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ABSTRACT 

Autonomous driving systems (ADS) in autonomous and semi-autonomous vehicles 

have the potential to improve driving safety and enable drivers to perform non-driving tasks 

concurrently. Drivers sometimes fail to fully leverage a vehicle’s autonomy because of a lack 

of trust. To address this issue, the present study examined the influence of risk on drivers’ 

trust. Subject tests were conducted to evaluate the effects of combined internal and external 

risk, where participants drove a simulated semi-autonomous vehicle and completed a 

secondary task at the same time. Results of this study are expected to provide new insights 

into promoting trust and acceptance of autonomy in both military and civilian settings. 

 

INTRODUCTION 

Autonomous driving systems (ADS) now enable 

drivers to engage in other tasks besides monitoring 

the vehicle. Autonomous driving can be defined as 

the ability of a vehicle to drive some distance 

without human intervention [1]. Autonomous 

driving allows human operators to fully engage in 

other important tasks without the need to 

constantly engage in the driving situation [2]. For 

example, in a military setting, an important task 

might include surveillance or mission-critical 

communications. Fully leveraged, ADS have the 

potential to make human operators more 

productive. 

The benefits of autonomous driving can never be 

fully realized unless humans trust ADS. Trust in 

ADS can be defined as the willingness of human 

operators to rely on ADS for unsupervised driving, 

and the reliance on ADS occurs when operators 

willingly cede control to the automation [3]. More 

specifically, trust is an attitude toward automation 

that affects reliance, and reliance is the actual 

trusting behavior [4]. Unfortunately, drivers often 

underutilize or refuse to rely on ADS. In this case, 

drivers either do not hand over control to the 

vehicle or cannot fully focus on the secondary 

tasks even if they cede control [2,5]. Trust plays a 

vital role in understanding driver’s unwillingness 

to rely on ADS and designing countermeasures of 
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the automation [6]. In order to achieve the 

effective use of the ADS, trust and reliance should 

maintain an appropriate level over time, such that 

the ADS can fully function towards an optimal 

performance in human vehicle cooperation [7-8]. 

Early stage study on human trust in automation 

suggested that trust and collaboration efficiency 

increased constantly with the operators’ 

familiarity of the plant operation, and the size of 

faults placed a proportional impact on the loss of 

trust [9]. Lack of trust has the potential to 

undermine any potential benefits associated with 

ADS, and an appropriate level of trust is crucial 

for drivers to understand the capabilities of the 

ADS as well as adequately monitor the automation 

[10]. 

Trust in any system is heavily dependent on the 

degree of risk associated with the system [11]. 

Risk – the degree of uncertainty associated with a 

given situation – is vital to understanding driver's 

trust and reliance on ADS [12-13]. The use of 

ADS creates a situation of uncertainty and risk, as 

smart systems that take over tasks do not work 

perfectly accurately and can also make errors [14]. 

To determine the trustworthiness of a teammate, it 

is crucial that trustor and trustee share the same 

goal, or trustor can gain adequate knowledge 

about the behaviors and ability of the trustee, and 

form senses of high ability, integrity, or 

benevolence [15]. The form of trusting belief is 

based on the perceived level of risk, and a lower 

perceived level of risk leads to higher levels of 

trust [16]. Research has compared the level of 

trust to the level of perceived risk measured using 

5-Likert scales, and shows that if trust is higher 

than perceived risk, team members will intend to 

engage in the risk taking in relationships, 

otherwise they will be unwilling to engage if 

perceived risk is higher than trust [15]. Such 

relationship holds true in human-automation 

interaction, such as the teaming between the 

human driver and the ADS [10]. Despite the 

importance of risk in understanding trust, it is not 

clear how different types of risk might influence 

trust and reliance on ADS. 

This paper examines the impacts of two types of 

risk on the trust and reliance on ADS. Internal risk 

– which refers to the risk arising due to the 

uncertainty associated with the ADS [17] – was 

manipulated by varying the reliability of the 

vehicle alarms. External risk – defined as the 

uncertainty associated with the driving situation 

[18] – was manipulated by varying the driving 

visibility. Several studies have demonstrated the 

impact of risk on whether humans rely on ADS. 

Research has shown that increase in internal risk 

both reduces trust and makes trust more important, 

and with longer exposure time under risk, the 

ratings of perceived risk level decrease even 

though the objective risk level remain high [18]. 

Also, when the automation proves itself as reliable 

in recognizing the potential dangers, such as the 

encountering of vehicles or pedestrians, the 

drivers tend to trust the ADS more and place more 

reliance in the ADS [19]. On the contrary, external 

risk is likely to increase trust and reliance on ADS, 

as the sense of vulnerability can prompt trust and 

trusting behaviors of trustors on trustees [14]. For 

example, we might expect drivers to rely more on 

ADS in the presence of road sign distractions, fog, 

etc., with trust in ADS increased as well [20-21]. 

Research also indicates that driver perceived 

uncertainty and risk is dependent on trust in ADS, 

as subjective risk can be reduced by increasing 

trustworthiness [14]. As such, the research 

questions we seek to examine are: 

● Q1: Do both internal and external risk 

moderate the relationship between trust in 

and the reliance on ADS? 

● Q2:  Is the reliance on ADS positively 

associated with better task performance? 

To answer these questions, we conducted a 

human-subject experiment in a simulated driving 

environment with 36 participants. Participants 

performed the primary driving task and the 
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secondary target detection task simultaneously. In 

the experiment, we manipulated two types of risk: 

internal risk (ADS reliability) and external risk 

(driving visibility), and measured the primary (e.g., 

lane keeping, speed, etc.) task performance, the 

secondary task performance, participants’ driving 

inputs (e.g., steering and braking) and subjective 

survey responses (e.g., experience in autonomy, 

perceived trust, risk and workload, etc.). Research 

also suggested a need to complement survey 

measures of trust traditionally captured after 

studies with real-time data [22]. We thus 

accomplish this by capturing continuous trust 

measures and physiological measures, such as 

eye-tracking, heart rate, and skin conductance. 

We seek to add to the current knowledge of the 

impacts of trust in ADS and automated vehicles 

(AVs), and leverage the results of this study by 

using the data to help us determine the parameters 

needed to develop sophisticated and robust models 

of driver's trust in ADS. Results are expected to 

inform the design and development of more 

effective ADS interfaces. The contributions of the 

paper are as follows: 

1. This study contributes to the literature by 

introducing and exploring the impact of risk on 

trust in and reliance on ADS. 

2. This study examines the combined impact of 

two different types of risk: internal and external.  

 

METHOD 

This study was designed to evaluate driver trust 

in ADS under different conditions of internal and 

external risk. This study employs an experimental 

design with two levels of internal risk (reliability 

of collision warning system) and two levels of 

external risk (visibility of the driving 

environment). These conditions were 

counterbalanced using a Latin Square design to 

minimize learning and ordering effects. 

Participants were asked to operate a simulated 

vehicle while attending to a visually demanding 

secondary task. Trust was evaluated from survey 

responses and analysis of behavioral data. 

Participants 

Thirty-six licensed drivers were recruited from 

the Ann Arbor, MI area to participate in the 

experiment. The average age of participants was 

22.74 years old, including fourteen females and 

twenty-one males, and one chose not to specify. 

All participants had normal or corrected-to-normal 

color vision as well as auditory acuity. Participants 

were paid $15 for their participation and were 

eligible to receive a cash bonus based on their 

performance in the experiment. 

Tasks 

Participants were given the task of operating a 

simulated semi-autonomous vehicle while 

attending to a visually-engaging secondary task. 

The drivers were scored for their performance on 

both the primary and the secondary tasks in each 

trial. The best performers in each condition were 

promised monetary bonuses, which encouraged 

the subjects to perform their best in all four trials. 

The simulated vehicle was equipped with lane-

keeping, cruise control, and automatic emergency 

braking. Additionally, the vehicle was equipped 

with a forward collision warning system that 

issued verbal alarms when a stopped vehicle 

appeared in front of the driven vehicle. The alarms 

were verbal messages: “stopped vehicle ahead” 

played approximately 8 seconds before reaching 

each stopped vehicle, followed by either “no 

action needed” or “take control now” depending 

on whether the stopped vehicle appeared in the 

opposite lane or the same lane as the driven 

vehicle respectively.  
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Figure 1: Simulated driving view on a standard two-lane 

divided highway. Vehicle speed and driving mode are 

displayed in a heads-up display (HUD). A stopped vehicle is 

placed in front of the ego vehicle as an obstacle. 

The primary task for the subjects was to drive the 

simulated vehicle on the road, while avoiding any 

collisions. The participants would lose points if 

they failed to avoid the stopped vehicles. The 

virtual driving environment consisted of a 

standard two-lane divided highway with a hard 

shoulder, as shown in Figure 1, with a stopped 

vehicle periodically appearing ahead. Two modes 

could be chosen during the driving, “MANUAL” 

or “AUTO.” In MANUAL mode, the vehicle 

could be manually controlled with the steering 

wheel and the gas and brake pedals, as in a normal 

car. When AUTO mode was active, the vehicle 

would maintain its forward speed and stay in its 

lane without input from user and emergency stops 

were triggered before the collision with stopped 

vehicles. Participants were informed that their 

simulated vehicle was capable of driving itself and 

delivering alarms, but would not be able to 

maneuver around a stopped vehicle on the road 

given the highway speeds. In these circumstances, 

participants would have to take control of the 

vehicle by either turning the steering wheel or 

stepping on the brake.  

 

Figure. 2: The visual search task on the touchscreen. This 

task is administered on a touchscreen and required subjects 

to manually select the target shape (the letter ‘Q’). 

Simultaneously, the subjects need to complete 

the secondary task. The secondary task was a 

modified version of the surrogate reference task 

(SuRT; [23]). The SuRT resembles a target 

recognition task, as shown in Figure 2, in which 

subjects must identify a target item (the letter ‘Q’ 

in this study) from amongst a field of distractors 

(the letter ‘O’) and manually select it on a 

touchscreen located to the right of the participant. 

The goal for the subjects was to correctly identify 

the targets as fast and as many as possible, for 

which they would receive points. In the tests, the 

participants were first shown a target shape, and 

then a field of shapes including a single instance 

of the target shape, i.e., a single letter Q amidst 

O’s. Once subjects located the target shape, they 

could tap anywhere on the screen. After they 

tapped, the Q and Os disappeared and were 

replaced by circles at their corresponding locations. 

Subjects could then tap the circle corresponding to 

the location of the target shape. 

Each time the participants correctly selected the 

location of a target shape, they earned one point. 

And each time they collided into the stopped 

vehicle, or triggered the emergency stop in the 

AUTO mode, they lost 25 points. The final scores 

were recorded to decide the winners who would 

receive monetary bonus, while simulation data 

(i.e., vehicle states, take-over behaviors, etc.) and 
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psychological measurements (i.e., GRS, heart rate) 

were collected for analysis. More details of the 

collected data and variable are introduced later in 

the Dependent Variable section. 

 

Apparatus 

The study was conducted with a static driving 

simulator with three visual channels, as shown in 

Figure 3. Autonomous Navigation Virtual 

Environment Laboratory [24] is used to create the 

virtual environment and implement the semi-

autonomous driving behavior. PEBL [25] is used 

to create the non-driving task. The task itself is 

administered on a touchscreen to the right of the 

participant where a vehicle’s center console would 

be in an actual vehicle. A head-mounted eye-

tracker is used to collect participant gaze behavior 

during the study. This device captures video of the 

wearer’s field of view and of the wearer’s right 

eye. Galvanic skin response (GSR) and heart rate 

are also collected during the study. 

 

Figure 3: Driving simulator and secondary task setup. A 

volunteer is driving with the simulated vehicle while doing 

visual-search task on a touchscreen. Markers are placed on 

each monitor and the touchscreen to identify surfaces for 

eye-tracking. 

 

 

 

Independent Variables 

The study employed a  within-subjects 

design. The two independent variables in this 

experiment were internal risk and external risk. 

Internal risk was manipulated via the reliability of 

the forward collision warning system; external risk 

was manipulated via the visibility of the road due 

to fog. Each variable had two levels: low and high, 

as presented in the table below. Each subject 

experiences all four combinations, which are 

shown in Table. 1: 

Table. 1 

 
Internal risk (reliability) 

Low internal 

(100% reliable) 

High internal 

(70% reliable) 

External 

risk 

(visibility) 

Low 

external 

(high 

visibility) 

Low ext. risk - 

Low int. risk 

Low ext. risk - 

High int. risk 

High 

external 

(low 

visibility) 

High ext. risk - 

Low int. risk 

High ext. risk - 

High int. risk 

 

Under the low external risk (high visibility) 

condition, as shown in Figure 4 (a), subjects could 

see over 1000 feet down the road. Under the high 

external risk (low visibility) conditions, as shown 

in Figure 4 (b), subjects could only see about 500 

feet down the road. Fog was added to the 

simulated environment to form a low visibility 

scenario in the high external risk conditions. The 

forward collision warning played right before each 

stopped vehicle appeared in the low visibility 

conditions, i.e., when the stopped vehicle was 500 

feet ahead. Under the low internal risk (high 

reliability) condition, the forward collision 

warnings are always correct. Under the high 

internal risk (low reliability) condition, for 30% of 

the forward collisions, warnings are false positive 

alarms. The reliability levels were chosen 

considering real-life ADS systems and through the 
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feedback from the pilot study. Furthermore, false 

alarms were placed in the 2nd, the 3rd and the 5th 

encounters among the total 10 encounters, as 

studies have shown that trust is affected more by 

early failures than by later losses of reliability [22].  

 

(a) 

 

(b) 

Figure 4: The driving environment with different visibility. 

(a) High visibility case: visible distance is around 1000 feet, 

and drivers can see a stopped vehicle ahead 14 sec before 

reaching it; (b) Low visibility case: visible distance is around 

500 feet, and drivers can see a stopped vehicle ahead 7 sec 

before reaching it. 

 

 

 

 

Dependent Variables 

In the experiment, the following dependent 

variables were measured through the data 

collection: 

The survey responses were collected through 

pre-experiment and post-experiment surveys, 

which produced the preliminary results presented 

in the paper. The pre-experiment surveys 

measured the demographic and driving experience, 

the Mood via SAM [26], the driving risk tolerance 

[27], and the propensity to trust in automation [28]. 

The post-experiment surveys measured the 

perceived risk (adapted from [11]), the self-

reported trust via Trust in Automation Survey [5], 

and the workload via NASA TLX [29]. 

Also, the simulation data and the physiological 

data were collected during experiment. The 

simulation data consisted of variables of four 

categories: the simulated vehicle state, the 

proximity to the nearest upcoming stopped vehicle, 

the participant take-over behavior, and the 

participant secondary task engagement which 

included scores and reaction time. The 

physiological data consisted the eye-tracking data 

with monitoring ratio and monitoring frequency, 

the heart rate (HR) data, and the galvanic skin 

response (GSR) data. These variables would be 

used in future analysis. 

Procedure 

Participants first completed a consent form to 

participate in the study. Next, participants 

completed a pre-experiment survey, which 

consisted of questions about demographic 

information as well as experience using driving 

aids, such as adaptive cruise control and forward 

collision warning. It also included questions to 

determine each participant’s risk tolerance and 

propensity to trust in automation. 

After completing the pre-experiment survey, 

participants completed a brief training session to 
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become familiar with the vehicle controls and the 

secondary task. Following training, the eye-tracker 

and GSR/heart rate monitor were fitted and 

calibrated. Participants then completed four test 

sessions, one corresponding to each of the pairs of 

internal and external risk levels. Each driving 

session lasted approximately 10 minutes. At the 

end of each session, participants completed the 

post-condition survey. The post-condition survey 

included measures for perceived risk, trust in 

automation, and perceived workload. Surveys of 

27 subjects were administered via web-form, 

while the other 11 subjects completed surveys via 

paper-form due to software constraints. Each 

experiment lasted approximately 110 minutes. 

 

PRELIMINARY OUTCOMES 

In the final results we expect to answer the 

research questions proposed in the Introduction 

section. This paper presents the preliminary 

outcomes regarding the first question, i.e., Do both 

internal and external risk moderate the 

relationship between trust in and the reliance on 

ADS? 

Analysis has been conducted on the following 

variables: self-reported trust, reliance, risk, 

workload in ADS, which were collected from post 

experiment surveys, and the secondary task 

performance. The preliminary outcome on self-

reported trust is presented in this section. The 

analysis employs the survey responses of 27 

subjects that fulfilled surveys via web-form. The 

subjective trust scores are shown in Figure 5, each 

corresponding to one risk condition:  

 

 

Figure 5: Self-reported driver trust on the ADS. The blue 

bars show the average trust scores under four combined risk 

scenarios calculated from the survey responses.    

The trust scores for each subject were calculated 

by averaging self-reported values with five 

different trust measures on ADS (i.e., competence, 

predictability, reliability over time, dependability, 

and responsibility), using the 7-point Likert scale 

(i.e., score 1 stands for “no trust at all”, and score 

7 stands for “complete trust”). The survey 

questions on system trustworthiness are as follows: 

1. Competence: To what extent did the autonomy 

perform its function properly? In other words, to 

what extent does the driving autonomy prevent 

and help prevent collisions and enable safe multi-

tasking? 

2. Predictability: To what extent can the 

autonomy’s behavior be predicted from moment to 

moment? 

3. Reliability over Time: To what extent does the 

autonomy respond similarly when it encounters 

similar circumstances at different points in time? 

4. Dependability: To what extent can you count 

on the autonomy to do its job? 

5. Responsibility: To what extent did the 

autonomy perform the task it was designed to do? 

In other words, to what extent does the driving 
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autonomy drive safely and enable safe multi-

tasking? 

The scores were collected from the post-

experiment surveys taken after each session of 

subject trials. The histogram is presented with blue 

bars showing the average of trust scores, and black 

standard error bars showing the standard deviation.  

As indicated in Figure 5, internal risk and 

external risk have different effects on trust. The 

results imply that the internal risk (i.e., the 

reliability of warning system) has a negative 

influence on trust in the autonomy: when the 

warning system is unreliable, the drivers tend to 

trust less in the autonomy. Meanwhile, the impact 

of external risk (i.e., the visibility of driving 

environment) is minor compared to internal risk. 

The results indicate that internal risk reduces trust 

in ADS. Also, the impact of internal risk appears 

stronger than external risk. External risk shows 

minor impact on self-reported trust, which remains 

to be investigated with other trust measures. 

Nevertheless, self-reported trust through 

questionnaires may not be fully representative of 

actual trust and trusting behaviors [2,22]. It 

remains unclear how multiple factors influence the 

measures simultaneously. Further investigation 

should be conducted with continuous trust 

measures and physiological data which might 

provide a different conclusion. 

 

CONCLUSION 

In this study, the combined influence of internal 

and external risk on driver trust and reliance in the 

ADS was evaluated. A human-in-the-loop 

experiment was conducted, where subjects drove a 

simulated semi-autonomous vehicle under 

different risk scenarios. The preliminary results on 

self-reported trust suggest that 1) internal risk 

reduces trust in ADS, and 2) internal risk has a 

greater impact on trust than external risk. 

 

FUTURE WORK 

For the next step, we will consider the 

physiological data, simulation data, and use 

continuous trust measures together with the survey 

data. Based on the results, we will build a control 

model for the mutual trust between human 

operator and the ADS in semi-autonomous driving, 

which will be able to predict real-time trust 

intentions corresponding to different conditions. 

User performance in primary and secondary tasks 

would also be evaluated and modeled into the 

automation system. The outcomes of this study 

will be used to develop ADS with appropriate 

taking-over or ceding-control behaviors in human-

vehicle cooperative driving.  
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