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ABSTRACT 
The potential and promise of automated vehicles has been driving U.S. military research and 

development in the field for decades. Yet despite this investment, progress toward fully 

autonomous, field-ready, warfighter-engaged systems has been disappointingly slow. The 

ROS‑Military (ROS‑M) program aims to create a central registry of defense-related robotic 

components surrounded by a community of practice with common processes, systems, and 

standards. These software components will serve as a foundation for future autonomy efforts to 

build from, both fulfilling the potential of broad collaboration and greatly increasing the pace of 

development of autonomous platforms. To execute on this promise, the ROS‑M program has 

begun executing on four parallel paths of investigation, prototyping, and demonstration. 

 

INTRODUCTION 
The past two decades have seen dramatic 

advancements in automated and autonomous 

vehicle technology, enabling the undertaking of 

vehicle-based missions with little or no human 

support, intervention, or supervision. Much of this 

research and progress has resulted from U.S. 

military investment and support, and yet 

advancement in autonomous ground vehicle 

systems for military applications lags behind that 

of commercial systems. A primary driver of this 

retardation has been duplication or replication of 

effort in both research and development. Instead 

of developing new and advanced capabilities on 

top of a common basic autonomy software and 

hardware system, several independent complete 

autonomous ground vehicle systems have all 

received funding over the last twenty years. 

Analyses of military unmanned systems 

programs have reached the same conclusion: 

increased development of, access to, and use of 

open and modular software architectures and 

ecosystems would help provide the accelerated 

progress programs desire. [2][5] 

The cross-service evolution of the autonomy 

system known today as the TARDEC Robotic 

Technology Kernel (RTK) provides a real-world 

template for how such an ecosystem, once created, 

can be efficiently leveraged to enable research to 

proceed rapidly from capability to capability and 

mission to mission using the same underlying 

autonomy toolkit or pool of resources. 

With the expressed need, from both experience 

and analysis, for an open ecosystem of robotics 

software, in addition to the existence proof from 

RTK that such an ecosystem would enable 

efficient, highly leveraged research to rapidly 
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innovate in unmanned vehicles, the final necessary 

component of the solution came from the rise of 

the Robot Operating System (ROS) as the de facto 

standard for robotic system research and 

development across academia, industry, and 

government organizations. 

To bring this vision to fruition, the ROS‑Military 

project began in 2015 with a small, core group of 

stakeholders—TARDEC; the Open Source 

Robotics Foundation (OSRF), the developers and 

curators of ROS; Southwest Research Institute 

(SwRI), one of the primary developers of the RTK 

autonomy system; DCS Corporation, the other 

primary developer of RTK; and On-Line 

Applications Research (OAR) Corporation, 

experts in software architecture and open 

standards. After this small team defined the initial 

concept and scope of the initiative, additional 

stakeholders were invited to participate to ensure 

the entire military ground robotics community had 

the opportunity to provide input into the shape of 

the project. This larger group curated a set of 

questions that would need to be answered and 

problems that would need to be solved to ensure 

the eventual success of the project. Over the last 

year, the team has directly addressed these 

questions by developing prototypes of each major 

component identified by the stakeholders. 

This paper describes ROS‑Military’s past—

solidifying the concept and identifying questions 

that needed answering; present—developing 

prototypes or initial answers to the posed 

questions and problems; and future—the proposed 

continued progress of the project and how it can 

enhance unmanned systems research moving 

forward. 

 

PAST 
The original concept for ROS‑Military was 

based on the convergence of three influences: the 

increasing mission demands of unmanned ground 

vehicles; the example ecosystem of the RTK 

program; and the increasing prevalence of ROS as 

a standard for robotics research and development. 

 

 

Unmanned Ground Vehicle Missions 
While the earliest attempts at unmanned ground 

vehicle (UGV) autonomy sought only basic 

unmanned operation of the platform, in some 

cases little more than remote control and 

teleoperation, increasing hardware and software 

capabilities have yielded corresponding increases 

in requirements for the unmanned system. 

A complete accounting of the mission 

expectations for military ground vehicle 

operations is far beyond the scope of this paper, 

but a brief sampling will suffice to demonstrate 

the breadth of capabilities hoped of unmanned 

systems in the recent past and the near future. 

Autonomous convoy operations. Targeted at 

making resupply operations more efficient and 

less demanding of personnel, these missions 

involve an arbitrary number of UGVs operating 

either as a single unit or as multiple independent 

units each composed of multiple vehicles. 

Advanced concepts require performing these 

convoy operations at high speeds, in unmapped or 

unfamiliar territory. 

Robotic wingman. Targeted at leveraging 

robotic assets to increase the battlefield 

effectiveness of personnel, these missions involve 

supervised autonomous control of an unmanned 

vehicle and semi-autonomous (human-in-the-loop) 

control of its payload. Advanced missions include 

cooperative behaviors in unstructured terrain 

between manned and unmanned vehicles. 

Dismount support. Targeted at offloading 

burden and responsibility from dismounted 

personnel, these missions involve small UGVs 

performing transportation (e.g., of injured 

personnel), support (e.g., carrying supplies), or 

reconnaissance tasks. To fully offload tasks, the 

autonomous system should enable coordinating 

movement and tasking between the UGV and 

soldiers without a traditional operator control unit 

(OCU). 
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Path re-recognition. Targeted at repeated high-

speed traversal of known routes, these missions 

involve UGVs localizing and following a path 

through an environment that has been previously 

traversed or otherwise defined in the environment. 

Scene recognition. Targeted at advanced 

autonomous operation in complex scenarios, these 

missions involve missions requiring semantic 

scene or object recognition. Advanced behaviors 

include object path prediction for dynamic UGV 

path planning with obstacle avoidance. 

Each of these advanced tactical behaviors 

requires a similar autonomy system. In each case, 

the base capabilities of the vehicle are similar: 

translate perceptive and proprioceptive sensing 

inputs into an internal model of the environment; 

combine operator input with autonomous 

behaviors to generate a planned path through that 

environment; and communicate with the vehicle 

platform to execute the plan. 

These commonalities—both vertical, between 

advanced behaviors and base autonomy platform 

capabilities; and horizontal, among different 

behaviors—suggest the utility of a set of building 

blocks for autonomous behaviors. ROS‑M 

provides the framework for an ecosystem of such 

building blocks to thrive. 

 

RTK Ecosystem 
An early indicator that the ROS‑M concept 

would accomplish the goals set out for it was the 

evolution of RTK from its predecessors. A 

detailed history of many of the programs leading 

up to RTK is presented in [3]; however, the brief 

overview presented here will demonstrate the 

concepts relevant to the germination of ROS‑M. 

In support of the United States Marine Corps 

(USMC) Logistics-Connector Distributed 

Operations Mission and funded by the Office of 

Naval Research (ONR), Southwest Research 

Institute developed a low-cost electro-optical (EO) 

perception, localization, and path planning 

solution for autonomous (driverless) vehicle 

operation in austere or harsh off-road 

environments, without dependence on GPS. This 

program, known as the Small Unit Mobility 

Enhancement Technologies (SUMET), used an 

open, modular, scalable, extensible architecture 

based on ROS that was specifically targeted for re-

use with additional autonomous behaviors and 

sensing modalities. 

Leveraging the platform, architecture, and 

technologies developed for SUMET, the 

TARDEC Ground Vehicle Robotics (GVR) 

Dismounted Soldier Autonomy Tools (DSAT) 

program targeted two key concepts during its 

development: optional manning and platform 

agnosticism. Because the base capabilities 

developed during SUMET provided the 

foundation for the expanded perception and 

behavior work required for the soldier support 

operations in DSAT, the development team was 

able to focus its resources on innovative 

technologies instead of replicating past efforts, 

resulting in a successful deployment for Combat 

Assessment. The same autonomy system was 

integrated onto four unique vehicle platforms over 

the course of the program, reusing common 

components and replacing only those tied to a 

specific platform. 

The initial version of RTK, a collection of 

perception, control, and autonomy components 

enabling various mission behaviors, was 

developed under the DSAT program. Since then 

(and since the overview presented in [3]), RTK 

has provided the basic autonomy system and many 

of the building blocks for an array of TARDEC 

UGV programs, including Manned-Unmanned 

Teaming (MUM-T), Multi-UGV Extended Range 

(MUER), Wingman, Wireless Aerial Sensor 

Platform (WASP), Tactical Operation of a Remote 

Vehicle in a Contested Environment (TORVICE), 

the Tactical Resupply component of Autonomous 

Ground Resupply (AGR-TR), and many others. 

Each of these projects and programs has its own 

mission requirements, but the re-use of a common 

set of components even across Army, Navy, and 

international collaborative projects has enabled 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

ROS‑Military: Progress and Promise, Towler, Bries 

 

Page 4 of 10 

each to use its financial and personnel resources 

for new capabilities instead of building up an 

autonomy system or vehicle platform from 

scratch. 

 

Rise of ROS 
The Robot Operating System (ROS) was 

originally developed by a startup company called 

Willow Garage as a framework to program and 

control a specific robotic platform, the PR2. 

However, this framework rapidly became far more 

popular than the robot platform itself. The Open 

Source Robotics Foundation was founded to 

continue to develop ROS, and it has in the last ten 

years become the de facto standard within the 

academic, government, and industrial robotics 

research and development community. While its 

primary use is for rapid prototyping, the last 

several years have seen a dramatic increase in its 

use on deployed robotic systems, even in safety-

critical applications like factory automation. 

The mass of researchers, students, and engineers 

using ROS also gave rise to thousands of robotics 

software modules, a significant subset of which 

can be modified or directly integrated for military 

applications. This existing base of expert users and 

software components made ROS even more 

attractive. 

Given its global reach, enormous existing user 

base, and lengthening inroads into deployed 

applications, ROS was a clear choice for the basis 

of this collaborative robotics ecosystem. The 

success of the ROS-Industrial consortium, 

organized to meet the needs of the global 

industrial automation community by providing 

both robotic software components and a 

framework for precompetitive research and 

development, offered evidence that ROS would 

also serve the military robotics community. [1] 

The initial ROS‑M team made the early decision 

to focus on ROS 2, an evolution of ROS that 

promises, among other advancements, an update 

from the custom communications protocol 

developed at Willow Garage to the Data 

Distribution Service (DDS) standard. DDS is a 

middleware standard for distributed, robust, high-

performance communication that uses the same 

publish-subscribe model employed by ROS 1. 

This similarity allows ROS users to realize the 

performance and robustness improvements of 

DDS without changing the communications 

paradigm of their entire robotic system. Using 

DDS offers ROS‑M an immediate avenue toward 

interoperability with existing systems and a future 

path toward the kind of robust, safety-critical, 

secure systems required by military robotics. 

 

Questions and Community 
Once the feasibility and broad direction of this 

large-scale ecosystem project was agreed upon by 

all the members of the core team, the rest of the 

community of stakeholders needed to be 

consulted. Because ROS‑M targets a DoD-wide 

audience, basing all design decisions on the 

wisdom of a small group, however expert, could 

not have the same impact. 

To immediately provide access to a wide swath 

of industry stakeholders, TARDEC contracted 

with the National Advanced Mobility Consortium, 

NAMC, both to provide a larger team of active 

participants and to open the project to the entire 

membership of the consortium for input. 

Government stakeholders were also contacted, 

including research laboratories, service academies, 

and other research and development organizations. 

The outcome of this effort was a series of 

questions or issues that ROS‑M would have to 

answer or respond to for the project to achieve the 

envisioned success. These questions fell naturally 

into four categories, which formed the basis of 

investigation for the recently completed third 

phase. 

Infrastructure. Contemporaneously with the 

solicitation of input, the ROS-M team established 

the concept of the “ROS‑M Hub” to encompass 

the infrastructure needed to enable the envisioned 

ecosystem. This hub included a software 

repository, registry, validation and continuous 
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integration pipelines, and documentation. 

Available as hosted or standalone services, these 

capabilities would establish an available central 

location for ROS‑M activity without precluding 

the federated model so often successful in open-

source efforts like ROS itself. 

Of these five services, the two found to require 

early prototyping were the repository, a location to 

host source code, compiled binaries, 

configuration, and documentation; and the 

registry, an inventory of all available ROS‑M 

software. To enable the aforementioned federated 

model, the registry would allow links to both the 

ROS-M repository as well as other hosting 

solutions, such as open services like GitHub or 

GitLab and private, internal repositories for more 

sensitive artifacts. Metadata elements were 

defined for registry entries to help users find, 

evaluate, and select software to use in their 

systems. Almost all of these elements were 

adopted in the prototype and are described briefly 

below. 

In addition to the registry and repository, 

validation was identified as a service that did not 

require prototyping to prove the overall utility of 

ROS-M, but that offered opportunities for ROS‑M 

to contribute to commonality among the 

community by providing automated feedback for 

software against various standards used for 

military software, such as the IOP (interoperability 

profiles) or VICTORY (Vehicular Integration for 

C4ISR/EW Interoperability) standards. 

 

Seed Software. The ROS‑M registry and 

repository would both require exercising to 

validate their utility and uncover gaps in 

functionality. No concrete choice was made of 

which software suite would best accomplish this 

evaluation, but its characteristics were established. 

Any seed software would need to be a 

reasonably complex system to exercise the 

searching, filtering, and dependency tracking in 

the registry. Using existing software, as opposed 

to developing new capabilities specifically for 

ROS-M, would help the team understand the effort 

needed to apply the ROS‑M requirements already 

established, especially the intended requirement to 

base all ROS‑M software on ROS 2. 

 

Cybersecurity. Existing confidentiality, 

integrity, and availability requirements were 

investigated, specifically focusing on policies, 

standards, and regulations related to the National 

Institute of Standards and Technology (NIST) and 

DoD Risk Management Framework (RMF). A 

preliminary analysis of ROS-SE (ROS with 

Security Enhancements) and the DDS-Security 

profile (a secure extension to the ROS 2 

communication layer) was performed with respect 

to these requirements. 

ROS-SE, sometimes known as SROS, is a set of 

security enhancements for ROS 1, including TLS 

support for node communication, certificate-based 

trust mechanisms, and AppArmor profiles to 

secure the system on which ROS is run. In short, it 

applies basic cybersecurity best practices to the 

existing ROS 1 infrastructure. DDS-Security is a 

profile of DDS (the communications middleware 

used by ROS 2) that integrates similar best 

practices, including identification and 

authentication, access control, integrity, and 

confidentiality. 

Of the requirements investigated, integrity was 

identified as the most important security objective 

for ROS‑M itself. This factor includes integrity of 

source code or compiled binaries in repositories, 

integrity of running software on a system, integrity 

of information passed among running nodes, and 

access controls within both the registry and 

repository. 

Given the planned scope of ROS‑M, 

implementation of specific cybersecurity standards 

was (and is) left to programs developing software, 

but the surveyed stakeholders recommended that 

ROS‑M provide as much assistance as possible in 

the way of tools, best practices, and training to 

facilitate these developments. 
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Business Processes. A key factor in the success 

of ROS‑M will be its long-term sustainment plan. 

ROS‑M should be useful horizontally across 

services and organizations and vertically from 

basic research to acquisition and sustainment. 

Therefore, a broad sustainment model is needed. 

Existing open-source projects and open 

standards were investigated both within and 

without the defense robotics community, including 

published robotics strategies from the U.S. Army, 

Navy, Air Force, and Department of Energy. It 

also considered other successful open ecosystems, 

such as the Future Airborne Capability 

Environment (FACE), UxS Control Segment 

(UCS), and ROS‑Industrial (ROS-I). Finally, it 

made specific recommendations for decision-

making in the prototype phase. 

Representative recommendations included the 

establishment of a ROS‑M steering committee; 

development of a quantitative business case; 

coordination with other open ecosystems; creation 

of training materials; identification of incentives 

and disincentives; and prototyping legal language 

(both license and contract) for use in research, 

development, and acquisition. 

 

PRESENT 
After the parameters of further investigation and 

development were established, work began in 

2017 to provide a prototype of the complete 

ecosystem that would identify remaining gaps 

while also demonstrating the feasibility of ROS‑M 

as a collaboration platform. This work focused on 

the four major areas identified as crucial for 

realizing the success of the concept defined at the 

outset of the project: infrastructure, seed software, 

cybersecurity, and business processes. 

 

Infrastructure 
Because the core concept of ROS‑M is that of an 

open, available registry and repository for military 

robotics software, the infrastructure to support 

those functions was of the highest importance for 

the prototype. Three components were judged 

most crucial to complete: the repository for 

holding software and other artifacts, which would 

be used for the seed software and its 

accompanying documentation; the web-based 

registry for submitting, approving, validating, and 

finding ROS-M components; and the requirements 

for packages to be submitted to ROS-M for 

inclusion in the registry. 

Repository. After a survey of available options, 

including custom solutions and ROS-M specific 

hosting on the Amazon Web Services GovCloud 

environment, the Defense Intelligence Information 

Enterprise (DI2E) environment was selected to 

host the software repository. As an established 

collaboration and integration environment for 

DoD software, it natively provided many of the 

identified ROS-M requirements. In particular, 

DI2E supports two-factor authentication via a 

Common Access Card, sophisticated access 

control capabilities, and availability via the public 

Internet. These properties together ensured that all 

ROS-M participants, from university researchers 

to defense personnel, would all be able to 

collaborate in the same environment without 

compromising the security or integrity of any 

artifacts, components, or teams. 

Registry. No similar off-the-shelf solution was 

found for the registry that satisfied all of the 

identified requirements. Therefore, a custom 

prototype registry was developed with a Web-

based user interface and a traditional database 

backend. The registry implemented basic access 

controls and manual package submission and 

uploading to provide a low-cost minimal working 

example. Frameworks to expand the registry’s 

capabilities to satisfy all of the goals of ROS-M 

were also incorporated. 

Metadata. Finally, the metadata requirements 

were established for submission to and inclusion 

in the ROS-M registry. These metadata serve as 

the primary mechanism of communication 

between package authors and maintainers, making 

their thorough definition critical to the practical 

utility of the registry. Native ROS packages 
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require package metadata for a similar reason: to 

communicate to users of the ROS package. The 

ROS-M metadata, however, included seven 

additional components to help developers 

communicate with users through the registry: 

maturity level, development standards and 

processes, validation and certification status, 

package compatibility, tutorials, issue tracker, and 

projects and programs. 

Of these metadata fields, the first one, maturity 

level, bears additional attention. To advance the 

ROS-M goal of increasing the pace of progress in 

research as well as development and deployment, 

software components at many different stages of 

development may be publicized through the 

registry. Therefore, three discrete levels of 

software maturity were defined to help identify 

how stable, tested, documented, and well-used a 

particular package is. This system was heavily 

influenced by a similar model used by ROS-

Industrial. A ROS-M software component can 

have one of three maturity levels: experimental; 

developmental; and production. Experimental 

software is under active development. While it is 

sufficiently stable and useful to be distributed to 

outside users, it should not be expected to have 

stable APIs, thorough documentation, or have 

undergone rigorous testing. Developmental 

software should have rectified each of those three 

deficiencies: it should have stable APIs; those 

APIs and the package’s general usage should be 

thoroughly documented; and the package should 

have been tested in both automated tests and real 

systems. It is expected that the vast majority of 

ROS-M software will have this maturity level. 

Finally, production software has been used on 

systems that have undergone formal testing, 

validation, or certification by one or more third 

parties and have been used in realistic conditions. 

There are no formal requirements or automated 

validation tools to determine the maturity level of 

a ROS-M package; like applicable standards or 

development processes, it is one of many signals 

for potential users to evaluate software at the 

registry stage before acquiring and integrating it 

into their systems. 

Another metadata field, not unique to ROS-M, 

nonetheless has important implications for both 

producers and consumers in the ROS-M 

ecosystem. Each package may have one or more 

software licenses associated with it, identified by 

an appropriate tag within the metadata. ROS-M 

imposes no requirements on the licenses under 

which software can be included, allowing both 

copyleft licenses like the GNU General Public 

License and fully proprietary software and 

everything in between. This permissiveness will 

allow the registry to become more universal in 

scope, including as much software as possible and 

thereby attaining the greatest utility possible. If a 

ROS-M consumer desires to incorporate a package 

with a nonfree license, they may contact the 

package’s author or maintainer (both also required 

metadata fields) to inquire about licensing 

arrangements. 

 

Seed Software 
To demonstrate the use of the infrastructure and 

to test the requirements of submission to the 

registry, two sets of seed software were prepared 

during this phase as the initial contents of ROS‑M. 

The first was the Maverick path planner [4], a 

fast, sophisticated planner for unstructured 

environments developed for RTK. Maverick was 

chosen for two reasons: first, as an advanced path 

planner integrated into a complete autonomy 

system, its complexity would effectively 

benchmark the difficulty of porting software to 

ROS-M; and second, because new behaviors for 

autonomous systems typically require new or 

modified path planning systems, a path planner 

was a natural choice to investigate the 

collaborative possibilities enabled by ROS-M. The 

entirety of Maverick, including all of its 

dependencies within RTK, were adapted and 

submitted to ROS‑M. 

This adaptation was performed in two phases. 

First, Maverick and its dependencies were 
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converted to ROS 2. The porting process revealed 

gaps between the functionality made available in 

ROS 2 compared to ROS 1, and additional tools 

and libraries were developed to bridge those gaps. 

In particular, parts of RTK rely heavily on ROS 

nodelets, software components that share memory 

for efficient zero-copy message passing; ROS 

parameters, dynamic configuration variables set at 

runtime instead of compile-time; and the ROS 

launch system, a structured description of which 

nodes and nodelets to activate on system startup. 

To successfully port Maverick, each of these 

functions was first replicated in whole or in part 

within the ROS 2 framework. The additional 

capability development validated the choice of 

Maverick, because it outlined the upper end of the 

required effort to port a complex software 

component. 

The second phase of ROS-M conversion 

required providing, for Maverick and each of its 

dependent components, the additional metadata 

identified above. 

Along with the Maverick components that were 

converted to ROS 2 and adapted for ROS-M, the 

entirety of RTK Core, a stable, distribution-ready 

release of RTK, was adapted for inclusion in the 

registry. Instead of porting the entire codebase of 

nearly two hundred ROS packages, the metadata 

for each package was augmented to fulfill the 

registry requirements. (With one caveat: 

technically, the metadata requires the 

identification of which version of ROS 2 the 

package supports; however, because the remainder 

of RTK Core does not support ROS 2 at all, this 

field was populated with the ROS 1 version 

supported, namely ROS 1 Indigo Igloo.) This 

adaptation allowed RTK Core to stress the 

infrastructure software without incurring the 

engineering cost of porting the whole system. 

The other set of seed software ported to ROS-M 

was a component of a ground vehicle formations 

library, intended to localize a single vehicle as part 

of a group. The autonomy system from which this 

component was chosen does not share a common 

background with RTK, so selecting this 

component for submission to ROS‑M engaged 

some of the collaborative aspects of the 

infrastructure, namely searching across 

submissions and sharing components among 

projects. 

 

Cybersecurity 
All modern robotic systems share a set of 

cybersecurity concerns, from typical software 

vulnerabilities up to adversarial machine learning-

based exploits to spoof sensor input and disable or 

even mislead the automated vehicle. The potential 

consequences of these vulnerabilities can be dire, 

and individual systems must identify their own 

weaknesses and guard against attack. 

However, because the ROS‑M project primarily 

provides the organization and infrastructure to 

support the sharing and re-use of robotic 

components and not the components themselves, 

its concerns with respect to cybersecurity were not 

to solve its systems’ vulnerabilities, but to offer a 

set of basic best practices and a suggested set of 

tools to achieve them. 

The primary concern for the registry and 

repository, as discussed above, was access control 

for the ROS-M registry and repository to ensure 

confidentiality, integrity, and availability of those 

systems. The repository was successfully hosted 

on DI2E, addressing each of these concerns for 

that system. Similar processes are planned for the 

registry. 

An initial set of coding standards was also 

identified to provide a baseline against which 

ROS-M software components could operate. The 

chosen standard is the Carnegie Mellon University 

Software Engineering Institute CERT C++ (CMU-

SEI CERT C++) standards, coupled with a suite of 

static analysis tools based on the U.S. Navy’s 

Statick tool to assist developers in following them. 

Finally, to validate the recommendation for the 

DDS-Security profile, a man-in-the-middle attack 

was successfully demonstrated on an unsecured 

ROS 2 system simulating an automated vehicle 
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driving a planned route. The simulated vehicle 

was made to modify its repeated path in response 

to unauthorized commands. It is important to note 

that this result was expected, as ROS 2 

deliberately has no built-in security mechanisms. 

The goal of the experiment was not to suggest a 

failing of ROS 2, but to identify a solution easily 

accessible to most developers. Implementing the 

DDS-Security profile on the same system 

successfully denied the attack. 

 

Business Processes 
The healthy software ecosystem encouraged by 

ROS-M requires more than robust, secure 

infrastructure; high-quality software; and a 

reasonable, common set of cybersecurity best 

practices. Sustaining the advantages of this 

openness requires broad and diverse participation 

to ensure its utility to all members. 

Therefore, a Business Guide was developed—a 

reference for DoD executives, military executive 

officers, and senior leadership from both 

government and industry to help understand the 

value proposition of ROS‑M. The Guide provides 

an overview of the various components of 

ROS‑M, an understanding how these components 

impact various stakeholders of the Unmanned 

Autonomous Systems (UAS) community, and 

suggested best practices for including ROS‑M 

requirements in program specifications. 

To help mitigate the potential complexity of 

including the open software ecosystem of ROS-M 

in the acquisitions process, the Business Guide 

also includes a Contract Guide Template—

suggested language for a Contracting Officer or 

Program Manager to include in a solicitation. 

Suggested language is provided for the Statement 

of Work, Technical Specification, Contract Data 

Requirements List, Evaluation Factors for Award, 

and others. The Guide offers further suggestions 

for language regarding rights in technical data and 

computer software to support the overarching 

ROS-M goals of reuse of software. 

The Business Guide provides education about 

the vision and potential of ROS-M to those who 

are new to the program while also offering the 

tools necessary to realize those benefits within a 

particular program or project. 

 

FUTURE 
The prototypes systems detailed above were 

demonstrated in early 2018 to interested 

stakeholders. The populated registry was shown to 

enable component searching, evaluation, and 

discovery as intended. The seed software was 

demonstrated on multiple independent vehicle 

platforms. Because entire autonomy systems were 

not ported to ROS-M, each vehicle ran a hybrid 

software solution incorporating the ROS-M–ready 

components alongside the pre-existing software. 

To further demonstrate the interoperability 

potential of ROS-M systems, a portion of the 

demonstration was operated on both vehicles from 

a single OCU. In conjunction with the practical 

demonstrations, the cybersecurity tools and best 

practices and the ROS‑M Business Guide were 

presented for consideration and feedback. 

In the near term, development will continue on 

the infrastructure systems to ensure a stable, 

capable system for promoting, searching, finding, 

evaluating, and accessing vehicle autonomy 

software. Automation features for uploading, 

validating, and processing package metadata will 

be implemented from the designs developed 

according to the considerations discussed above.  

The conversion of RTK to ROS‑M will be 

completed to ensure that the registry contains a 

complete autonomy system for other participants 

to draw from and an exemplar of the diversity of 

software and quality of documentation expected 

and available in ROS-M. When ROS-M is made 

available to the wider community, it will have 

immediate utility for users, and a broad base on 

which for organizations to build. 

Looking to expand beyond the core development 

team, the ROS-M stakeholders have identified 

high-value robotics and autonomy related projects 
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to continue to expand the registry. In particular, 

the research products of the Robotics 

Collaborative Technology Alliance (RCTA) 

would both provide significant capability 

enhancement to the autonomy suites already 

present in ROS-M, but also test the software, 

tools, and processes developed around inclusion in 

the ROS-M registry and storage in the repository. 

These capabilities will provide immediately usable 

components for other robotics systems, and 

ROS‑M will help organize, categorize, and share 

those components among the projects and 

programs that can benefit from them most. 

The future potential of ROS-M relies not so 

much on software inclusion, however, as the 

building out of the community of interest using 

ROS-M as it is intended: as a starting point for as 

many automated or unmanned ground vehicle 

robotics projects as possible, and as a library of 

capabilities to enhance existing or future projects 

with as little duplication of effort and as much 

software re-use as can be achieved. The technical 

feasibility has already been demonstrated by the 

activities described in this paper. Most future work 

will focus not on the technical aspects, but on the 

community-building aspects, including as many 

members of the military robotics community as 

possible to ensure that the benefits of increased 

openness and communication among robotics 

software developers are shared universally. 
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