autonomy capabilities must be taken into 
account.  With that in mind, a route planning algorithm for 
autonomous navigation through urban environments was 
developed. 

The new path planner took into account predicted accuracy 
and expected errors in sensor outputs for the sensors most 

Route Planning for Autonomous Unmanned Ground Vehicle Operations in Urban Environments, Durst, et al. 
 

Page 5 of 6 



Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

commonly used for autonomous navigation: GPS, LIDAR, 
and IMU sensors.  The relative accuracy of the sensor 
outputs at each node affected the cost associated with 
traveling to that node, and the path planner searched for the 
shortest path that also minimized the cumulative errors for 
those sensors critical to autonomous navigation.  
Additionally, some fuzzy, qualitative rules where applied to 
the path planner which allowed the algorithm to adjust for 
the performance characteristics of different UGV systems.  
In this way the path planner was able to optimize paths for 
UGVs using qualitative information about the UGV’s 
inherent capabilities, an ability that previous path planning 
algorithms lacked. 

In addition, the path planner can be run ‘in reverse’ to 
analyze the paths chosen by an autonomy system to glean 
some characteristics about the autonomy system’s 
performance.  Paths could be analyzed to determine what 
sensor errors where minimized by the autonomy system and 
what rules the autonomy system tried to follow.  This 
analysis could serve as a metric for measuring a particular 
UGV system's path planning performance through an area, 
for evaluating its capability to avoid areas of high sensor 
error and/or to follow a more direct route, and for other such 
questions. 

This study represents only a first-look case for extending 
route planning methodologies to path planning for 
autonomous ground vehicles.  It provides a framework 
which is easily extensible for many different UGV systems 
with a range of sensors and autonomy algorithms. Going 
forward, many more rules should be developed and 
implemented and additional sensors, such as cameras, should 
be included into the path planner.  The early results 
presented in this study are promising, and show that further 
development of a more robust and fully realized path 
planning algorithm would have a positive impact on the 
ability to field autonomous assets and predict their 
performance. 
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