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ABSTRACT 

  
A promising approach to autonomous driving is machine learning. In machine learning 

systems, training datasets are created that capture the sensory input to a vehicle as 

well as the desired response.  One disadvantage of using a learned navigation system 

is that the learning process itself may require both a huge number of training examples 

and a large amount of computing. To avoid the need to collect a large training set of 

driving examples, we describe a system that takes advantage of the immense number 
of training examples provided by ImageNet, but at the same time is able to adapt 

quickly using a small training set for the driving environment. 

 
INTRODUCTION 

 
 Off-road autonomous ground navigation is still an unsolved 

challenge. The difficulty of the task arises from the enormous 

variability that an Unmanned Ground Vehicle confronts when 

it leaves the relatively well characterized domain of the road. 

While, in principle, it should be possible to create a rule-based 

system that codifies all situations that might be presented to 

the vehicle, such approaches are brittle, and tend to fail when 

new environments are encountered.  

A more promising approach to autonomous driving is 

machine learning. In such systems, training datasets are 

created that capture the sensory input to a vehicle as well as 

the desired response. These responses may be provided by a 

human driver who initially teleoperates the vehicle, or may be 

gleaned from the vehicle’s prior driving experiences.  

A number of systems have been described that learn 

drivable vs non-drivable terrain using handcrafted features 

based on color or texture [1]. In recent years, Convolution 

Neural Networks (ConvNets) [2], in which the features are 
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learned rather than handcrafted, have been shown to be the 

most accurate in numerous image recognition tasks [3].  

A disadvantage of using a learned system is that the learning 

process itself may require a huge number of training examples 

and a large amount of computing. As an illustration, the most 

accurate networks used in the ImageNet competitions [4] train 

on over one million examples and often require days of 

training on powerful processor clusters. While such expensive 

training may be fine for some applications, it is unacceptable 

for systems that have to adapt quickly and only have limited 

training data. Here we describe systems that take advantage 

of the huge number of training examples provided by 

ImageNet, but are able to adapt quickly using a small training 

set.  

 

THE TERRAIN CLASSIFICATION TASK 
Our networks were designed to train on regions of an image 

where the terrain type was known, say from stereo data, or by 

labeling by a human operator.  The networks would then 

classify regions that were not known, usually from an entirely 

new frame. 

 

SYSYEMS OVERVIEW 
Our systems start with ConvNets that have been trained on 

ImageNet.  We then preserve some of the initial layers of 

these trained ConvNets for use as feature extractors for our 

navigation task. A separate navigation training set is then 

created using the features extracted from patches taken from 

images in our driving environment.   

 These patches are labeled using variety of methods, such as 

obstacles from stereo, or by observing the regions a human 

teleoperator chooses to drive over or avoid. The patches, 

which varied between 119 x 119 pixels and 29 x 29 pixels, 

were labeled by the class of the center pixel. 

 Next, a fully-connected neural network with one or more 

hidden layers was trained using these feature/label pairs, i.e. 

each training example contains a feature vector obtained from 

the feature extractor applied to a patch and the label for that 

patch: “ground plane” (drivable), “footline” (marginal”) or 

“obstacle” (not-drivable).  

 

  
 

Figure 1:  The modified CoroBot in a test environment 

 

As a test case for our system, we chose to learn 3-D 

obstacles from 2-D images using 3-D point cloud data from a 

stereo system to provide ground truth. To allow easy, rapid 

testing, we used a CoroBot Jr. robot modified to carry a Point 

Grey Bumblebee stereo camera on a 50 cm long stalk. We 

collected data in a park in Holmdel, NJ over all seasons. See 

Figure 1.  

 
TRAINING AND TEST IMAGES 

In our experiments we focused on whether we could use 

labeled data from a single video “training” frame to classify 

pixels in a “test” frame that was captured about 0.5 seconds 

later.  The test frame differed from the training frame due to 

motion of the robot. The training and test frames and 

associated “ground truth” are shown in Figure 2. 

The upper row of Figure 2 shows the images used for 

training (left) and testing (right). The images are 512 x 384 

pixels. For training we picked 512 patches with randomly 

chosen centers of size 119 x 119 pixels. Training and test data 

used patches instead of pixels because we hypothesized that 

having context around the pixel in question would improve 

classification.  

The lower row of Figure 2 shows the “ground truth” for the 

above images derived from stereo using the methods 

described in [5]. 

  

 

  
 

Figure 2:  The training frame (left) and test frame (right) 

for our experiments are shown in the top row. The 

corresponding ground truth for each frame is shown in the 

bottom row. “Ground truth” labeling is obtained from stereo: 

“obstacles” (colored red) are defined as objects that rise more 

than about 4 cm above the nearby ground, “footlines” 

(colored yellow) are at the borders of obstacles with the 

“ground plane” which is colored green. The black regions on 
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the left and on the top of the ground truth images are artifacts 

of the stereo coverage. 

 

BASELINE SYSTEMS 
To see how well simple systems perform, we created two 

networks that processed raw RGB image data and then output 

terrain classifications.  The simplest network was a single 

layer neural network using 119 x119 pixel patches of RGB 

data as input (SLNN-RGB). 

We also trained a fully-connected network with one hidden 

layer containing 20 units (MLNN-RGB).  Results for both 

these networks are shown in Figure 3. The SLNN-RGB 

network had a test error of 16% while the MLNN-RGB 

network has a test error 12%. The classification is sufficiently 

poor that it would be difficult to use the results of either of 

these networks for effective path planning. 

 

 
 

 
 

Figure 3: Test results for the SLNN-RGB network (top 

row) and MLNN-RGB network (bottom row). The images in 

the left column show the labels created by the network, and 

the images in the right column show where the labels agree 

(blue) and disagree (magenta) with the ground truth. The 

unclassified borders around the images result from the need 

to have the entire 119 x 119 patch fully contained within the 

test image with only the location of center pixel of patch  

assigned the label for the whole patch.  Note that overlapping 

patches can be assigned different labels depending on the 

label of the center pixel. 

 

 

CONVNET NETWORK ARCHITECTURES 
To improve upon the simple SLNN-RGB and MLNN-RGB 

networks, we investigated a number of network architectures 

using ConvNets. This section describes some of the 

architectures we evaluated.  

 

ConvNet Features Trained From Scratch (NYU-
ConvNet) 

The first network we tried used a ConvNet with 2 feature 

extraction layers trained on ImageNet examples.  An 

additional final layer had units that represented the possible 

ImageNet classes and was fully connected to the last pooling 

layer. This initial network was trained on 1,000,000 ImageNet 

examples representing 1000 classes. The network scanned the 

image in 119 x 119 pixel RGB patches. One forward pass at 

each location in the image required ~ 25,000,000 multiply-

add operations. Fully training our network took a few days on 

an NVIDIA Tesla compute server. The trained networks 

scored about 35% first-choice correct on a 1000 class 

problem.  

Our objective here was not to create the very best ImageNet 

classifier, but rather to learn feature vectors (the output of the 

penultimate layer in our network) which could then be used 

for fast training of a linear network that uses navigation sensor 

input coupled with labeled terrain classes as training 

examples.  

With the feature extraction layer weights frozen and the 

linear network appemded, we created the “NYU-ConvNet” 

classifier that had ~ 19,000 independent parameters or 

weights that were learned using the single training image. 

 Results for this network are shown in Figure 4. The left 

image shows the color-coded labels produced by the network. 

As in Figure 2, green is ground plane, yellow is footline, and 

red is obstacle.  The right image shows the regions (blue tint) 

where the network output was in agreement with the “ground 

truth”. Test error for this network was 2.8%. Comparison of 

Figures 3 and 4 clearly shows that the NYU-ConvNet 

classifier provided much better terrain classification than the 

simple SLNN-RGB and MLNN-RGB networks. 

This network generally does a good job of identifying the 

large trees as obstacles and the grassy area as ground plane.  

We note that there is some “blooming” of the tree trunk which 

may be, in part, due to the pooling in the network which 

 
 

Figure 4: Test classification using NYU-ConvNet features 

that were trained from scratch. The color coding is the 

same as Figure 3. 
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causes it to sacrifice some spatial resolution. Nevertheless, the 

NYU-ConvNet classification appears adequate for effective 

path planning. 

 

ConvNet based on VGG network 
The VGG network [6] holds the first and the second place 

in the ImageNet localization and classification task. This 

neural network has 16 learned weight layers. We used all but 

the last 3 layers of this network with accompanying published 

weights for feature extraction. The advantage of using the 

“front end” of the VGG network is that we avoided the 

lengthy training that would have been required if we had to 

train the feature extraction from scratch. 

Extracted features from the VGG network were fed into a 

fully connected single-layer which was rapidly trained using 

the usual training image (Figure 2).   

We performed a number of experiments that compared the 

results using the VGG features with those obtained using the 

NYU-ConvNet as a function of the number of training 

examples.  We trained both networks with 32, 64, 128, and 

512 patches and measured the performance on the test image. 

Table 1 compares the test error rates for the NYU-ConvNet 

and the VGG network.  The rates shown are the averages of 

several runs with different random choice of training patches.  

 

Training samples NYU-ConvNet VGG network 

32 5.6% 8.8% 

64 5.0% 4.6% 

128 4.9% 3.7% 

512 2.8% 1.8% 

Table 1: Error rate comparison table of deep ConvNet 

(VGG) versus a smaller network (NYU-ConvNet) 

 

 
 

 
Figure 5: Classification results for the NYU-ConvNet (top 

row), and the VGG Network (lower row). The color coding is 

the same as Figure 3. 

 

The VGG network had worse performance when the 

training dataset was small, but improved with more training 

examples.  We believe that this behavior was due to the 

~14,000 weights in the SLNN used with the VGG Network 

compared to the ~7000 weights in the SLNN used with the of 

the NYU-ConvNet.  Figure 5 shows the classification results 

for the NYU-ConvNet (top row), and the VGG Network 

(lower row). 

 

ConvNet based on Clipped VGG network 
To test our hypothesis that the “blooming” visible in the tree 

trunks of the test image was in part due to the pooling layers 

in the VGG network, we discarded all but the first two layers 

of the VGG network and used the output of these layers as a 

feature extractor followed by a single layer perceptron in what 

we call the “Clipped VGG network”.  

Results for this network are shown in the lower row of 

Figure 6. While blooming is still present, it is reduced from 

that of the full VGG network. The error rate for the clipped 

network is 2.4%. An advantage of the clipped network is that 

much less processing is required than with the full VGG 

network. 

 

 

 
 

Figure 6: Comparison of classification by the VGG 

network (top row) with that of the Clipped VGG network 

(bottom row). The color coding is the same as Figure 3. Note 

the reduced blooming near the tree trunk with the Clipped 

VGG network. 
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LEARNING FROM A HUMAN TEACHER 
In previous experiments we used stereo-based obstacle 

detection for path planning which was, in turn, used to 

navigate the CoroBot robot through a dirt trail in the woods. 

Navigation was successful until the robot encountered clumps 

of small plants growing in the trail. These small plants were 

interpreted as an obstacle and forward progress of the robot 

ceased, even though the CoroBot could have easily driven 

over the plants. If a human could teach the robot that driving 

over small plants or similar apparent obstacles is safe, off road 

navigation would be much improved.  

 

 
 

Figure 7: A trail through the woods where stereo-based 

obstacle detection classified the small plants on the trail as 

“obstacles.”  

 

 
 

Figure 8: Hand-labeled regions (green and red tint) of 

drivable and obstacle terrain of Figure 7. 

 

After developing the methods described in previous sections 

of this paper, we revisited the site, shown in Figure 7, where 

the CoroBot was stymied by the small plants. We hand-

labeled parts of the image in Figure 7 as “drivable” and as 

“obstacle” as shown in Figure 8. 

We trained a single layer perceptron network with a Clipped 

VGG Network feature extractor using the image of Figure 6 

for training and the image of Figure 8 for assigning labels.  

512 119 x 119 pixel patches were randomly chosen from the 

images as training examples with the requirement that the 

center of the patch was labeled either “drivable” or “obstacle”. 

 

 
 

Figure 9: A section of the trail that was used for testing that 

was near the section shown in Figure 7. 

 

The trained network was tested on an image taken from a 

nearby section of the trail shown in Figure 9. 

 

 
 

Figure 10: Classification results from the test image of 

Figure 9. Regions of with small plants are correctly classified 
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as “drivable” with regions with bushes and trees are classified 

as “obstacle. 

 

Figure 10 shows the classification provided by our system 

on the test image. While the results are not perfect, they 

clearly show as “drivable” the terrain that is interspersed with 

small plants, regions that using stereo would have been 

classified as “obstacle”. 

 

 CONCLUSIONS 
We have shown that using the feature extractors obtained 

from previously trained ConvNets provides good terrain 

classification, even though the original ConvNets were 

trained on a completely different corpus. Training the single 

layer perceptrons that use the feature vectors extracted by the 

initial layers of the ConvNets is sufficiently fast that the 

process provides a promising method for rapid adaptation 

while navigating in diverse environments. 
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