

2018 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
AUTONOMOUS GROUND SYSTEMS (AGS) TECHNICAL SESSION

AUGUST 7-9, 2018 - NOVI, MICHIGAN

ROS‑Military: Progress and Promise

Jerry Towler
Unmanned Systems
Southwest Research

Institute
San Antonio, TX

 Matthew Bries
Unmanned Systems
Southwest Research

Institute
San Antonio, TX

ABSTRACT
The potential and promise of automated vehicles has been driving U.S. military research and

development in the field for decades. Yet despite this investment, progress toward fully

autonomous, field-ready, warfighter-engaged systems has been disappointingly slow. The

ROS‑Military (ROS‑M) program aims to create a central registry of defense-related robotic

components surrounded by a community of practice with common processes, systems, and

standards. These software components will serve as a foundation for future autonomy efforts to

build from, both fulfilling the potential of broad collaboration and greatly increasing the pace of

development of autonomous platforms. To execute on this promise, the ROS‑M program has

begun executing on four parallel paths of investigation, prototyping, and demonstration.

INTRODUCTION
The past two decades have seen dramatic

advancements in automated and autonomous

vehicle technology, enabling the undertaking of

vehicle-based missions with little or no human

support, intervention, or supervision. Much of this

research and progress has resulted from U.S.

military investment and support, and yet

advancement in autonomous ground vehicle

systems for military applications lags behind that

of commercial systems. A primary driver of this

retardation has been duplication or replication of

effort in both research and development. Instead

of developing new and advanced capabilities on

top of a common basic autonomy software and

hardware system, several independent complete

autonomous ground vehicle systems have all

received funding over the last twenty years.

Analyses of military unmanned systems

programs have reached the same conclusion:

increased development of, access to, and use of

open and modular software architectures and

ecosystems would help provide the accelerated

progress programs desire. [2][5]

The cross-service evolution of the autonomy

system known today as the TARDEC Robotic

Technology Kernel (RTK) provides a real-world

template for how such an ecosystem, once created,

can be efficiently leveraged to enable research to

proceed rapidly from capability to capability and

mission to mission using the same underlying

autonomy toolkit or pool of resources.

With the expressed need, from both experience

and analysis, for an open ecosystem of robotics

software, in addition to the existence proof from

RTK that such an ecosystem would enable

efficient, highly leveraged research to rapidly

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ROS‑Military: Progress and Promise, Towler, Bries

Page 2 of 10

innovate in unmanned vehicles, the final necessary

component of the solution came from the rise of

the Robot Operating System (ROS) as the de facto

standard for robotic system research and

development across academia, industry, and

government organizations.

To bring this vision to fruition, the ROS‑Military

project began in 2015 with a small, core group of

stakeholders—TARDEC; the Open Source

Robotics Foundation (OSRF), the developers and

curators of ROS; Southwest Research Institute

(SwRI), one of the primary developers of the RTK

autonomy system; DCS Corporation, the other

primary developer of RTK; and On-Line

Applications Research (OAR) Corporation,

experts in software architecture and open

standards. After this small team defined the initial

concept and scope of the initiative, additional

stakeholders were invited to participate to ensure

the entire military ground robotics community had

the opportunity to provide input into the shape of

the project. This larger group curated a set of

questions that would need to be answered and

problems that would need to be solved to ensure

the eventual success of the project. Over the last

year, the team has directly addressed these

questions by developing prototypes of each major

component identified by the stakeholders.

This paper describes ROS‑Military’s past—

solidifying the concept and identifying questions

that needed answering; present—developing

prototypes or initial answers to the posed

questions and problems; and future—the proposed

continued progress of the project and how it can

enhance unmanned systems research moving

forward.

PAST
The original concept for ROS‑Military was

based on the convergence of three influences: the

increasing mission demands of unmanned ground

vehicles; the example ecosystem of the RTK

program; and the increasing prevalence of ROS as

a standard for robotics research and development.

Unmanned Ground Vehicle Missions
While the earliest attempts at unmanned ground

vehicle (UGV) autonomy sought only basic

unmanned operation of the platform, in some

cases little more than remote control and

teleoperation, increasing hardware and software

capabilities have yielded corresponding increases

in requirements for the unmanned system.

A complete accounting of the mission

expectations for military ground vehicle

operations is far beyond the scope of this paper,

but a brief sampling will suffice to demonstrate

the breadth of capabilities hoped of unmanned

systems in the recent past and the near future.

Autonomous convoy operations. Targeted at

making resupply operations more efficient and

less demanding of personnel, these missions

involve an arbitrary number of UGVs operating

either as a single unit or as multiple independent

units each composed of multiple vehicles.

Advanced concepts require performing these

convoy operations at high speeds, in unmapped or

unfamiliar territory.

Robotic wingman. Targeted at leveraging

robotic assets to increase the battlefield

effectiveness of personnel, these missions involve

supervised autonomous control of an unmanned

vehicle and semi-autonomous (human-in-the-loop)

control of its payload. Advanced missions include

cooperative behaviors in unstructured terrain

between manned and unmanned vehicles.

Dismount support. Targeted at offloading

burden and responsibility from dismounted

personnel, these missions involve small UGVs

performing transportation (e.g., of injured

personnel), support (e.g., carrying supplies), or

reconnaissance tasks. To fully offload tasks, the

autonomous system should enable coordinating

movement and tasking between the UGV and

soldiers without a traditional operator control unit

(OCU).

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ROS‑Military: Progress and Promise, Towler, Bries

Page 3 of 10

Path re-recognition. Targeted at repeated high-

speed traversal of known routes, these missions

involve UGVs localizing and following a path

through an environment that has been previously

traversed or otherwise defined in the environment.

Scene recognition. Targeted at advanced

autonomous operation in complex scenarios, these

missions involve missions requiring semantic

scene or object recognition. Advanced behaviors

include object path prediction for dynamic UGV

path planning with obstacle avoidance.

Each of these advanced tactical behaviors

requires a similar autonomy system. In each case,

the base capabilities of the vehicle are similar:

translate perceptive and proprioceptive sensing

inputs into an internal model of the environment;

combine operator input with autonomous

behaviors to generate a planned path through that

environment; and communicate with the vehicle

platform to execute the plan.

These commonalities—both vertical, between

advanced behaviors and base autonomy platform

capabilities; and horizontal, among different

behaviors—suggest the utility of a set of building

blocks for autonomous behaviors. ROS‑M

provides the framework for an ecosystem of such

building blocks to thrive.

RTK Ecosystem
An early indicator that the ROS‑M concept

would accomplish the goals set out for it was the

evolution of RTK from its predecessors. A

detailed history of many of the programs leading

up to RTK is presented in [3]; however, the brief

overview presented here will demonstrate the

concepts relevant to the germination of ROS‑M.

In support of the United States Marine Corps

(USMC) Logistics-Connector Distributed

Operations Mission and funded by the Office of

Naval Research (ONR), Southwest Research

Institute developed a low-cost electro-optical (EO)

perception, localization, and path planning

solution for autonomous (driverless) vehicle

operation in austere or harsh off-road

environments, without dependence on GPS. This

program, known as the Small Unit Mobility

Enhancement Technologies (SUMET), used an

open, modular, scalable, extensible architecture

based on ROS that was specifically targeted for re-

use with additional autonomous behaviors and

sensing modalities.

Leveraging the platform, architecture, and

technologies developed for SUMET, the

TARDEC Ground Vehicle Robotics (GVR)

Dismounted Soldier Autonomy Tools (DSAT)

program targeted two key concepts during its

development: optional manning and platform

agnosticism. Because the base capabilities

developed during SUMET provided the

foundation for the expanded perception and

behavior work required for the soldier support

operations in DSAT, the development team was

able to focus its resources on innovative

technologies instead of replicating past efforts,

resulting in a successful deployment for Combat

Assessment. The same autonomy system was

integrated onto four unique vehicle platforms over

the course of the program, reusing common

components and replacing only those tied to a

specific platform.

The initial version of RTK, a collection of

perception, control, and autonomy components

enabling various mission behaviors, was

developed under the DSAT program. Since then

(and since the overview presented in [3]), RTK

has provided the basic autonomy system and many

of the building blocks for an array of TARDEC

UGV programs, including Manned-Unmanned

Teaming (MUM-T), Multi-UGV Extended Range

(MUER), Wingman, Wireless Aerial Sensor

Platform (WASP), Tactical Operation of a Remote

Vehicle in a Contested Environment (TORVICE),

the Tactical Resupply component of Autonomous

Ground Resupply (AGR-TR), and many others.

Each of these projects and programs has its own

mission requirements, but the re-use of a common

set of components even across Army, Navy, and

international collaborative projects has enabled

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ROS‑Military: Progress and Promise, Towler, Bries

Page 4 of 10

each to use its financial and personnel resources

for new capabilities instead of building up an

autonomy system or vehicle platform from

scratch.

Rise of ROS
The Robot Operating System (ROS) was

originally developed by a startup company called

Willow Garage as a framework to program and

control a specific robotic platform, the PR2.

However, this framework rapidly became far more

popular than the robot platform itself. The Open

Source Robotics Foundation was founded to

continue to develop ROS, and it has in the last ten

years become the de facto standard within the

academic, government, and industrial robotics

research and development community. While its

primary use is for rapid prototyping, the last

several years have seen a dramatic increase in its

use on deployed robotic systems, even in safety-

critical applications like factory automation.

The mass of researchers, students, and engineers

using ROS also gave rise to thousands of robotics

software modules, a significant subset of which

can be modified or directly integrated for military

applications. This existing base of expert users and

software components made ROS even more

attractive.

Given its global reach, enormous existing user

base, and lengthening inroads into deployed

applications, ROS was a clear choice for the basis

of this collaborative robotics ecosystem. The

success of the ROS-Industrial consortium,

organized to meet the needs of the global

industrial automation community by providing

both robotic software components and a

framework for precompetitive research and

development, offered evidence that ROS would

also serve the military robotics community. [1]

The initial ROS‑M team made the early decision

to focus on ROS 2, an evolution of ROS that

promises, among other advancements, an update

from the custom communications protocol

developed at Willow Garage to the Data

Distribution Service (DDS) standard. DDS is a

middleware standard for distributed, robust, high-

performance communication that uses the same

publish-subscribe model employed by ROS 1.

This similarity allows ROS users to realize the

performance and robustness improvements of

DDS without changing the communications

paradigm of their entire robotic system. Using

DDS offers ROS‑M an immediate avenue toward

interoperability with existing systems and a future

path toward the kind of robust, safety-critical,

secure systems required by military robotics.

Questions and Community
Once the feasibility and broad direction of this

large-scale ecosystem project was agreed upon by

all the members of the core team, the rest of the

community of stakeholders needed to be

consulted. Because ROS‑M targets a DoD-wide

audience, basing all design decisions on the

wisdom of a small group, however expert, could

not have the same impact.

To immediately provide access to a wide swath

of industry stakeholders, TARDEC contracted

with the National Advanced Mobility Consortium,

NAMC, both to provide a larger team of active

participants and to open the project to the entire

membership of the consortium for input.

Government stakeholders were also contacted,

including research laboratories, service academies,

and other research and development organizations.

The outcome of this effort was a series of

questions or issues that ROS‑M would have to

answer or respond to for the project to achieve the

envisioned success. These questions fell naturally

into four categories, which formed the basis of

investigation for the recently completed third

phase.

Infrastructure. Contemporaneously with the

solicitation of input, the ROS-M team established

the concept of the “ROS‑M Hub” to encompass

the infrastructure needed to enable the envisioned

ecosystem. This hub included a software

repository, registry, validation and continuous

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ROS‑Military: Progress and Promise, Towler, Bries

Page 5 of 10

integration pipelines, and documentation.

Available as hosted or standalone services, these

capabilities would establish an available central

location for ROS‑M activity without precluding

the federated model so often successful in open-

source efforts like ROS itself.

Of these five services, the two found to require

early prototyping were the repository, a location to

host source code, compiled binaries,

configuration, and documentation; and the

registry, an inventory of all available ROS‑M

software. To enable the aforementioned federated

model, the registry would allow links to both the

ROS-M repository as well as other hosting

solutions, such as open services like GitHub or

GitLab and private, internal repositories for more

sensitive artifacts. Metadata elements were

defined for registry entries to help users find,

evaluate, and select software to use in their

systems. Almost all of these elements were

adopted in the prototype and are described briefly

below.

In addition to the registry and repository,

validation was identified as a service that did not

require prototyping to prove the overall utility of

ROS-M, but that offered opportunities for ROS‑M

to contribute to commonality among the

community by providing automated feedback for

software against various standards used for

military software, such as the IOP (interoperability

profiles) or VICTORY (Vehicular Integration for

C4ISR/EW Interoperability) standards.

Seed Software. The ROS‑M registry and

repository would both require exercising to

validate their utility and uncover gaps in

functionality. No concrete choice was made of

which software suite would best accomplish this

evaluation, but its characteristics were established.

Any seed software would need to be a

reasonably complex system to exercise the

searching, filtering, and dependency tracking in

the registry. Using existing software, as opposed

to developing new capabilities specifically for

ROS-M, would help the team understand the effort

needed to apply the ROS‑M requirements already

established, especially the intended requirement to

base all ROS‑M software on ROS 2.

Cybersecurity. Existing confidentiality,

integrity, and availability requirements were

investigated, specifically focusing on policies,

standards, and regulations related to the National

Institute of Standards and Technology (NIST) and

DoD Risk Management Framework (RMF). A

preliminary analysis of ROS-SE (ROS with

Security Enhancements) and the DDS-Security

profile (a secure extension to the ROS 2

communication layer) was performed with respect

to these requirements.

ROS-SE, sometimes known as SROS, is a set of

security enhancements for ROS 1, including TLS

support for node communication, certificate-based

trust mechanisms, and AppArmor profiles to

secure the system on which ROS is run. In short, it

applies basic cybersecurity best practices to the

existing ROS 1 infrastructure. DDS-Security is a

profile of DDS (the communications middleware

used by ROS 2) that integrates similar best

practices, including identification and

authentication, access control, integrity, and

confidentiality.

Of the requirements investigated, integrity was

identified as the most important security objective

for ROS‑M itself. This factor includes integrity of

source code or compiled binaries in repositories,

integrity of running software on a system, integrity

of information passed among running nodes, and

access controls within both the registry and

repository.

Given the planned scope of ROS‑M,

implementation of specific cybersecurity standards

was (and is) left to programs developing software,

but the surveyed stakeholders recommended that

ROS‑M provide as much assistance as possible in

the way of tools, best practices, and training to

facilitate these developments.

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ROS‑Military: Progress and Promise, Towler, Bries

Page 6 of 10

Business Processes. A key factor in the success

of ROS‑M will be its long-term sustainment plan.

ROS‑M should be useful horizontally across

services and organizations and vertically from

basic research to acquisition and sustainment.

Therefore, a broad sustainment model is needed.

Existing open-source projects and open

standards were investigated both within and

without the defense robotics community, including

published robotics strategies from the U.S. Army,

Navy, Air Force, and Department of Energy. It

also considered other successful open ecosystems,

such as the Future Airborne Capability

Environment (FACE), UxS Control Segment

(UCS), and ROS‑Industrial (ROS-I). Finally, it

made specific recommendations for decision-

making in the prototype phase.

Representative recommendations included the

establishment of a ROS‑M steering committee;

development of a quantitative business case;

coordination with other open ecosystems; creation

of training materials; identification of incentives

and disincentives; and prototyping legal language

(both license and contract) for use in research,

development, and acquisition.

PRESENT
After the parameters of further investigation and

development were established, work began in

2017 to provide a prototype of the complete

ecosystem that would identify remaining gaps

while also demonstrating the feasibility of ROS‑M

as a collaboration platform. This work focused on

the four major areas identified as crucial for

realizing the success of the concept defined at the

outset of the project: infrastructure, seed software,

cybersecurity, and business processes.

Infrastructure
Because the core concept of ROS‑M is that of an

open, available registry and repository for military

robotics software, the infrastructure to support

those functions was of the highest importance for

the prototype. Three components were judged

most crucial to complete: the repository for

holding software and other artifacts, which would

be used for the seed software and its

accompanying documentation; the web-based

registry for submitting, approving, validating, and

finding ROS-M components; and the requirements

for packages to be submitted to ROS-M for

inclusion in the registry.

Repository. After a survey of available options,

including custom solutions and ROS-M specific

hosting on the Amazon Web Services GovCloud

environment, the Defense Intelligence Information

Enterprise (DI2E) environment was selected to

host the software repository. As an established

collaboration and integration environment for

DoD software, it natively provided many of the

identified ROS-M requirements. In particular,

DI2E supports two-factor authentication via a

Common Access Card, sophisticated access

control capabilities, and availability via the public

Internet. These properties together ensured that all

ROS-M participants, from university researchers

to defense personnel, would all be able to

collaborate in the same environment without

compromising the security or integrity of any

artifacts, components, or teams.

Registry. No similar off-the-shelf solution was

found for the registry that satisfied all of the

identified requirements. Therefore, a custom

prototype registry was developed with a Web-

based user interface and a traditional database

backend. The registry implemented basic access

controls and manual package submission and

uploading to provide a low-cost minimal working

example. Frameworks to expand the registry’s

capabilities to satisfy all of the goals of ROS-M

were also incorporated.

Metadata. Finally, the metadata requirements

were established for submission to and inclusion

in the ROS-M registry. These metadata serve as

the primary mechanism of communication

between package authors and maintainers, making

their thorough definition critical to the practical

utility of the registry. Native ROS packages

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ROS‑Military: Progress and Promise, Towler, Bries

Page 7 of 10

require package metadata for a similar reason: to

communicate to users of the ROS package. The

ROS-M metadata, however, included seven

additional components to help developers

communicate with users through the registry:

maturity level, development standards and

processes, validation and certification status,

package compatibility, tutorials, issue tracker, and

projects and programs.

Of these metadata fields, the first one, maturity

level, bears additional attention. To advance the

ROS-M goal of increasing the pace of progress in

research as well as development and deployment,

software components at many different stages of

development may be publicized through the

registry. Therefore, three discrete levels of

software maturity were defined to help identify

how stable, tested, documented, and well-used a

particular package is. This system was heavily

influenced by a similar model used by ROS-

Industrial. A ROS-M software component can

have one of three maturity levels: experimental;

developmental; and production. Experimental

software is under active development. While it is

sufficiently stable and useful to be distributed to

outside users, it should not be expected to have

stable APIs, thorough documentation, or have

undergone rigorous testing. Developmental

software should have rectified each of those three

deficiencies: it should have stable APIs; those

APIs and the package’s general usage should be

thoroughly documented; and the package should

have been tested in both automated tests and real

systems. It is expected that the vast majority of

ROS-M software will have this maturity level.

Finally, production software has been used on

systems that have undergone formal testing,

validation, or certification by one or more third

parties and have been used in realistic conditions.

There are no formal requirements or automated

validation tools to determine the maturity level of

a ROS-M package; like applicable standards or

development processes, it is one of many signals

for potential users to evaluate software at the

registry stage before acquiring and integrating it

into their systems.

Another metadata field, not unique to ROS-M,

nonetheless has important implications for both

producers and consumers in the ROS-M

ecosystem. Each package may have one or more

software licenses associated with it, identified by

an appropriate tag within the metadata. ROS-M

imposes no requirements on the licenses under

which software can be included, allowing both

copyleft licenses like the GNU General Public

License and fully proprietary software and

everything in between. This permissiveness will

allow the registry to become more universal in

scope, including as much software as possible and

thereby attaining the greatest utility possible. If a

ROS-M consumer desires to incorporate a package

with a nonfree license, they may contact the

package’s author or maintainer (both also required

metadata fields) to inquire about licensing

arrangements.

Seed Software
To demonstrate the use of the infrastructure and

to test the requirements of submission to the

registry, two sets of seed software were prepared

during this phase as the initial contents of ROS‑M.

The first was the Maverick path planner [4], a

fast, sophisticated planner for unstructured

environments developed for RTK. Maverick was

chosen for two reasons: first, as an advanced path

planner integrated into a complete autonomy

system, its complexity would effectively

benchmark the difficulty of porting software to

ROS-M; and second, because new behaviors for

autonomous systems typically require new or

modified path planning systems, a path planner

was a natural choice to investigate the

collaborative possibilities enabled by ROS-M. The

entirety of Maverick, including all of its

dependencies within RTK, were adapted and

submitted to ROS‑M.

This adaptation was performed in two phases.

First, Maverick and its dependencies were

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ROS‑Military: Progress and Promise, Towler, Bries

Page 8 of 10

converted to ROS 2. The porting process revealed

gaps between the functionality made available in

ROS 2 compared to ROS 1, and additional tools

and libraries were developed to bridge those gaps.

In particular, parts of RTK rely heavily on ROS

nodelets, software components that share memory

for efficient zero-copy message passing; ROS

parameters, dynamic configuration variables set at

runtime instead of compile-time; and the ROS

launch system, a structured description of which

nodes and nodelets to activate on system startup.

To successfully port Maverick, each of these

functions was first replicated in whole or in part

within the ROS 2 framework. The additional

capability development validated the choice of

Maverick, because it outlined the upper end of the

required effort to port a complex software

component.

The second phase of ROS-M conversion

required providing, for Maverick and each of its

dependent components, the additional metadata

identified above.

Along with the Maverick components that were

converted to ROS 2 and adapted for ROS-M, the

entirety of RTK Core, a stable, distribution-ready

release of RTK, was adapted for inclusion in the

registry. Instead of porting the entire codebase of

nearly two hundred ROS packages, the metadata

for each package was augmented to fulfill the

registry requirements. (With one caveat:

technically, the metadata requires the

identification of which version of ROS 2 the

package supports; however, because the remainder

of RTK Core does not support ROS 2 at all, this

field was populated with the ROS 1 version

supported, namely ROS 1 Indigo Igloo.) This

adaptation allowed RTK Core to stress the

infrastructure software without incurring the

engineering cost of porting the whole system.

The other set of seed software ported to ROS-M

was a component of a ground vehicle formations

library, intended to localize a single vehicle as part

of a group. The autonomy system from which this

component was chosen does not share a common

background with RTK, so selecting this

component for submission to ROS‑M engaged

some of the collaborative aspects of the

infrastructure, namely searching across

submissions and sharing components among

projects.

Cybersecurity
All modern robotic systems share a set of

cybersecurity concerns, from typical software

vulnerabilities up to adversarial machine learning-

based exploits to spoof sensor input and disable or

even mislead the automated vehicle. The potential

consequences of these vulnerabilities can be dire,

and individual systems must identify their own

weaknesses and guard against attack.

However, because the ROS‑M project primarily

provides the organization and infrastructure to

support the sharing and re-use of robotic

components and not the components themselves,

its concerns with respect to cybersecurity were not

to solve its systems’ vulnerabilities, but to offer a

set of basic best practices and a suggested set of

tools to achieve them.

The primary concern for the registry and

repository, as discussed above, was access control

for the ROS-M registry and repository to ensure

confidentiality, integrity, and availability of those

systems. The repository was successfully hosted

on DI2E, addressing each of these concerns for

that system. Similar processes are planned for the

registry.

An initial set of coding standards was also

identified to provide a baseline against which

ROS-M software components could operate. The

chosen standard is the Carnegie Mellon University

Software Engineering Institute CERT C++ (CMU-

SEI CERT C++) standards, coupled with a suite of

static analysis tools based on the U.S. Navy’s

Statick tool to assist developers in following them.

Finally, to validate the recommendation for the

DDS-Security profile, a man-in-the-middle attack

was successfully demonstrated on an unsecured

ROS 2 system simulating an automated vehicle

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ROS‑Military: Progress and Promise, Towler, Bries

Page 9 of 10

driving a planned route. The simulated vehicle

was made to modify its repeated path in response

to unauthorized commands. It is important to note

that this result was expected, as ROS 2

deliberately has no built-in security mechanisms.

The goal of the experiment was not to suggest a

failing of ROS 2, but to identify a solution easily

accessible to most developers. Implementing the

DDS-Security profile on the same system

successfully denied the attack.

Business Processes
The healthy software ecosystem encouraged by

ROS-M requires more than robust, secure

infrastructure; high-quality software; and a

reasonable, common set of cybersecurity best

practices. Sustaining the advantages of this

openness requires broad and diverse participation

to ensure its utility to all members.

Therefore, a Business Guide was developed—a

reference for DoD executives, military executive

officers, and senior leadership from both

government and industry to help understand the

value proposition of ROS‑M. The Guide provides

an overview of the various components of

ROS‑M, an understanding how these components

impact various stakeholders of the Unmanned

Autonomous Systems (UAS) community, and

suggested best practices for including ROS‑M

requirements in program specifications.

To help mitigate the potential complexity of

including the open software ecosystem of ROS-M

in the acquisitions process, the Business Guide

also includes a Contract Guide Template—

suggested language for a Contracting Officer or

Program Manager to include in a solicitation.

Suggested language is provided for the Statement

of Work, Technical Specification, Contract Data

Requirements List, Evaluation Factors for Award,

and others. The Guide offers further suggestions

for language regarding rights in technical data and

computer software to support the overarching

ROS-M goals of reuse of software.

The Business Guide provides education about

the vision and potential of ROS-M to those who

are new to the program while also offering the

tools necessary to realize those benefits within a

particular program or project.

FUTURE
The prototypes systems detailed above were

demonstrated in early 2018 to interested

stakeholders. The populated registry was shown to

enable component searching, evaluation, and

discovery as intended. The seed software was

demonstrated on multiple independent vehicle

platforms. Because entire autonomy systems were

not ported to ROS-M, each vehicle ran a hybrid

software solution incorporating the ROS-M–ready

components alongside the pre-existing software.

To further demonstrate the interoperability

potential of ROS-M systems, a portion of the

demonstration was operated on both vehicles from

a single OCU. In conjunction with the practical

demonstrations, the cybersecurity tools and best

practices and the ROS‑M Business Guide were

presented for consideration and feedback.

In the near term, development will continue on

the infrastructure systems to ensure a stable,

capable system for promoting, searching, finding,

evaluating, and accessing vehicle autonomy

software. Automation features for uploading,

validating, and processing package metadata will

be implemented from the designs developed

according to the considerations discussed above.

The conversion of RTK to ROS‑M will be

completed to ensure that the registry contains a

complete autonomy system for other participants

to draw from and an exemplar of the diversity of

software and quality of documentation expected

and available in ROS-M. When ROS-M is made

available to the wider community, it will have

immediate utility for users, and a broad base on

which for organizations to build.

Looking to expand beyond the core development

team, the ROS-M stakeholders have identified

high-value robotics and autonomy related projects

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ROS‑Military: Progress and Promise, Towler, Bries

Page 10 of 10

to continue to expand the registry. In particular,

the research products of the Robotics

Collaborative Technology Alliance (RCTA)

would both provide significant capability

enhancement to the autonomy suites already

present in ROS-M, but also test the software,

tools, and processes developed around inclusion in

the ROS-M registry and storage in the repository.

These capabilities will provide immediately usable

components for other robotics systems, and

ROS‑M will help organize, categorize, and share

those components among the projects and

programs that can benefit from them most.

The future potential of ROS-M relies not so

much on software inclusion, however, as the

building out of the community of interest using

ROS-M as it is intended: as a starting point for as

many automated or unmanned ground vehicle

robotics projects as possible, and as a library of

capabilities to enhance existing or future projects

with as little duplication of effort and as much

software re-use as can be achieved. The technical

feasibility has already been demonstrated by the

activities described in this paper. Most future work

will focus not on the technical aspects, but on the

community-building aspects, including as many

members of the military robotics community as

possible to ensure that the benefits of increased

openness and communication among robotics

software developers are shared universally.

REFERENCES

[1] Edwards, Shaun, and Chris Lewis. "ROS-

Industrial: Applying the Robot Operating

System (ROS) to Industrial Applications."

In IEEE Int. Conference on Robotics and

Automation, ECHORD Workshop. 2012.

[2] Gonzales, Daniel and Sarah Harting,

“Designing Unmanned Systems with Greater

Autonomy”, RAND Corporation, Santa

Monica, 2014.

[3] Kania, Robert et al., “Dismounted Soldier

Autonomy Tools (DSAT)—From Conception

to Deployment”, NDIA Ground Vehicle

Systems Engineering and Technology

Symposium (GVSETS). 2014.

[4] Seegmiller, Neal, Jason Gassaway, Elliot

Johnson, and Jerry Towler. "The Maverick

planner: An efficient hierarchical planner for

autonomous vehicles in unstructured

environments." In Intelligent Robots and

Systems (IROS), 2017 IEEE/RSJ International

Conference on, pp. 2018-2023. IEEE, 2017.

[5] “The Role of Autonomy in DoD Systems”,

Defense Science Board, 2012.

