
2015 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
AUTONOMOUS GROUND SYSTEMS (AGS) TECHNICAL SESSION

AUGUST 4-6, 2015 - NOVI, MICHIGAN

FAST INCREMENTAL LEARNING FOR AUTONOMOUS GROUND
NAVIGATION

Artem Provodin

New York University
New York, NY

 Liila Torabi

 Net-Scale Technologies
Morganville, NJ

 Urs Muller

Beat Flepp
Michael Sergio

NVIDIA Corp
Santa Clara, CA

 Jure Žbontar
Yann LeCun

New York University
New York, NY

L. D. Jackel

 North C Technologies Inc.
Holmdel, NJ

ABSTRACT

A promising approach to autonomous driving is machine learning. In machine learning

systems, training datasets are created that capture the sensory input to a vehicle as

well as the desired response. One disadvantage of using a learned navigation system

is that the learning process itself may require both a huge number of training examples

and a large amount of computing. To avoid the need to collect a large training set of

driving examples, we describe a system that takes advantage of the immense number
of training examples provided by ImageNet, but at the same time is able to adapt

quickly using a small training set for the driving environment.

INTRODUCTION

 Off-road autonomous ground navigation is still an unsolved

challenge. The difficulty of the task arises from the enormous

variability that an Unmanned Ground Vehicle confronts when

it leaves the relatively well characterized domain of the road.

While, in principle, it should be possible to create a rule-based

system that codifies all situations that might be presented to

the vehicle, such approaches are brittle, and tend to fail when

new environments are encountered.

A more promising approach to autonomous driving is

machine learning. In such systems, training datasets are

created that capture the sensory input to a vehicle as well as

the desired response. These responses may be provided by a

human driver who initially teleoperates the vehicle, or may be

gleaned from the vehicle’s prior driving experiences.

A number of systems have been described that learn

drivable vs non-drivable terrain using handcrafted features

based on color or texture [1]. In recent years, Convolution

Neural Networks (ConvNets) [2], in which the features are

Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Fast Incremental Learning for Autonomous Ground Navigation, Provodin, et al.

Page 2 of 6

learned rather than handcrafted, have been shown to be the

most accurate in numerous image recognition tasks [3].

A disadvantage of using a learned system is that the learning

process itself may require a huge number of training examples

and a large amount of computing. As an illustration, the most

accurate networks used in the ImageNet competitions [4] train

on over one million examples and often require days of

training on powerful processor clusters. While such expensive

training may be fine for some applications, it is unacceptable

for systems that have to adapt quickly and only have limited

training data. Here we describe systems that take advantage

of the huge number of training examples provided by

ImageNet, but are able to adapt quickly using a small training

set.

THE TERRAIN CLASSIFICATION TASK
Our networks were designed to train on regions of an image

where the terrain type was known, say from stereo data, or by

labeling by a human operator. The networks would then

classify regions that were not known, usually from an entirely

new frame.

SYSYEMS OVERVIEW
Our systems start with ConvNets that have been trained on

ImageNet. We then preserve some of the initial layers of

these trained ConvNets for use as feature extractors for our

navigation task. A separate navigation training set is then

created using the features extracted from patches taken from

images in our driving environment.

 These patches are labeled using variety of methods, such as

obstacles from stereo, or by observing the regions a human

teleoperator chooses to drive over or avoid. The patches,

which varied between 119 x 119 pixels and 29 x 29 pixels,

were labeled by the class of the center pixel.

 Next, a fully-connected neural network with one or more

hidden layers was trained using these feature/label pairs, i.e.

each training example contains a feature vector obtained from

the feature extractor applied to a patch and the label for that

patch: “ground plane” (drivable), “footline” (marginal”) or

“obstacle” (not-drivable).

Figure 1: The modified CoroBot in a test environment

As a test case for our system, we chose to learn 3-D

obstacles from 2-D images using 3-D point cloud data from a

stereo system to provide ground truth. To allow easy, rapid

testing, we used a CoroBot Jr. robot modified to carry a Point

Grey Bumblebee stereo camera on a 50 cm long stalk. We

collected data in a park in Holmdel, NJ over all seasons. See

Figure 1.

TRAINING AND TEST IMAGES

In our experiments we focused on whether we could use

labeled data from a single video “training” frame to classify

pixels in a “test” frame that was captured about 0.5 seconds

later. The test frame differed from the training frame due to

motion of the robot. The training and test frames and

associated “ground truth” are shown in Figure 2.

The upper row of Figure 2 shows the images used for

training (left) and testing (right). The images are 512 x 384

pixels. For training we picked 512 patches with randomly

chosen centers of size 119 x 119 pixels. Training and test data

used patches instead of pixels because we hypothesized that

having context around the pixel in question would improve

classification.

The lower row of Figure 2 shows the “ground truth” for the

above images derived from stereo using the methods

described in [5].

Figure 2: The training frame (left) and test frame (right)

for our experiments are shown in the top row. The

corresponding ground truth for each frame is shown in the

bottom row. “Ground truth” labeling is obtained from stereo:

“obstacles” (colored red) are defined as objects that rise more

than about 4 cm above the nearby ground, “footlines”

(colored yellow) are at the borders of obstacles with the

“ground plane” which is colored green. The black regions on

Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Fast Incremental Learning for Autonomous Ground Navigation, Provodin, et al.

Page 3 of 6

the left and on the top of the ground truth images are artifacts

of the stereo coverage.

BASELINE SYSTEMS
To see how well simple systems perform, we created two

networks that processed raw RGB image data and then output

terrain classifications. The simplest network was a single

layer neural network using 119 x119 pixel patches of RGB

data as input (SLNN-RGB).

We also trained a fully-connected network with one hidden

layer containing 20 units (MLNN-RGB). Results for both

these networks are shown in Figure 3. The SLNN-RGB

network had a test error of 16% while the MLNN-RGB

network has a test error 12%. The classification is sufficiently

poor that it would be difficult to use the results of either of

these networks for effective path planning.

Figure 3: Test results for the SLNN-RGB network (top

row) and MLNN-RGB network (bottom row). The images in

the left column show the labels created by the network, and

the images in the right column show where the labels agree

(blue) and disagree (magenta) with the ground truth. The

unclassified borders around the images result from the need

to have the entire 119 x 119 patch fully contained within the

test image with only the location of center pixel of patch

assigned the label for the whole patch. Note that overlapping

patches can be assigned different labels depending on the

label of the center pixel.

CONVNET NETWORK ARCHITECTURES
To improve upon the simple SLNN-RGB and MLNN-RGB

networks, we investigated a number of network architectures

using ConvNets. This section describes some of the

architectures we evaluated.

ConvNet Features Trained From Scratch (NYU-
ConvNet)

The first network we tried used a ConvNet with 2 feature

extraction layers trained on ImageNet examples. An

additional final layer had units that represented the possible

ImageNet classes and was fully connected to the last pooling

layer. This initial network was trained on 1,000,000 ImageNet

examples representing 1000 classes. The network scanned the

image in 119 x 119 pixel RGB patches. One forward pass at

each location in the image required ~ 25,000,000 multiply-

add operations. Fully training our network took a few days on

an NVIDIA Tesla compute server. The trained networks

scored about 35% first-choice correct on a 1000 class

problem.

Our objective here was not to create the very best ImageNet

classifier, but rather to learn feature vectors (the output of the

penultimate layer in our network) which could then be used

for fast training of a linear network that uses navigation sensor

input coupled with labeled terrain classes as training

examples.

With the feature extraction layer weights frozen and the

linear network appemded, we created the “NYU-ConvNet”

classifier that had ~ 19,000 independent parameters or

weights that were learned using the single training image.

 Results for this network are shown in Figure 4. The left

image shows the color-coded labels produced by the network.

As in Figure 2, green is ground plane, yellow is footline, and

red is obstacle. The right image shows the regions (blue tint)

where the network output was in agreement with the “ground

truth”. Test error for this network was 2.8%. Comparison of

Figures 3 and 4 clearly shows that the NYU-ConvNet

classifier provided much better terrain classification than the

simple SLNN-RGB and MLNN-RGB networks.

This network generally does a good job of identifying the

large trees as obstacles and the grassy area as ground plane.

We note that there is some “blooming” of the tree trunk which

may be, in part, due to the pooling in the network which

Figure 4: Test classification using NYU-ConvNet features

that were trained from scratch. The color coding is the

same as Figure 3.

Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Fast Incremental Learning for Autonomous Ground Navigation, Provodin, et al.

Page 4 of 6

causes it to sacrifice some spatial resolution. Nevertheless, the

NYU-ConvNet classification appears adequate for effective

path planning.

ConvNet based on VGG network
The VGG network [6] holds the first and the second place

in the ImageNet localization and classification task. This

neural network has 16 learned weight layers. We used all but

the last 3 layers of this network with accompanying published

weights for feature extraction. The advantage of using the

“front end” of the VGG network is that we avoided the

lengthy training that would have been required if we had to

train the feature extraction from scratch.

Extracted features from the VGG network were fed into a

fully connected single-layer which was rapidly trained using

the usual training image (Figure 2).

We performed a number of experiments that compared the

results using the VGG features with those obtained using the

NYU-ConvNet as a function of the number of training

examples. We trained both networks with 32, 64, 128, and

512 patches and measured the performance on the test image.

Table 1 compares the test error rates for the NYU-ConvNet

and the VGG network. The rates shown are the averages of

several runs with different random choice of training patches.

Training samples NYU-ConvNet VGG network

32 5.6% 8.8%

64 5.0% 4.6%

128 4.9% 3.7%

512 2.8% 1.8%

Table 1: Error rate comparison table of deep ConvNet

(VGG) versus a smaller network (NYU-ConvNet)

Figure 5: Classification results for the NYU-ConvNet (top

row), and the VGG Network (lower row). The color coding is

the same as Figure 3.

The VGG network had worse performance when the

training dataset was small, but improved with more training

examples. We believe that this behavior was due to the

~14,000 weights in the SLNN used with the VGG Network

compared to the ~7000 weights in the SLNN used with the of

the NYU-ConvNet. Figure 5 shows the classification results

for the NYU-ConvNet (top row), and the VGG Network

(lower row).

ConvNet based on Clipped VGG network
To test our hypothesis that the “blooming” visible in the tree

trunks of the test image was in part due to the pooling layers

in the VGG network, we discarded all but the first two layers

of the VGG network and used the output of these layers as a

feature extractor followed by a single layer perceptron in what

we call the “Clipped VGG network”.

Results for this network are shown in the lower row of

Figure 6. While blooming is still present, it is reduced from

that of the full VGG network. The error rate for the clipped

network is 2.4%. An advantage of the clipped network is that

much less processing is required than with the full VGG

network.

Figure 6: Comparison of classification by the VGG

network (top row) with that of the Clipped VGG network

(bottom row). The color coding is the same as Figure 3. Note

the reduced blooming near the tree trunk with the Clipped

VGG network.

Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Fast Incremental Learning for Autonomous Ground Navigation, Provodin, et al.

Page 5 of 6

LEARNING FROM A HUMAN TEACHER
In previous experiments we used stereo-based obstacle

detection for path planning which was, in turn, used to

navigate the CoroBot robot through a dirt trail in the woods.

Navigation was successful until the robot encountered clumps

of small plants growing in the trail. These small plants were

interpreted as an obstacle and forward progress of the robot

ceased, even though the CoroBot could have easily driven

over the plants. If a human could teach the robot that driving

over small plants or similar apparent obstacles is safe, off road

navigation would be much improved.

Figure 7: A trail through the woods where stereo-based

obstacle detection classified the small plants on the trail as

“obstacles.”

Figure 8: Hand-labeled regions (green and red tint) of

drivable and obstacle terrain of Figure 7.

After developing the methods described in previous sections

of this paper, we revisited the site, shown in Figure 7, where

the CoroBot was stymied by the small plants. We hand-

labeled parts of the image in Figure 7 as “drivable” and as

“obstacle” as shown in Figure 8.

We trained a single layer perceptron network with a Clipped

VGG Network feature extractor using the image of Figure 6

for training and the image of Figure 8 for assigning labels.

512 119 x 119 pixel patches were randomly chosen from the

images as training examples with the requirement that the

center of the patch was labeled either “drivable” or “obstacle”.

Figure 9: A section of the trail that was used for testing that

was near the section shown in Figure 7.

The trained network was tested on an image taken from a

nearby section of the trail shown in Figure 9.

Figure 10: Classification results from the test image of

Figure 9. Regions of with small plants are correctly classified

Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Fast Incremental Learning for Autonomous Ground Navigation, Provodin, et al.

Page 6 of 6

as “drivable” with regions with bushes and trees are classified

as “obstacle.

Figure 10 shows the classification provided by our system

on the test image. While the results are not perfect, they

clearly show as “drivable” the terrain that is interspersed with

small plants, regions that using stereo would have been

classified as “obstacle”.

 CONCLUSIONS
We have shown that using the feature extractors obtained

from previously trained ConvNets provides good terrain

classification, even though the original ConvNets were

trained on a completely different corpus. Training the single

layer perceptrons that use the feature vectors extracted by the

initial layers of the ConvNets is sufficiently fast that the

process provides a promising method for rapid adaptation

while navigating in diverse environments.

ACKNOWLEDGEMENTS

We gratefully acknowledge support for this project by

Army STTR contract W56HZV-13-C-0014 and Contracting

Officer's Representative Rob Karlsen. We also acknowledge

Luke Jackel who assisted in terrain data collection.

REFERENCES

[1] See, for example, “Online Learning Techniques for

Improving Robot Navigation in Unfamiliar Domains”,

Boris Sofman , doctoral dissertation, tech. report CMU-

RI-TR-10-43, Robotics Institute, Carnegie Mellon

University, December, 2010

[2] “Backpropagation Applied to Handwritten Zip Code

Recognition,” Y. LeCun, B. Boser, J. S. Denker, D.

Henderson, R.E. Howard, W. Hubbard, and L. D. Jackel,

Neural Computation 1 541-551, 1989.

[3] See, for example, “ImageNet Classification with Deep

Convolutional Neural Networks”, A Krizhevsky, I.

Sutskever, and G. Hinton, in proceedings of "Neural

Information Processing Systems 2012.

[4] See, for example, http://image-

net.org/challenges/LSVRC/2014/index

[5] “Learning long-range vision for autonomous off-road

driving”, R Hadsell, P. Sermanet, J. Ben, A Erkan, M.

Scoffier, K. Kavukcuoglu, U. Muller, and Y. LeCun,

Journal of Field Robotics, 26, 120-144, 2009.

[6] “Very deep convolutional networks for large-scale image

recognition”, A. Zisserman and K. Simonyan.

http://arxiv.org/pdf/1409.1556.pdf

http://arxiv.org/pdf/1409.1556.pdf

