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ABSTRACT 

Connected and automated vehicles (CAVS) have the potential to improve fuel economy by 

changing the way vehicles are driven. Fuel economy can be improved through a wide range of 

technologies, many of which do not require Level 5 automation. One of the most promising 

technologies is a smart cruise control that uses a speed-matching algorithm to account for fuel 

economy. Accounting for fuel economy in the algorithm leads to different driving behavior than 

simply matching the driver-entered set speed.  This paper describes how such a smart cruise 

control could be applied to a class 8 vehicle both in simulation and in the actual vehicle on a 

closed test track. It evaluates the algorithm and describes the correlation procedure used to 

calibrate the model using test data from the vehicle. 

 

INTRODUCTION 

Connected and automated vehicles (CAVS) 

have the potential to improve fuel economy 

by changing the way vehicles are driven. Fuel 

economy can be improved through a wide 

range of technologies, many of which do not 

require Level 5 automation. One of the most 

promising technologies is smart cruise 

control that uses an algorithm to account for 

fuel economy, leading to different driving 

behavior than simply matching the driver-

entered set speed. The first iteration of such a 

smart cruise controller in this study was a 

heuristic control that improved fuel economy 

by choosing an optimal set speed for the 

vehicle within a desired tolerance band. It 

also adjusted the set speed based upon grade 

information along the route. The general 
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heuristic rules were determined based on 

prior simulation work. This heuristic control 

strategy was developed and simulated in the 

software Autonomie, which was developed 

by Argonne National Laboratory and funded 

through the U.S. Department of Energy 

(DOE). Autonomie has a plug-and-play 

architecture, based on Matlab, Simulink, and 

Stateflow, that can simulate a single vehicle 

or a small collection of vehicles on a route. 

 

This smart cruise control was then further 

refined and calibrated in a hardware-in-the-

loop (HIL)/software-in-the-loop (SIL) 

system developed by the Tank Automotive 

Research and Development Center 

(TARDEC). Finally, TARDEC implemented 

the strategy in an instrumented class 8 vehicle 

and conducted tests on a closed test course 

where they investigated fuel economy 

improvements. The test results showed great 

promise in the technology on certain driving 

cycles.  

 

In the future, the data collected from the test 

course will be used to calibrate the vehicle 

model and develop an optimal controller. 

During this second phase, a model predictive 

controller will be developed to look ahead on 

the route and choose the optimal vehicle 

speed and gear to maximize fuel economy.  

 

Autonomous vehicles will yield fuel 

economy improvement over current vehicles, 

which will assist the U.S. Department of 

Defense (DOD) in its endeavor to reduce 

vehicle life cycle costs. To evaluate the 

potential benefits of using autonomous 

vehicle technologies to improve fuel 

economy, a smart cruise controller was 

developed for a class 8 military vehicle using 

the principles of model-based design. This 

controller was evaluated both in the actual 

vehicle and in simulation. 

 

AUTONOMIE 

Autonomie is a vehicle simulation software 

that predicts performance and acceleration 

for both light- and heavy-duty vehicles. The 

vehicle models in Autonomie are written in 

Matlab, Simulink and Stateflow. The user 

interface of Autonomie is in C#.  

Development of Autonomie began in 2007 

and was initially performed under a CRADA 

with General Motors. Figure 1 shows the top-

level view of an Autonomie Simulink model 

[1]. 

 

 
Figure 1: Top-level Autonomie Model 

 

Figure 2 shows the user interface of 

Autonomie. 
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Figure 2: Autonomie REV15SP1 User 

Interface 

 

VEHICLES 

The purpose of this paper is to demonstrate 

how fuel economy can be improved if the 

stock autonomous vehicle control strategy 

was modified to account for fuel economy.  

The way a human drives has a considerable 

effect on fuel economy. Aggressive driving 

leads to poor fuel economy. Having a control 

algorithm drive instead of a human affords us 

the opportunity to optimize driving behavior 

for fuel economy. This study used two Class 

8 vehicles: the M915 A3 and the M915 A5 

Line Haul. Both of these vehicles were 

outfitted with the Autonomous Mobility 

Applique System (AMAS) developed by 

Lockheed Martin. The AMAS system 

provides driver warning/driver assist and 

leader-follower capabilities; however, the 

AMAS control was not designed with fuel 

conservation as a goal.  For instance, when in 

follower mode, the vehicle aggressively 

applies engine torque and brake to maintain a 

fixed gap distance. By smoothing the engine 

torque behavior and allowing more play in 

gap distance, the vehicle fuel economy could 

be improved. In addition, if the vehicle 

acceleration could be slowed when resuming 

motion after a stop, the fuel economy could 

be improved. The idea is to focus on different 

aspects of vehicle control and smooth out the 

system response so that aggressive driving is 

replaced with slower, smoother, more fuel-

efficient driving. Because this control was 

implemented in the actual vehicles, only two 

specific modes were selected to improve. 

Both involved the cruise control functionality 

of the vehicles. 

 

The first control improvement occurs when 

initially setting the vehicle speed.  When the 

vehicle cruise speed was set, instead of 

driving the exact set speed, the smart cruise 

picked the most efficient vehicle speed 

within  specified bounds of the set speed.  The 

new speed had to be within specified bounds 

of the original set speed or the AMAS system 

would register a fault condition. In addition 

to adjusting the vehicle speed to obtain a 

better fuel economy, a route-based, look-

ahead control was also considered. That is, 

when the controller detected an approaching 

change in grade, it would select a new set 

speed for the vehicle in order to improve the 

vehicle’s overall fuel economy over the 

route. 

 

The second control improvement occurs 

when returning to the previous set speed after 

a stop.  This acceleration from stop to set 

speed was reduced to provide a more gradual 

acceleration. 

 

We focused on these two modes of 

operation during this first phase of vehicle 

controller improvements. The ultimate goal 

is to improve all modes of autonomous 

driving, but this will happen during later 

phases. 

 

SMART CRUISE 

A smart cruise control was developed to 

replace the stock cruise control of the vehicle. 
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Figure 3: Modifying the Set Speed for 

Better Fuel Economy 

 

The main goal for this first phase of the 

project was to collect data, refine the vehicle 

model, and use the refined vehicle model to 

develop a model predictive controller for the 

full platoon operation, which would be part 

of the second phase. However, for this initial 

phase of the project, it was desirable to 

provide a smart cruise controller that could 

improve fuel economy, but be a simpler 

heuristic controller that would be easy to 

implement in the vehicle and would override 

the default functionality of the AMAS. The 

controller is described below.   

 

The basic controller is a PI controller (see 

Equation 1) with a Kp and Ki set based on the 

specific vehicle characteristics, such as 

vehicle mass, of the A3 or A5. Appropriate 

values were determined in simulation by 

running an optimization on the model: 

 

(1) 

 

Note that all variables in this equation and 

all following equations are defined in a table 

at the end of this paper. 

 

Once the Kp and Ki values were known, we 

had to determine a method for predicting the 

target speed that gives the best fuel economy, 

that is, the target speed that minimizes the 

following cost function: 

 

(2) 

 

We can determine the fuel mass flow rate 

by starting with the road load at the wheel and 

projecting it through the powertrain to the 

engine: 

 

 

 (3) 

 

Next, the torque demand at the engine can be 

projected through the transmission ratios and 

efficiencies to the engine: 

 

(4) 

 

 

The wheel speed can also be projected 

through the transmission ratios to obtain the 

engine speed: 

 

 (5) 

 

The transmission ratio is dependent on the 

gear number, which was given by a lookup 

table; this number is essentially a function of 

normalized torque demand at the wheels and 

vehicle speed: 

 

 (6) 

 

The fuel rate of the engine can be expressed 

as a function of engine torque and engine 

speed: 
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 (7) 

 

Now Equation 3 can be inserted into 

Equation 4 and 6. Likewise, Equations 4 and 

5 can be inserted into Equation 7 to produce 

an expression for the fuel rate in terms of the 

vehicle speed, grade and gear number: 

 

 (8) 

 

Substituting Equation 6 into Equation 8 

produces the desired expression for fuel mass 

flow rate appearing in Equation 2. That is, 

assuming that the vehicle acceleration is 

negligible.  Using this expression and 

assuming that the vehicle speed must be 

within a tolerance of the set speed (the speed 

set by the driver when enabling the cruise 

control), we can create a lookup table. That 

is, the additional constraint is as follows:  

 

 
(9) 

 

Basically, for a given set speed and grade, an 

optimum point was found within the 

tolerance and used as the alternative target 

speed in the controller map [2-4]. 

 

CONTROLLER ADAPTED FOR 

HIL/SIL TEST BENCH 

To use the smart cruise control in the 

HIL/SIL setup and within the test vehicle, the 

controller first had to (1) communicate via 

UDP and (2) run in real time. Both criteria 

were satisfied using the Simulink Desktop 

Real-time toolbox from Mathworks. This 

toolbox provides a real-time kernel that 

executes a Simulink diagram in real time.  

The UDP communication was provided 

through the UDP blockset that comes as part 

of the Simulink Desktop Real-time toolbox.  

An example is shown in Figure 4. 

 

 
Figure 4: Top-Level Smart Cruise Control 

Diagram Showing UDP Interface 

 

The controller ran in real time at a rate of 

100 Hz on a laptop. The controller and the 

vehicle exchanged three input UDP packets 

and one output UDP packet. These packets 

are described in Tables 1, 2, 3, and 4: 

 

Table 1: Input UDP Packet Vehicle Status 

Data in 

Packet 

Description 

Vehicle 

Speed 

Current speed of the 

vehicle 

Target 

Speed 

Desired speed of the 

vehicle (cruise control 

target set speed) 

Engine 

Speed 

Current engine speed 

Engine 

Command 

Current engine command 

Packet 

Index 

Packet index to order 

packets 

 

Table 2: Input UDP Packet Cruise On 

Data in 

Packet 

Description 
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Engage Tells controller when cruise 

control is turned on 

 

Table 3: Input UDP Packet Terrain Info 

Data in Packet Description 

Terrain Pitch Current grade 

 

Table 4: Output UDP Packet Engine 

Command 

Data in Packet Description 

Engine Command 0 to 100 percent 

engine command 

 

CONTROLLER IN VEHICLE 

When testing the controller in the vehicle, 

constraints were added to ensure that the 

additional controller logic did not throw a 

fault. One of these constrains required 

maintaining the packet order, so a packet 

index had to be added to the input engine 

command packet, which was then passed 

through to the outgoing engine command 

packet. Initially, there were also other 

constraints on the magnitude of the engine 

command signal. Because the AMAS control 

was still active in the vehicle, but being 

bypassed, the control signal generated by the 

smart cruise had to fall within certain bounds 

of the original AMAS signal; otherwise, the 

system detected a fault condition. Work had 

to be performed to turn off this constraint to 

allow more freedom in the commanded 

engine torque. 

 

TEST DATA COLLECTION 

Test data was collected from three sources. 

First, data was collected from the onboard 

vehicle J1939 CAN network. This set of 

signals included engine torque, engine speed, 

engine command, engine temperature, brake 

pedal percent, current gear, torque converter 

lockup state, and engine fuel rate, in addition 

to many other signals. Second, data was 

collected from a series of analog sensors. 

This set of signals included fan speed, 

radiator in and out temperatures, and a few 

other signals. In some cases, both an analog 

sensor and CAN data was available.  Finally, 

fuel rate data was collected from a special 

fuel rate measurement system spliced into the 

fuel line of the vehicle. This measurement 

allowed high-fidelity real-time measurement 

of the fuel rate. All of this data was collected 

and uploaded to a secure site using cellular 

network connectivity. 

 

The A3 and A5 were both tested at the 

Aberdeen proving grounds on the 

Automotive Technology Evaluation Facility 

(ATEF) route and the Churchville C route.  

The ATEF route is a 4.5-mile circuit on level 

ground. The test was performed at a set speed 

of 50 mph in straight portions of the track and 

at 40 mph in the curved portions of the track.  

The test was repeated on the gravel loop of 

the track, which travels alongside the paved 

track. The Churchville C is a hilly track, 

2.4 miles long, with a maximum grade of 

about 15%. Each track was tested several 

times. The driver completed a baseline run, 

along with runs with the AMAS controller 

and the smart cruise controller. They drove 

around 230 laps in total, over a period of four 

days. 

 

TEST DATA ANALYSIS 

We compared the baseline test driven by a 

human to the test using smart cruise. The 

following figures show smart cruise was able 

to improve fuel economy on the ATEF cycle.  

 

Because the ATEF route is on level ground, 

the only method available to improve fuel 

economy there was to choose a more efficient 

vehicle speed at which to drive the vehicle.  

Figure 5 shows that smart cruise consistently 

chose a slower speed at which to drive the 

vehicle. 
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Figure 5: ATEF Vehicle Speed: Smart vs. 

Baseline 

 

Figure 6 shows significant fuel savings 

from driving the vehicle slower. Even though 

this behavior can be easily replicated by a 

human driver, this exercise still demonstrates 

the concept of overriding the default cruise 

control with different logic to maximize the 

vehicle’s fuel economy. 

 

 
Figure 6: ATEF Cumulative Fuel Use: 

Smart vs. Baseline 

 

Figure 7 illustrates the same operation. The 

smart cruise control chose to operate the 

vehicle at a lower vehicle speed. 

 

 
Figure 7:  Churchville-C Vehicle Speed: 

Smart vs. Baseline 

 

However, in this case the strategy does not 

result in improved fuel economy; it leads to 

worse fuel economy. Figure 8 shows the 

mass of fuel consumed has increased over the 

lap. 

 
Figure 8: Churchville-C A3 Cumulative 

Fuel Use: Smart vs. Baseline 

 

Figure 9 shows that the fuel rate is 

significantly higher for the smart cruise than 

for the baseline around the 700th meter on the 

lap. 
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Figure 9: Churchville-C A3: Smart vs. 

Baseline, Fuel Rate Event 1 

 

Figure 10 shows that the higher fuel rate is 

related to a greater engine torque demand 

rather than a less-efficient operating point of 

the engine. Why is the demand for the smart 

cruise so high, when the demand for the 

baseline is much lower? 

 
Figure 10: Churchville-C A3: Smart vs. 

Baseline, Engine Demand Event 1 

 

Figure 11 shows that the vehicle is 

beginning to head downhill. This indicates 

that the controller was not receiving the 

necessary grade information to make an 

accurate determination of the required load 

on the engine.  It was later confirmed that this 

was indeed the case. The controller had 

issues computing the grade from the 

elevation data coming off of the CAN 

because the data was noisier than expected 

and intermittently unavailable. 

 

 
Figure 11: Churchville-C A3: Smart vs. 

Baseline, Grade Event 1 

 

Figure 12 shows another mode on the 

Churchville course for which the fuel rate 

was higher for the smart cruise controller 

than for the baseline. 

 

 
Figure 12: Churchville-C A3: Smart vs. 

Baseline, Fuel Rate Event 2 
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Figure 13 shows that this occurs because the 

engine demand again is much higher for the 

smart cruise.  

 

 
Figure 13: Churchville-C A3: Smart vs. 

Baseline, Engine Demand Event 2 

 

Figure 14 shows that the event occurs when 

the vehicle is accelerating from a stop. 

 
Figure 14: Churchville-C A3: Smart vs. 

Baseline, Vehicle Speed Event 2 

 

Figure 15 shows that the stop occurs on a 

downhill portion of the lap. Yet again, it 

seems like the controller, unaware of grade, 

is overcompensating and demanding too 

much torque from the engine. 

 

 
Figure15: Churchville-C A3: Smart vs. 

Baseline, Grade Event 2 

 

Figure 16 shows the behavior of the smart 

cruise compared to the baseline for the A5. It 

exhibited the same driving behavior as for the 

A3. The smart cruise drove the vehicle at a 

slower speed. 

 
Figure 16: ATEF A5: Smart vs. Baseline, 

Vehicle Speed 

 

Figure 17 shows the total fuel consumed. 
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Figure 17: ATEF A5: Smart vs. Baseline, 

Cumulative Fuel Use 

 

Figures 18 and 19 compare the smart cruise 

with the baseline human driver for the A5 on 

the Churcville C cycle. As for the A3, the 

smart cruise consumed more fuel because of 

difficulties with responding to grade. 

 

 
Figure 18: ATEF A5: Smart vs. Baseline, 

Vehicle Speed 

 

 
Figure 19: Churchville-C A5: Smart vs. 

Baseline, Vehicle Speed 

 

Another factor which could have lead to 

worse fuel economy was the lack of control 

over the gear selection. When in smart cruise 

mode, the AMAS control still determined the 

desired gear which could have impared the 

smart cruise controller. Having control over 

the gear selection could have allowed the 

controller to improve the fuel economy of the 

vehicle. 

 

MODEL CORRELATION 

One of the main goals of this first phase of 

testing was to use the test data from the 

vehicles to refine the models, so the revised 

models could be used in the next phase of 

control development. Therefore, the 

Autonomie vehicle models for both the A3 

and the A5 were updated and correlated with 

the test data. The modifications to the vehicle 

models are described next. 

 

Accounting for Wind 

The wind speed was recorded during the 

test and used it in place of the vehicle speed 

to calculate the air dynamic losses. It was 

assumed that the recorded wind speed 

represented the airflow across the vehicle. 

 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

UNCLASSIFIED 

Improving the Fuel Economy of Class 8 Military Vehicles Using a Smart Cruise Control 

Algorithm, Sharer et al. 2017 
 

Page 11 of 16 

Gear Shifting 

 There were differences in the gear shifting 

between the test data and the simulation. 

These differences were primarily due to 

engine breaking events that would trigger a 

downshift in the vehicle. To overcome these 

differences in gear shifting, the measured 

gear from the vehicle was injected into the 

model, so that the rest of the losses in the 

vehicle model could be compared to the test 

data.  

 

Accessory Load 

The initial average mechanical accessory 

load was not sufficient for these vehicles and 

their loading. The fan would turn on 

frequently to cool the vehicle. To get a better 

estimate of the mechanical accessory losses, 

we analyzed each lap to identify conditions 

when the vehicle was stopped but the engine 

was still producing power. Using the value of 

the accessory load while the vehicle was 

stopped provided a better estimate for the fuel 

consumption.  Figure 20 shows a distribution 

plot for the A3 mechanical accessory load 

while the vehicle is stopped during the ATEF 

cycle. Figure 21 shows the same plot for the 

A3 on the Churchville-C cycle. Because the 

Churchville-C cycle is more aggressive, the 

fan had to turn on more frequently to cool the 

engine. The air conditioner was also running 

continuously during the test. 

 
Figure 20: Mechanical Accessory Load 

Distribution on the ATEF for the A3 

 

 
Figure 21: Mechanical Accessory Load 

Distribution on the Churchville-C for the A3 

 

Rolling Resistance 

The ATEF had both a paved and a gravel 

loop, while the Churchville-C only had a 

gravel loop. The gravel road surface changed 

the rolling resistance of the vehicle. To 

determine the rolling resistance on the gravel 

road, the model was first correlated on the 

paved road.  The model developed from the 

paved road was then simulated on the gravel 

loop. The rolling resistance coefficient was 

then adjusted until the error between the test 

fuel consumption and the simulated fuel 
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consumption was minimized. This procedure 

was repeated for each lap, and a histogram of 

rolling resistance coefficients was created. 

From this histogram, we obtained a weighted 

value representing the rolling resistance for 

the ATEF. We repeated this procedure for the 

Churchville-C. Figure 22 shows an example 

histogram computed from the lap data. A 

least-squares fit was also performed, but the 

optimization routine yielded a more 

reasonable value for the coefficient. 

 

 
Figure 22: Estimated Rolling Resistance 

Coefficients for the Churchville-C 

 

Engine Map 

A new engine map was created from the test 

data. The fuel rate data from a selection of 

laps, from both the ATEF and Churchville-C, 

were binned as a function of torque and 

speed. Next, the Mathworks algorithm 

griddata was used to fit a parametric surface 

to the data. This surface was smoothed using 

a Gaussian filter to remove any jagged edges 

and high-frequency noise. The new engine 

map yielded a 4 to 5% improvement in the 

fuel economy prediction. 

 

Correlation Results 

After the model was calibrated using the 

test data, while still preventing over fitting, it 

showed good correlation with the test data. 

Figure 23 shows this for the A3. 

  

 
Figure 23: Correlation between Test Data 

and Simulation for the A3 

 

Figure 14 shows the correlation between the 

simulation and the test data for the A5. 

 

 
Figure 24: Correlation between Test Data 

and Simulation for the A5 

 

Figure 25 shows a histogram of the percent 

error in fuel economy for the A3 vehicle. This 

histogram shows the percent difference 

between the simulated fuel economy and the 

measured fuel economy across all of the laps, 

both ATEF and Churchville-C. The mean 
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percent error is about 1.2%, but the standard 

deviation of the percent error is 5.5% percent.  

This indicates that the percent error is spread 

out over a wide band, although the mean error 

of the simulation is small. The reason for this 

is threefold: lap-to-lap variability due to the 

human driver, variability in the surface 

conditions of the gravel road, and variability 

due to uncertainty in the grade. 

 

 
Figure 25: Histogram of Percent Fuel 

Economy Error for A3 

 

Figure 26 is a histogram of percent error 

that illustrates the reduced variability in the 

percent error when considering only laps 

driven by the AMAS and smart cruise over 

flat, paved roads.  In this case, the mean error 

indicates the result is still biased by -2.4%, 

but the standard deviation of the percent error 

has dropped significantly. This dramatic 

decrease in variability can be attributed to 

excluding the following three conditions: any 

lap driven by a human driver, any lap driven 

on a gravel road, and any lap with a variable 

grade.  

 

 
Figure 26: Histogram of Percent Fuel 

Economy Error for A3 AMAS and Smart 

Laps 

 

Figure 27 shows similar results for the A5. 

The mean error is low, but the variability is 

high. 

 

 
Figure 27: Histogram of Percent Fuel 

Economy Error for A5 

 

Figure 28 shows similar results when the 

analysis is limited to the AMAS or smart 

cruise on flat paved roads.  
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Figure 28: Histogram of Percent Fuel 

Economy Error for A3 AMAS and Smart 

Laps 

 

The vehicle model calibrated using the test 

data is more accurate than the original model 

used to design the first phase of the smart 

cruise control. Even though the model was 

less accurate during the first iteration, it still 

enabled the controller development to 

proceed, yielding a controller that improved 

the fuel economy. We expect that this refined 

vehicle model, calibrated using the test data, 

will yield an even better controller for the 

second phase. Having a more accurate 

vehicle model will also make calibrating the 

controller in simulation easier, thereby 

reducing the overall calibration time in the 

vehicle. 

 

NEXT STEPS 

The next steps of this project will involve 

using a distance horizon and creating a model 

predictive control (MPC) using the vehicle 

model correlated to the test data. Figure 29 

shows how the MPC will look ahead and 

optimize fuel economy over the horizon [5]. 

 

 

 
Figure 29: Model Predictive Controller over 

a Horizon 

 

In addition, the vehicle will be tested as part 

of a convoy during the next round of vehicle 

testing. 

 

CONCLUSIONS 

For this study, a smart cruise controller was 

developed and calibrated in simulation for 

two Class 8 trucks: a M915 A3 and a M915 

A5.  We then ran the smart cruise control as 

part of the HIL/SIL system and later used it 

in test vehicles on the ATEF and Churchville-

C courses. Fuel economy improvement was 

demonstrated for the smart cruise control on 

the ATEF course. However, no fuel economy 

improvement was shown for the Churchville-

C Course, primarily because of the limited 

availability of information about the route 

during testing. This issue will be addressed in 

future testing by providing a grade horizon up 

to 200 meters in front of the vehicle. The test 

data that was collected from this first round 

of testing was correlated with the vehicle 

models and used to improve the accuracy of 

the model.  This will help in the development 

of the MPC.  
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DEFINITIONS/ABBREVIATIONS 

 Proportional gain for the PI 

controller 

 Integral gain for the PI 

controller 

 The vehicle speed which 

minimizes the cost 

 The set of all admissible 

vehicle speeds 

 The given set speed set by 

the driver 

 Target speed for the PI 

controller 

 Vehicle speed 

 Vehicle speed tolerance 

 Time 

 The time period over which 

the cost function is evaluated 

 Engine speed 

 Torque demand at the wheels 

 Torque at the engine 

 The mass flow rate of the 

fuel 

 The first-order rolling 

resistance coefficient 

 The second order rolling 

resistance coefficient 

 Grade angle 

 Frontal area of the vehicle 

 Coefficient of drag 

 Air density 

 Acceleration due to gravity 

 Mass of the vehicle 

 Rolling radius of the wheel 

 Ratio of the final drive 

 Ratio of the transmission as 

a function of gear number 

 Gear number 

 Efficiency of the final drive 

 Efficiency of the 

transmission 

 


