
DISTRIBUTION A. Approved for public release: distribution unlimited. 

2016 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM 
AUTONOMOUS GROUND SYSTEMS (AGS) TECHNICAL SESSION 

AUGUST 2-4, 2016 – NOVI, MICHIGAN 

 
 

BLAST: BANDWIDTH AND 
LATENCY-SCALABLE TELEOPERATION1 

 
Chris L Baker, PhD, 
Parag Batavia, PhD 

Neya Systems 
Wexford, PA2 

 

ABSTRACT 
This paper describes an approach to aid the many military unmanned ground vehicles which are still 

teleoperated using a wireless Operator Control Unit (OCU). Our approach provides reliable control over long-

distance, highly-latent, low-bandwidth communication links. The innovation in our approach allows refinement of 

the vehicle’s planned trajectory at any point in time along the path. Our approach uses hand-gestures to provide 

intuitive fast path editing options, avoiding traditional keyboard/mouse inputs which can be cumbersome for this 

application. Our local reactive planner is used for vehicle safeguarding. Using this approach, we have performed 

successful teleoperation nearly 1500 miles away over a cellular-based communications channel. We also discuss 

results from our user-tests which have evaluated our innovative controller approach with more traditional 

teleoperation over highly-latent communication links. 

 

INTRODUCTION 
Fully autonomous ground vehicle technology has been 

developing rapidly over the past several years, but is not yet 

dependable enough for most real-world defense applications 

operating in unstructured environments. The vast majority of 

military unmanned ground vehicles are teleoperated with a 

human operator directing the vehicle’s motions through a 

wireless Operator Control Unit (OCU). This control 

methodology relies either on a direct line of sight with the 

vehicle or on relayed video feedback. Therefore most 

teleoperated ground vehicle systems require a high-

bandwidth low-latency link to support either real-time 

streaming video or streamed 3D structure back to the OCU. 

This approach experiences significant performance 

degradation in the presence of communication latencies as 

small as 100 milliseconds. These latency and bandwidth 

requirements severely hamper the use of teleoperated systems 

in situations where latency is high and/or bandwidth is low.  

We have demonstrated effective control of a remote vehicle 

in the presence of communication latencies of 500 

milliseconds to 5 seconds in simulation as well as controlling 

                                                           
1 This material and research was based upon work supported by the United States Army under Contract No. W56HZV-14-C-0125 with Dr. Gregory Hudas at 

TARDEC.  
2 Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the 

United States Army. 

 
Figure 1 – In Contrast to traditional teleop (middle), BLAST 

teleoperation provides the operator with multiple chances to 
refine the vehicle’s trajectory at any location (bottom). 



Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

BLAST: Bandwidth and Latency-Scalable Teleoperation, Baker, Batavia. 

 

Page 2 of 9 

an actual test bed vehicle over a cellular network nearly 1500 

miles away. We have achieved this goal by combining a 

vehicle safeguarding approach based on Neya’s Receding-

Horizon Model-Predictive (RHMP) controller with a novel 

approach for high-dimensional control of the vehicle’s 

immediate path. The ability for the remote teleoperator to 

shape and refine any part of the vehicle’s future trajectory is 

a key benefit to our approach. As Figure 1 illustrates, 

traditional teleop control can only modify the path at a single 

specific time in front of the vehicle which is dependent on the 

current communication latency. Our approach mitigates the 

latency problem by enabling multi-point control over the 

entire planned path in front of the vehicle. 

This trajectory control is only helpful when the user has an 

effective means for rapidly specifying and modifying the 

trajectory in real time. In our system, the user interacts with 

the trajectory using various gesture-based controller devices. 

Natural motion input through the use of gesture-recognition 

offers a comfortable way of performing remote vehicle 

control. These input devices have been demonstrated to 

enable complex maneuvers naturally while reducing the 

complexity of the interface where the control is enacted [1], 

[2]. Additionally, the visual feedback we provide in the 3D 

user interface enables fast and intuitive learning of the control 

interface by mirroring the user’s own form in the display [3] 

such as that displayed in Figure 2. 

The user can make use of the gesture-based input to specify 

a global path to the vehicle by adjusting a path’s spline control 

points directly. These control points are used to generate a 

smooth path for the vehicle to traverse. By allowing the user 

to modify any point of the path at any future point in time, we 

are distinctly different from other teleop approaches which 

only allow editing the path at a single point in time. 

Several approaches have been made to improve the 

teleoperation experience, summarized well in [4] by 

providing limited local context, situational awareness, and 

adapting to communication latencies. Their suggestions 

however, and indeed all the approaches we have found, apply 

vehicle control to a single point in time. Other research has 

demonstrated that traditional joystick and steering wheel type 

control is non-optimal when controlling a vehicle remotely 

[5] [6], and ongoing studies have suggested other input 

interfaces such as gesture inputs may be superior to these 

traditional approaches [7].  

Recent work on the DARPA-funded AVATAR program has 

demonstrated successful control of a vehicle over a highly-

latent transcontinental satellite communications link [8]. 

Their approach works by driving a virtual vehicle in front of 

the live vehicle. While this approach enables traditional 

vehicle control over highly latent communications, this 

approach also suffers from providing the user only one chance 

to issue vehicle control at any instant in time; that control 

cannot later be modified. 

Our approach provides a corrective opportunity by allowing 

the user to adjust any part of the path in front of the vehicle 

that has not yet been consumed by the latent communications. 

As the vehicle moves, the local environment may change due 

to new terrain information from the robot’s perception 

system. When this happens, the user may need to change the 

vehicle’s planned trajectory path and has two options for 

doing this. They can adjust the vehicle’s trajectory using our 

path modification tools as long as the path has not been 

consumed by the latency indictor, or they can allow the 

desired path to remain and rely on the reactive planner to safe 

guard the vehicle by automatically planning trajectories 

around obstacles. In highly latent situations this control 

modality provides the user with a fine level of path control 

while still safe-guarding the system and allowing the user to 

modify and refine the path prior to execution.  

Dynamic Path-Based Control Generation 
BLAST uses a control mechanism which provides the user 

with an opportunity to send paths to the vehicle through a 

dynamically changing 3D world. The interface we have 

developed enables the user to lay down paths and edit them 

quickly by adjusting spline control points primarily using 

hand gestures. Because the direct vehicle control is latent, we 

also require a local vehicle safeguarding approach. 

Gesture-Based Controller Input 
Our current implementation optionally uses one of several 

possible controller inputs: a standard joystick controller, a 

Wii-mote controller, and a Leap Motion Controller™ [9]. In 

this paper we focus primarily on the Leap interface. We use 

the Leap to detect the hand and finger positions of the user. 

Based on these positions, we allow for path generation and 

enable several path modification tools. When creating paths 

for the vehicle to drive, the thumb, index finger, and pinky are 

used to control three spline points. Starting at the last point on 

the path and tangent to the last portion of the path, the three 

spline points are used to create a smooth curve for the vehicle 

 
Figure 2 – Top-down user-perspective view of realistic 

animated hand laying out a path for the vehicle to follow. 
 



Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

BLAST: Bandwidth and Latency-Scalable Teleoperation, Baker, Batavia. 

 

Page 3 of 9 

to follow. The spline points are found by extending the three 

finger directions and intersecting with the ground plane 

(Figure 3). 

Once the user is satisfied with the layout of the path, a key 

on the keyboard is pressed to commit the path. This path is 

sent to the vehicle and the vehicle immediately begins driving 

the provided path. At this point, the user’s perspective is 

moved to the end of the path, where a new set of control points 

allow for generation of path extensions. This process 

continues as the user lays down new paths to be followed until 

the goal is reached.  

Because the user is capable of laying paths down outside the 

sensor’s range, and because the surrounding world is 

dynamic, updated data providing the latest local context is 

transmitted back to the user control station. This data 

currently is in the form of a costmap, showing where the 

drivable and un-drivable areas of the map are located. 

Because the surrounding area is dynamic, and because the 

control of the vehicle is highly latent, it becomes extremely 

critical to have a local reactive planner running on the vehicle 

to provide vehicle safeguarding. 

Local Reactive Planning 
We use Neya’s locally running safeguarding autonomy 

system which incorporates a local reactive planner called 

AM3P: Adaptive Modular Multi-Terrain Mobility Planner 

developed primarily with SPAWAR on the EV1 HMMWV 

ONR Code 30 program. The vehicle uses a single stereo 

camera system to generate costmaps of an area in front of the 

vehicle. This costmap is used both by the local reactive 

planner as well as sent back to the user for vehicle control.  

A key advantage of AM3P is that it operates directly in 

control space, allowing for accurate modeling of vehicle 

dynamic limits including control lag, steering-wheel rate 

change, and acceleration/braking constraints. AM3P also 

exploits a library of sophisticated pre-computed maneuvers as 

needed via selective invocation of a combinatorial motion 

lattice planning module providing real-time use even during 

very complex motions.  
 

 
Figure 4 – Neya's approach selects the optimal control input by forward simulating trajectories over a five-second time horizon. 

 
 

 
Figure 3 – The ground-intersection of the finger directions are used to add splines to the end of the path. 

 



Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

BLAST: Bandwidth and Latency-Scalable Teleoperation, Baker, Batavia. 

 

Page 4 of 9 

The existing system employs selective reasoning about 

individual wheel placement, factoring in vehicle underbody 

clearance, roll, and pitch, to achieve accurate navigation in 

off-road terrain without risk of damaging the chassis or 

suspension.   

Our variant of model-based receding horizon model 

predictive control  optimizes the control values  (velocity and 

steering commands) sent down to the low-level vehicle 

controller by evaluating candidate simulated trajectories of 

the vehicle forward in time with respect to the desired path.  

Both the control space and cost metric for the RHMP planner 

are treated as continuous functions, using numerical 

optimization approaches to calculate control sequences which 

minimize overall trajectory cost. By explicitly optimizing 

over vehicle control, the system will accurately plan 

trajectories which follow the desired path while respecting 

dynamic and kinematic limitations of the platform (Figure 4). 

This approach to the reactive planning and vehicle 

safeguarding works well for the BLAST system, providing 

the safeguarding capability needed for remote latent teleop. 

Local Vehicle Safeguarding 
Using the AM3P reactive planner we are able to respond to 

local environment changes that may need to be avoided before 

the user can enact new controller paths around the obstacle. 

Figure 5 demonstrates this local safe guarding in action. The 

current path to the vehicle (left) is passing through an 

obstacle, but the reactive planner responds correctly and 

avoids the obstacle while also staying as close as possible to 

the user’s desired path.  

The amount of deviation allowed by AM3P is configurable. 

In some instances, the user may want the vehicle to solve local 

problems when possible. However, it is often the case in 

teleoperation mode that the user will want the vehicle to 

adhere as close as possible to the desired path. In these 

instances, if the vehicle encounters a blocked path, the vehicle 

will stop forward progress (safely) providing the user with 

time to adjust the desired path even when operating within a 

highly latent communications connection. It is this real-time 

adjustment of the path capability that sets the BLAST 

approach from other teleoperation approaches. Once the user 

has adjusted the path using the BLAST path adjustment tools, 

the vehicle will continue the traversal.  

Dynamic Path Editing 
Once a path has been sent to the vehicle, the dynamic nature 

of the local contextual data near the vehicle may prove to be 

un-traversable by the reactive planning system. For example, 

when using an a-prior map, new information may be 

available, or moving objects may result in an impassible 

 
Figure 6 - The path changes to red in front of the vehicle 

indicating that any edits will not have time for the vehicle to 
respond due to the current latency estimate. 

 

 
Figure 5 – Planner Safeguarding: User lays a path which intersects an obstacle (left). The global planner plans a path to 

adhere as closely as possible to the user’s desired path, but avoids going through the obstacle (right). 

 

 



Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

BLAST: Bandwidth and Latency-Scalable Teleoperation, Baker, Batavia. 

 

Page 5 of 9 

region of the map. In these cases, the user may elect to refine 

the path currently being pursued by the vehicle. In traditional 

teleoperation, this is not possible. However, because our 

system uses a path-based spline control, the path can be easily 

edited providing the vehicle has not traversed path the latency 

point. 

The latency point is the position along the path in front of 

the vehicle which can no longer be edited because any edits 

to that portion of the path will not arrive at the vehicle in time 

for the vehicle to make the necessary adjustments to follow 

any new path. Figure 6 illustrates this as the “Latency 

Display” point. As shown, the current editing point is well in 

front of the vehicle, but based on the vehicle’s speed, and the 

estimated latency, the path will not be editable prior to the 

transition from red to green path. 

Leap-Based Path Editing 
Using the interface to the Leap Motion Controller, we can 

enable various editing modes. The editing modes we describe 

here are a sample of the possible modes and have proven to 

be quite useful when attempting to quickly edit paths to 

improve traversability. As the user is laying out a path, there 

may be reasons to adjust the previously committed path. This 

can happen, for example, if the user has laid a path in error, 

or if the perception data updates and presents a different 

environment, or possibly moving objects are present and need 

to be planned around. The user can navigate forward and 

backward along the path using the left and right arrow keys to 

select the position to apply the path edits. The user can also 

strike the up and down arrows to switch between three distinct 

editing modes. 

In order to enforce connectivity to adjacent points while 

adjusting the path, we allow the user to adjust the control 

points of a resampled spline. The resampling is helpful 

because the original control points laid down may not be 

evenly spaced, so further adjustment would be difficult. 

Each of the morphing modes provides a tool that the user 

can use to adjust the path. The user’s palm is tracked in the 

Leap’s workspace and the plane and direction of the palm are 

used to enact the tool’s modifications to the path. Figure 8 

shows the palm extraction provided by the Leap Motion API, 

and the palm’s direction as extracted by the Leap Motion 

software. To help stabilize the extracted control vectors, we 

run a low-pass filter on the Leap’s raw output. 

The path’s resampled control points are connected and 

modeled as a mass/spring system. The mass/spring system 

enables intuitive movement of the path as if it were a rubber-

band connected set of points. The effect of the user’s 

movements on any one control point is scaled by one over the 

square of the distance from the point being modified so that 

only portions local to the workspace are modified when the 

user is adjusting points. 

The palm’s extracted plane normal is intersected with the 

ground plane which defines the line for the tool. The tool is 

initially inactive and drawn in a light gray color to indicate 

the tool’s location prior to activation. Holding down a key on 

the keyboard activates the tool. At this point, the user interacts 

directly with any control points captured within the circle of 

the tool’s influence, depending on the size or scale of the tool. 

Once path modification is complete, the key is released and 

the active state of the tool is changed to inactive. Alternatively 

 
Figure 7 - The "Scraper" tool adjusts the path using a long flat tool and sliding the points. 

 
Figure 8 - The palm normal and direction as detected by the 

Leap Motion Controller API (photo from [9]). 
 



Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

BLAST: Bandwidth and Latency-Scalable Teleoperation, Baker, Batavia. 

 

Page 6 of 9 

the tool is deactivated by moving forward or back along the 

path using the arrow keys, or switching to another tool. 

The user can also adjust the size, or scale of the tool by 

bending or extending the fingers. The palm is most reliably 

tracked by the Leap Motion Controller when the fingers are 

all extended, so this is when the tool is the smallest because it 

provides the best fine-detail control. As the number of 

extended fingers decreases, the size of the tool increases. This 

enables the user to dynamically and intuitively select the 

number of points on the path that should be adjusted. 

Scraper Mode 
The “Scraper” tool (akin to an ice-scraper) can be used to 

“scrape” or “slide” large sections of the path to adjust the 

control point’s positions in a straight line. Figure 7 shows this 

tool in use. The tool is drawn on the ground in light gray until 

it is activated. At this point, the tool changes to a red color to 

indicate the active state. The rendered hand in the scene is 

changed to blue to further indicate the tool being used is the 

“Scraper” tool. 

The scraper tool is best used to slide a selection of points in 

a straight line. This is good when the path needs to be 

smoothed out in long straight sections for more optimal 

traversals. The tool can also be used by placing it between two 

control points and performing a twisting motion. This will 

result in the vehicle following a slalom motion between small 

discrete obstacles. 

Grab Mode 
The “Grab” mode places a circle whose center is at the 

point of intersection with the palm’s direction (a feature 

defined by the Leap Motion Controller API as in Figure 8) 

and the ground plane. This circle indicates which spline 

control points will be modified when the tool is activated. As 

the tool is activated, all control points within the tool’s scope 

become fixed relative to the moving reference frame defined 

by the circle. Thus moving the user’s hand, which changes the 

position of the palm’s intersection with the ground plane, will 

change the position of all the control points while keeping 

their relative position constant. The rotation of the palm 

around the palm’s normal direction is also tracked by the Leap 

Motion Controller, and thus the points can not only be 

translated as a group, but also rotated when the user’s hand 

rotates. 

 
Figure 9 - The “Grab” tool is used to grab several control points and move them together. 

 
Figure 10 - The "Locker" tool locks points that the user does not want to be moved. 

 



Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

BLAST: Bandwidth and Latency-Scalable Teleoperation, Baker, Batavia. 

 

Page 7 of 9 

It is important to understand that in this mode, the captured 

points do not change their position relative to one another, but 

stay fixed relative to one another and change relative to the 

global path and global coordinates. This provides the user 

with a method to move large sections of the path while 

maintaining the path’s local curvature. 

Figure 9 shows the grab tool in use. Here the user is 

adjusting a poorly laid path which passes through an obstacle. 

As the user’s hand rotates, the control points are adjusted such 

that the path no longer passes through an obstacle. 

Locker Mode 
The final mode that we have implemented is the “Locker” 

mode. In this mode, the same circle is drawn relative to the 

user’s palm intersection with the ground as described 

previously in the “Grab” mode. The application of this tool 

toggles an editable state of any points within the tool’s scope, 

thus locking or unlocking the points for morphing with the 

other tools. This provides the user with the critical ability to 

lock down points so they will not be editable either by the 

mass/spring system modeling for the control points, or by any 

of the selected tools. This is useful for example when the user 

perfectly places a set of control points through a tight corridor, 

but would like to adjust points nearby without editing the 

points in the corridor. Normally the mass/spring system may 

affect the points previously placed as described above. 

However, if the points are locked, the nearby path can be 

adjusted as needed, and the locked points will remain in place. 

Figure 10 demonstrates this approach. In the left image, the 

user has selected and locked down two control points, 

indicated by the point’s red color. The right images shows the 

user adjusting the path with a large scaled grab tool. The three 

green control points are captured and moved and the green 

path responds. However, the two locked red control points are 

stationary and maintain their position. 

Simulation Validation 
In order to validate the usefulness of our approach we have 

developed a simulation to perform some limited user testing 

and validation. 

Experiment Description 
We asked users to navigate a simulated vehicle through the 

obstacle course shown in Figure 12. This test exercised 

various control methods and allowed us to compare several 

user’s performance against a more traditional joystick-based 

teleop approach with varying amount of latency. 

 
Figure 12 - The full course used for the user tests. 

 

 
Figure 11 – Plots showing the performance of the baseline teleop system compared to the new BLAST interface. The left shows the time 

to complete the course, the middle is the number of goals achieved, and the right shows the number of impacts. 

 

 

00:00

14:24

28:48

43:12

0.0 1.0 2.0 3.0 4.0 5.0C
o

m
p

le
ti

o
n

 T
im

e

Simulated Latency (s)

Leap Controller vs Baseline 
Teleop (Time)

Baseline Teleop

LEAP Control Mode

0

5

10

15

20

25

0.0 1.0 2.0 3.0 4.0 5.0

C
o

m
p

le
te

d
 G

o
al

s

Simulated Latency (s)

Leap Controller vs Baseline 
Teleop (Goals: 21)

Baseline Teleop

LEAP Control Mode

0.00

10.00

20.00

30.00

40.00

0.0 2.0 4.0# 
o

f 
Im

p
ac

ts

Simulated Latency (s)

Leap Controller vs Baseline 
Teleop (Impacts)

Baseline Teleop

LEAP Control Mode



Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

BLAST: Bandwidth and Latency-Scalable Teleoperation, Baker, Batavia. 

 

Page 8 of 9 

For all tests, the vehicle was started in the same place in the 

middle of the course. The objective of the test was to capture 

all the yellow balls by driving the vehicle over them in as short 

a time as possible. The test was run at several different 

latencies. 

If the system detected a vehicle/obstacle impact, the display 

alerted the user by flashing a message, “Warning – Impact 

Detected” in red in the center of the screen. When this 

happened, the user was only able to extract the vehicle from 

the obstacle by moving in reverse. While the vehicle was 

detected to be in an obstacle, the timer was sped up 10x to 

provide adequate incentive for avoiding obstacles. The 

number of impacts was also tracked and recorded for each 

run.  

The users evaluated the system against a baseline approach. 

The baseline approach we implemented used a standard 

joystick control mechanism. As the latency increases, this 

method of control becomes unusable. Several groups have 

cited the difficulty in latencies approaching the 1-2 second 

range  [10],  [11], and  [12]. Our own user tests also 

demonstrate this as well. We demonstrate that latencies as 

small as 1.5s make the joystick control method frustrating to 

the user and completely unusable. 

To make the test more real, and avoid the user simply 

“learning” the latency, we also added a random walk 

component to the amount of latency being added in the 

system. The random walk was bounded, but was allowed to 

vary by ±0.5𝑠. 

User Test Results 
Figure 11 summarizes the test results. The left shows the 

time required to complete the course. The user’s time for the 

Leap-based system was very close to the absolute minimum 

time required from an autonomously planned minimum 

distance run which did not consider capturing the goals. The 

middle plot shows the number of goals achieved. This metric 

is impacted by the fact that many users found the baseline 

system so unbearable with more than 3.0s latency that they 

gave up or didn’t reverse to pick up missing goals. Finally, 

the right plot shows the number of impacts from each 

approach. Notice that when using the BLAST system there 

were zero impacts because the autonomy system actively and 

successfully avoided impacting any obstacles. 

Observations 
During the user tests, we noticed the amount of time for the 

user to become familiar with the BLAST control strategies 

was surprisingly short. A few minutes of training and 

orientation with the system resulted in reliable control. 

Further improvements to the user’s time during subsequent 

tests was mostly spent optimizing the path by entering one of 

the morph modes and moving and adjusting the points prior 

to being overtaken by the vehicle’s estimated latency. 

Notable in our results is the fact that the performance for 

users using the new BLAST system was not affected at all by 

the additional latency. We believe that a 5s latency is not the 

upper bound to how the vehicle can be controlled, given 

enough range in the perception data. 

We also noticed a curious improvement in the baseline 

performance from the 1.5s latency to the 3.0s latency. After 

interviewing the test subjects we found that the most likely 

explanation for this phenomenon was a distinct change in 

control approach once the latency grew beyond a certain 

amount. With low levels of latency the users would try and 

control the vehicle in the normal way, just predicting the 

latency while driving with reasonable success. The subtle 

drop in performance was not significant enough to motivate a 

change in their control approach. Once the latency grew too 

high for continual uninterrupted control, the users would 

change their control approach by sending commands to the 

vehicle in very short spurts and wait to see the vehicle’s 

response (this is similar to control strategies used for extreme 

long range teleoperation and control). Counting or mental 

timing helped to extend the length of the control spurt, but the 

painful process of waiting for the response from the vehicle 

before continuing to drive was inevitable.  

Some of the users found the vehicle so completely 

uncontrollable after only 3.0s of latency (using the baseline 

system without BLAST) that they were unable to complete 

the task. This result further encourages the use of our more 

advanced control strategies to help control the vehicle during 

times of high latency. 

Live Vehicle Testing Results 
To further validate our control approach, we also have 

performed live vehicle testing on Neya’s UxInterceptor 

platform shown in Figure 13. We accomplished remote 

control of the vehicle in two distinct configurations. The first 

 
Figure 13 – Neya Systems autonomy testbed. 

 

 



Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

BLAST: Bandwidth and Latency-Scalable Teleoperation, Baker, Batavia. 

 

Page 9 of 9 

tests were performed while the vehicle was connected to the 

Neya Systems intranet via a EZBR-0214 wireless bridge. The 

bridge acts as a single dedicated wireless link between any 

two Ethernet ports. The link has a 3 mile range, though we 

saw degraded performance for anything over about 0.5 miles. 

These units are also highly directional and so using them for 

testing enabled analysis over a weak communication link in 

preparation for the more aggressive cellular based 

configuration. 

The second test was performed using a communications link 

consisting of a Verizon Mifi unit connected to a 4G cellular 

network. All network traffic with the vehicle used UDP 

communications while connected to a Virtual Private 

Network (VPN) to join the various nodes on the network. We 

have tested this configuration of vehicle control from as little 

as a 5 mile separation to as much as a nearly 1500 mile 

separation between the vehicle and the controller, with the 

controller station located near Denver Co and the vehicle 

located in Pittsburgh Pa.  

Future Work 
While control using the low-bandwidth costmap-only data 

is possible and will allow for safe vehicle control from long 

distances over highly latent communication links, we are 

currently working to improve this technology to provide a 

much higher fidelity source of data to improve the situational 

awareness and contextual information such that the operator 

can more powerfully control the vehicle in challenging 

environments.  

When the vehicle arrives at an impassible element in the 

costmap, the user is often required to re-plan a path around 

the obstacle to continue forward progression. However, 

today’s perception systems often provide false alarms, 

indicating obstacles where there are none. We are currently 

working on an approach that will allow the user to not only 

edit the path’s provided to the vehicle, but also adjust the 

costmap to inform the perception and local planning and 

safeguarding systems that the obstacle is indeed passable. 

In addition to the Leap controller interface, we are 

evaluating other controller modalities and data representation 

to improve the situational awareness and local contextual 

information provided to the user to enable a higher-fidelity of 

remote control. 

References 
 

[1]  A. Uribe, S. Alves, J. M. Rosario, B. Perez-Gutierrez 

and others, "Mobile robotic teleoperation using 

gesture-based human interfaces," in Robotics 

Symposium, 2011 IEEE IX Latin American and IEEE 

Colombian Conference on Automatic Control and 

Industry Applications (LARC), 2011.  

[2]  C. Guo and E. Sharlin, "Exploring the Use of Tangible 

User Interfaces for Human-robot Interaction: A 

Comparative Study," in Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems, 

New York, NY, USA, 2008.  

[3]  O. Portillo-Rodriguez, O. O. Sandoval-Gonzalez, C. 

Avizzano, E. Ruffaldi and M. Bergamasco, "Capturing 

and Training Motor Skills," in Human-Robot 

Interaction, 2010.  

[4]  J. Y. Chen, E. C. Haas and M. J. Barnes, "Human 

performance issues and user interface design for 

teleoperated robots," Systems, Man, and Cybernetics, 

Part C: Applications and Reviews, IEEE Transactions 

on, vol. 37, no. 6, pp. 1231-1245, 2007.  

[5]  T. Fong, C. Thorpe and C. Baur, "Advanced interfaces 

for vehicle teleoperation: Collaborative control, sensor 

fusion displays, and remote driving tools," 

Autonomous Robots, vol. 11, no. 1, pp. 77-85, 2001.  

[6]  T. W. Fong, F. Conti, S. Grange and C. Baur, "Novel 

interfaces for remote driving: gesture, haptic, and 

PDA," in Intelligent Systems and Smart 

Manufacturing, 2001.  

[7]  T. H. Song, J. H. Park, S. M. Chung, S. H. Hong, K. H. 

Kwon, S. Lee and J. W. Jeon, "A Study on Usability of 

Human-robot Interaction Using a Mobile Computer 

and a Human Interface Device," in Proceedings of the 

9th International Conference on Human Computer 

Interaction with Mobile Devices and Services, New 

York, NY, USA, 2007.  

[8]  A. Kelly and P. Rander, "AVATAR," 10 2014. 

[Online]. Available: 

www.nrec.ri.cmu.edu/about/news/14_10_avatar_teleo

peration.php. 

[9]  Leap Motion, url: https://www.leapmotion.com/.  

[10]  Witus, Gary, Shawn Hunt, and Phil Janicki. "Methods 

for UGV Teleoperation with High Latency 

Communications," SPIE, May 2011.  

[11]  Cossell, S., M. Whitty, and J. Guivant. "Streaming 

Kinect data for robot teleoperation," Proceedings of 

the 2011 Australasian Conference on Robotics and 

Automation, 2011.  

[12]  Lou, Ren C., Tse Min Chen. "Development of a multi-

behavior based mobile robot for remote supervisory 

control through the internet," IEEE/ASME 

Transactions on Mechatronics, pp. 5(4):376-385, 

December 2000.  

 

 

 


