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ABSTRACT 
Can convolutional neural networks (CNNs) recognize gestures from a camera for robotic 

control? We examine this question using a small set of vehicle control gestures (move forward, 

grab control, no gesture, release control, stop, turn left, and turn right). Deep learning methods 

typically require large amounts of training data. For image recognition, the ImageNet data set is 

a widely used data set that consists of millions of labeled images. We do not expect to be able to 

collect a similar volume of training data for vehicle control gestures. Our method applies transfer 

learning to initialize the weights of the convolutional layers of the CNN to values obtained through 

training on the ImageNet data set. The fully connected layers of our network are then trained on 

a smaller set of gesture data that we collected and labeled. Our data set consists of about 50,000 

images recorded at ten frames per second, collected and labeled in less than 15 man-hours. Images 

contain multiple people in a variety of indoor and outdoor settings. Approximately 4,000 images 

are held out for testing and contain a person not present in any of the training images. After 

training, greater than 99% of the images in the test set are correctly recognized. Additionally, we 

use the system to control a small unmanned ground vehicle. We also investigate using a Long 

Short-Term Memory (LSTM) layer for recognizing gestures that require analyzing sequences of 

images. On this more difficult set of gestures, we achieve a recognition rate of approximately 80% 

using a smaller data set of approximately 26,000 images. 
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copyright notation thereon. 
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INTRODUCTION 
Can we apply deep learning to recognize vehicle 

control gestures from a standard camera with high 

enough accuracy to control an unmanned vehicle? 

Our goal is to recognize standard gestures defined 

in Field Manual (FM) 21-60 [1] to allow 

warfighters to control an unmanned vehicle in the 

same manner as a vehicle driven by a human. 

SoarTech has previously investigated intuitive 

human-robot interfaces that leverage natural modes 

of interaction such as speech, gesture, and sketch to 

enable two-way dialogue between operators and 

robots. Our Smart Interaction Device (SID) [2] [3] 

has applied a speech and sketch interface on a tablet 

to control a variety of unmanned ground vehicles. 

The present paper focuses on adding gestures as an 

additional modality to SID. 

Gesture recognition varies considerably across 

two dimensions: the type of gestures, for example 

American sign language, and the type of sensor(s) 

used to recognize the gesture, for example an 

accelerometer. In the present paper, we limit 

ourselves to full body gestures used for vehicle 

control specified in FM 21-60. By using these 

gestures, warfighters should not need any 

additional training to use gestures to control an 

unmanned ground vehicle. Our gesture set consists 

of the following gestures: Attention, As You Were, 

Turn Right, Turn Left, Slow Down, Increase Speed, 

Halt, Move Forward, Move In Reverse. Examples 

of these gestures taken from FM 21-60 are shown 

in Figure 1 through Figure 4. In addition to these 

gestures, we also add two additional categories: No 

User and No Gesture. No User indicates that there 

is no person in the image. No Gesture indicates that 

the operator is standing with arms down and not 

performing a gesture. 

 

 
Figure 1:As You Were (left) and Attention (right). 

 
Figure 2: Turn Right (left) and Slow Down (right). 

 

 
Figure 3:Halt (left) and Increase Speed (right). 
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Figure 4: Move Forward (left) and Move In Reverse (right). 

There are a wide variety of sensors which can be 

used to recognize gestures. For arm gestures such 

as those in our vehicle control gesture set, the 

Microsoft Kinect provides very high-fidelity data 

for the position of each joint in the arm. We have 

previously used the Kinect on similar types of 

vehicle control gestures, and were able to achieve 

close to a 100% recognition rate. Unfortunately, the 

Kinect will not work in outdoor environments 

because it relies on an IR laser which is 

overwhelmed by sunlight. For outdoor operation, 

typically four types of sensors are used: 

accelerometers, Lidar, stereo cameras, or 

monocular cameras. Accelerometers and Lidar are 

both active sensors, while cameras are passive; 

therefore, assuming other considerations such as 

recognition rates are equal, cameras are the 

preferred solution. Lidar sensors that have high 

point density are prohibitively expensive. Stereo 

cameras are also expensive compared to monocular 

cameras and require significant processing power 

to perform stereo matching. For these reasons, we 

decided to use a monocular camera for our sensor. 

In recent years, deep learning approaches based 

on Convolutional Neural Networks (CNNs) have 

achieved state of the art results in a variety of image 

processing tasks such as object recognition and 

segmentation. Advances in this area have largely 

been driven by increases in processing power and 

the availability of large collections of labeled 

images to use during training. On the processing 

side, Graphics Processing Units (GPUs) increased 

enough in computation power and memory size to 

support running gradient descent on multiple layer 

neural networks with hundreds of millions of 

parameters. On the data side, competitions such as 

ImageNet [4] have released public datasets 

containing millions of labeled images which are 

necessary for training large neural networks. In 

order to take advantage of these improvements in 

image processing, we decided to use deep learning 

as the core of our gesture recognition system. 

 

METHODOLOGY 
  Our gesture recognition system is subject to 

several constraints not considered in most deep 

learning research. First, there is no labeled dataset 

containing images of our vehicle control gestures. 

We must create and label training datasets 

ourselves. Second, we would like to run our gesture 

recognition system using on board computation 

power from a small unmanned ground vehicle, an 

iRobot PackBot. This means that a large GPU such 

as the Nvidia Titan X is out of the question. Our 

target is to run on the Nvidia Jetson which has 4-

8GB of RAM and about one tenth the 

computational power of a Titan X. Our approach is 

designed to work around these constraints in two 

different ways. First, we initialize the weights of 

our CNN to values obtained by training on the 

ImageNet classification task. We then perform fine 

tuning of the upper layers of our network using our 

much smaller vehicle control gesture dataset. 

Second, we limit ourselves to CNN architectures 

which we expect to fit in memory of a Jetson and 

run in real time. Canziani et al. [5] provide an 

excellent comparison of popular CNN architectures 

shown in Figure 5. Initially we identified AlexNet 

[6] as the most promising network to run in real 

time on a Jetson TX1. With the release of the Jetson 

TX2 we have also evaluated using ResNet-50 [7] 

which provides a good tradeoff between 

performance and required operations.  
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Figure 5: Comparison of popular CNN architectures. The vertical 

axis shows top 1 accuracy on ImageNet classification. The 

horizontal axis shows the number of operations needed to classify an 

image. Circle size is proportional to the number of parameters in the 

network. 

Person Segmentation 
Using deep architectures such as Faster R-CNN 

[8] it is possible to localize objects within a larger 

image. Due to our computational constraints of 

running in real time on a Jetson, it is not feasible to 

use this type of architecture without using a very 

small CNN. For this reason, we use a correlation 

filter tracker [9] which requires a user to initialize 

the starting position of the tracked person. The 

tracker segments the upper body of the person from 

the larger image. This segmented image is then 

rescaled to the size expected by the CNN used for 

gesture recognition. 

AlexNet Architecture 
Initially we tried to classify gestures using only 

information available in a single image. For this 

reason, we created a static gesture set by removing 

gestures involving motion: Slow Down, Speed Up, 

and Move In Reverse. Our architecture uses the 

same convolutional and max pooling layers as 

AlexNet, but significantly reduces the size of the 

two fully connected layers of the network. The 

architecture of our network is shown in Figure 6. 

Weights for the convolutional layers are initialized 

to values obtained through training on ImageNet. 

Fully connected and logistic regression layers are 

initialized to values normally distributed with mean 

zero and variance 0.1. Training uses minibatch 

stochastic gradient descent with a learning rate of 

0.01. We found that it is only necessary to update 

weights in the fully connected layers; weights for 

convolutional layers remain fixed during training. 

Dropout is also used during training to randomly 

remove 50% of the connections between fully 

connected layers. 

 
Figure 6: The architecture of our AlexNet based CNN. 

 

ResNet Architecture 
With the release of the Jetson TX2, we have been 

able to explore the use of more computationally 

expensive CNNs. We found that ResNet-50 will 

run at close to 10 frames per second on the TX2. 

This architecture provides a good tradeoff between 

computation time and accuracy on ImageNet 

(shown in Figure 5). 

In addition to using a deeper CNN architecture, 

we would also like to account for motion in our 

gestures. Three pairs of gestures are distinguished 

largely by motion versus no motion. For example 

in Figure 2, Turn Right is almost exactly the same 

as Slow Down, except the latter involves motion. 

An example of these gestures recorded through our 

camera is shown in Figure 7. 
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Figure 7: Example of a gesture pair distinguished by motion. Turn 

Right (top) has the right arm extended and not moving. Slow Down 

(bottom) has the right arm extended but moving up and down. 

We are currently experimenting with different 

methods of accounting for motion. We have had 

limited success with two different approaches. Our 

first approach takes the difference between the 

previous and current image and stores this 

information in one of the color channels. This 

makes motion very obvious in cases where the 

background is static. The second approach adds a 

Long Short Term Memory (LSTM) [10] layer 

between the CNN and softmax layer. The LSTM 

will accumulate state as the network runs. This state 

could be used to determine whether or not the 

person is moving from frame to frame. The gesture 

recognition architecture with the addition of a 

LSTM is shown in Figure 8. 

Weights for ResNet-50 are initialized using 

values obtained through training on ImageNet. 

Unlike in the AlexNet architecture, we fine tune the 

weights of the last 10 convolutional layers while 

keeping the remaining convolutional layers fixed. 

An average pooling layer is added to the end of 

ResNet to reduce the output dimension to 2048. 

When using an LSTM, 32 hidden states are used 

and dropout of 0.5.  

 
Figure 8: Gesture recognition architecture with the addition of a 

LSTM between the CNN and the softmax layer. 

RESULTS 
AlexNet Architecture 
The AlexNet architecture was trained using the 

reduced static gesture set. The network is trained on 

about 45,000 images. We tested the performance of 

the architecture using an indoor data set consisting 

of about 4,000 images. Gestures were recognized 

by selecting the highest confidence output from the 

softmax layer. Using this criterion, the CNN 

correctly classified 99.79% of the test images. The 

confusion matrix is show in Table 1. 

We deployed this network on a Jetson TX1 

mounted on an iRobot PackBot and were able to 

use gestures to control the motion of the robot. 

While testing on the robot, we made several 

discoveries that were not apparent from the 

confusion matrix. First, we found that the network 

had overfit to very specific lighting conditions. To 

solve this issue, we introduced a random, artificial 

adjustment to each image during the training 

process. Second, we found that the network was 
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very particular about the orientation of the person’s 

arms for the Move Forward Gesture. We have since 

modified our data collection procedure to try to 

introduce more variation in how the gestures are 

performed. We do not demonstrate how to perform 

the gesture to people prior to collecting data; 

instead, we show them the image from Field 

Manual 21-60 describing the gesture. This 

introduces significantly more variation into the data 

compared to demonstrating the gesture. 

 
Table 1: Confusion matrix for AlexNet architecture on indoor test 

set. Rows show the gesture predicted by the network, column show 

how the image was labeled in the data set. 

 
 

ResNet Architecture 
The ResNet architecture was trained on the full 

gesture set which includes three pairs of gestures 

which are distinguished primarily by motion or no 

motion. The network was trained on approximately 

26,000 images. During training, we feed the 

network minibatches consisting of 32 sequences of 

10 images, with each sequence demonstrating a 

randomized gesture type. We perform gradient 

descent for each image in the sequence and reset the 

LSTM state between minibatches. We performed 

cross validation by holding out all images 

associated with each person in the data set and 

training on the remaining images. The average 

accuracy of these models was 78.69%. 

 

Table 2: Confusion matrix for cross validation on ResNet 

architecture. Rows show the gesture predicted by the network, 

column show how the image was labeled in the data set. 

 
 

Unfortunately, this accuracy is not sufficient for 

controlling the PackBot. We estimate that greater 

than 95% accuracy is required in order to control 

the PackBot without requiring an excessive number 

of gestures to repair incorrectly interpreted 

commands. Looking at the confusion matrix, the 

hardest to recognize gestures were Turn Right and 

Stop. Turn Right was primarily confused with Slow 

Down, while Stop was confused with Increase 

Speed and Attention. In both cases the confused 

gesture is the static gesture incorrectly classified as 

a similar looking dynamic gesture. Our hypothesis 

is that the network is primarily using the person’s 

pose in a single image to classify the gesture, rather 

than using the LSTM to account for the entire 

sequence of images. 

 

CONCLUSION 
We were able to train a CNN to recognize static 

vehicle control gestures at a rate high enough to use 

for vehicle control in real world situations. Our 

network is small enough to run in real time on a 

Jetson TX1, allowing us to perform all processing 

onboard the iRobot PackBot. When our gesture set 

is expanded to include dynamic gestures, which 

appear similar to some of the static gestures, 

recognition rates decrease. We are continuing to 

investigate architectures to handle motion in 

images from frame to frame in order to increase 

recognition rates for the full set of vehicle control 

gestures. 
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