
2019 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
AUTONOMOUS GROUND SYSTEMS (AGS) TECHNICAL SESSION

AUGUST 13-15, 2019 - NOVI, MICHIGAN

ALGORITHM FOR POINT CLOUD OCCLUSION MAPPING ON AN
AUTONOMOUS GROUND VEHICLE

Taylor C. Bybee

Jeffrey L. Ferrin, Ph.D.

Autonomous Solutions, Inc.
Petersboro, UT

ABSTRACT
For safe navigation through an environment, autonomous ground vehicles rely on

sensory inputs such as cameras, LiDAR, and radar for detection and classification

of obstacles and impassable terrain. These sensors provide data representing 3D

space surrounding the vehicle. Often this data is obscured by dust, precipitation,

objects, or terrain, producing gaps in the sensor field of view. These gaps, or

occlusions, can indicate the presence of obstacles, negative obstacles, or rough

terrain. Because sensors receive no data in these occlusions, sensor data provides

no explicit information about what might be found in the occluded areas. To

provide the navigation system with a more complete model of the environment,

information about the occlusions must be inferred from sensor data. In this paper

we show a probabilistic method for mapping point cloud occlusions in real-time

and how knowledge of these occlusions can be integrated into an autonomous

vehicle obstacle detection and avoidance system.

1. INTRODUCTION
Autonomous vehicles rely on exteroceptive sensors to

gather information about the environment. Most sensor

processing algorithms focus on what is explicitly presented in

the sensor data. However, there is information to be garnered

by what is inferred by the data. Occlusions fall into this

category. Occlusions can be defined as a blockage which

prevents a sensor from gathering data in a location. For

example, occlusions can be seen as shadows in LiDAR data.

While the sensor data itself doesn’t indicate what is in the

occluded areas, occlusions can represent negative obstacles

such as drop-offs or areas behind large obstacles. These areas

are important to identify for autonomous vehicle obstacle

detection and avoidance to work properly.

Point cloud data generated from an autonomous vehicle by

a 3D LiDAR, structured light, or stereo camera system

contains information about the objects within the field of

view. Due to the distribution of the points in each point cloud,

the current sensor field of view is inferred. If the current

sensor field of view does not match an ideal sensor field of

view, it may indicate that something may be occluding the

sensor. We present an algorithm which models the probability

of sensor occlusion in a map by incorporating an ideal sensor

field-of-view model compared against sensor data over time.

There is significant interest in the literature for detecting

terrain traversability (including occlusions such as negative

obstacles) using exteroceptive sensors, as described by

Papadakis [1]. There are some methods of occlusion and/or

negative obstacle detection using thermal information from an

IR camera [2], synthetic aperture radar [3], or stereo vision

[4], but we choose to focus our method on point cloud sensors,

especially LiDAR. Heckman, et al. describe a method that

uses LiDAR ray-tracing past detections to identify occluded

areas [5]. This method is relatively slow (1 Hz). There are

methods using gaps in LiDAR point geometry to model

negative obstacles or occlusions [6-9]. Shange, et al. chose to

compare ideal flat-world LiDAR scan lines to observed scan

lines [10]. Our method does not rely on observed point or gap

geometry and does not assume any particular point cloud

DISTRIBUTION A. Approved for public release;

distribution unlimited. OPSEC2470.

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Algorithm for Point Cloud Occlusion Mapping on an Autonomous Ground Vehicle, Bybee, et al.

Page 2 of 8

sensor scanning pattern. We instead assume a probabilistic

sensor field-of-view model (which generalizes to 3D LiDAR,

structured light, stereo cameras, and other point cloud

sensors) and updates the occlusion map using a probabilistic

model.

The remainder of the paper is as follows. Section 2 outlines

the sensor field-of-view model, the occlusion mapping

algorithm, and how it can be integrated into an obstacle

detection and avoidance system. Section 3 describes

experimental results and discussion for both sensor field-of-

view models and running the occlusion mapping algorithm on

an autonomous vehicle. Section 4 offers a conclusion and

future work.

2. OCCLUSION MAPPING ALGORITHM
Our occlusion mapping algorithm models the area around

the vehicle as a grid map where each grid cell represents the

probability of occlusion from one or more sensors mounted

on the vehicle. Updating this occlusion probability map

requires knowledge of the sensor field of view (FOV). We

choose to represent the sensor FOV as a probability mass

function centered around the vehicle. We describe the sensor-

FOV model in Section 2.1, followed by how the occlusion

map probabilities are updated with the sensor-FOV model in

Section 2.2. We then describe how this knowledge is

integrated into an obstacle detection and avoidance system in

Section 2.3.

We use an inertially-based coordinate system for the

occlusion mapping, denoted by row-column grid coordinates
(𝑟, 𝑐), and a vehicle-centric coordinate system for the sensor

field-of-view model, denoted by row-column grid coordinates
(�̂�, �̂�).

The subsequent discussion assumes only one sensor data

stream into this algorithm. This can be easily generalized to

any number of sensors by running the update equation for

each sensor at their respective scene scan rate. Each sensor

retains its own FOV model but share the occlusion probability

map.

2.1. Sensor Field-of-View Model
We describe a probabilistic model for probability of

detection within an ideal sensor FOV in this section. We do

this by defining a 2D detection probability grid map 𝐺. We

use 𝑔�̂�,𝑐̂ to denote the detection probability in the grid cell at

index (�̂�, �̂�) relative to the vehicle. This map is in the vehicle

frame, assuming the sensor mounting is static and the sensor

scanning pattern is repeating over some small time period Δ𝑇.

The grid map 𝐺 represents a probability mass function (pmf)

of getting a sensor return in each grid cell. That is, ∑ 𝑔�̂�,𝑐̂𝐺 =

1.0. It can be viewed simply as a point density function.

There are several methods for populating 𝐺. These include

using empirical data to estimate each cell value using

normalized histogram counts or simulating the sensor field of

view based on an ideal model. In either case, a 2D plane at

ground height represents an ideal, non-occluded world the

sensor FOV model is based on.

With the pmf grid 𝐺, we desire to know the probability that

a grid cell at index (�̂�, �̂�) is detected by any point when 𝑁

points are sensed in a scan of the area. We form another grid

𝑆, the cell scan detection probability grid, to store this

information with each cell denoted as 𝑠�̂�,𝑐̂. This grid is

populated from the information in 𝐺, and we assume each

point in a FOV scan is sensed independently of one another.

This can be modeled by a Binomial distribution with

parameters N and 𝑔�̂�,𝑐̂, where it determines the probability of

a single cell detected in any of 𝑁 point samples. Because these

points may not be truly independent of one another, an

aggressiveness scale factor 𝛼 is introduced to help tune the

system for reasonable results. This aggressiveness factor

merely changes the effective number of points sampled in a

scan of the scene. With the aggressiveness factor, the cell scan

detection probability for each cell in grid 𝑆 is given by

𝑠�̂�,𝑐̂ = 1 − (1 − 𝑔�̂�,𝑐̂)
𝛼𝑁

.

While the grids 𝐺 and 𝑆 are defined in a vehicle-frame, the

subsequent section uses the cell scan detection probability in

the inertial frame. Using the vehicle pose at a given time, it is

trivial to convert from vehicle frame coordinates (�̂�, �̂�) to

corresponding inertial frame coordinates (𝑟, 𝑐). It is

understood when referring to 𝑔�̂�,𝑐̂ (or 𝑠�̂�,𝑐̂), it is in reference to

vehicle frame coordinates, and when referring to 𝑔𝑟,𝑐 (or 𝑠𝑟,𝑐)

it is referring to the same cell, but in inertial frame coordinates

with the current vehicle pose in mind. In this way, the grids 𝐺

and 𝑆 need only to be computed once and stored. When

querying between inertial-frame and vehicle-frame grid

coordinates, various types of sampling interpolation may be

used, such as nearest neighbor or bilinear interpolation.

2.2. Occlusion Probability Map
We define a 2D occlusion probability grid map 𝑀. We use

𝑚𝑟,𝑐
𝑘 = 𝑃(Cell𝑟,𝑐 = Occluded | 𝑧𝑟,𝑐

𝑘−1, 𝑚𝑟,𝑐
𝑘−1, 𝑠𝑟,𝑐) to denote

the occlusion probability for grid cell at index (𝑟, 𝑐) in the

inertial frame at time 𝑘. Each cell’s occlusion probability 𝑚𝑟,𝑐
𝑘

is based on its prior occlusion probability 𝑚𝑟,𝑐
𝑘−1, the currently

observed data 𝑧𝑟,𝑐
𝑘 , and the cell scan detection probability 𝑠𝑟,𝑐.

We assume that each cell’s occlusion probability is spatially-

independent from one another, and each cell is an independent

Markov model depending only on current measurements and

previous state. Each cell in the map is initialized to some

small, non-zero occlusion probability 𝜖. The resolution of this

grid need not match the resolution of the corresponding sensor

FOV grid 𝐺.

Updates to the map 𝑚 occur every Δ𝑇 seconds at time 𝑘 =

⌊
𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙

Δ𝑇
⌋, where Δ𝑇 is the scene scan period. Between

updates, incoming point clouds are transformed from sensor

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Algorithm for Point Cloud Occlusion Mapping on an Autonomous Ground Vehicle, Bybee, et al.

Page 3 of 8

frame into the inertial frame and concatenated into a single

point cloud 𝐶𝑘.

At each update 𝑘, we determine which cells are currently

observed based on the inertially-referenced point cloud 𝐶𝑘.

We form a binary indicator list 𝑧𝑟,𝑐
𝑘 . For each point in 𝒄𝑖 ∈ 𝐶𝑘,

we find the corresponding grid cell index (𝑟, 𝑐) and add

𝑧𝑟,𝑐
𝑘 = 1 to the list. Cells that fall within the vehicle bounding

box are ignored. Once the list of observed cells is created, all

other cells are known to be currently unobserved, 𝑧𝑟,𝑐
𝑘 = 0.

These need not explicitly be added to the list as their value is

known by exclusion. There is some discussion if all points in

𝐶𝑘should automatically be counted as observed. For example,

perhaps only points approximately at ground level should be

counted as observed. Or needing to observe two or more

points per cell. For this paper, we choose to count a cell as

observed if at least one point falls within the cell and does not

fall within the vehicle bounding box.

Once the current binary observations are determined, the

grid cell probabilities are updated. For each grid cell 𝑚𝑟,𝑐
𝑘 in

the map 𝑚, we examine its corresponding current observation

indicator 𝑧𝑟,𝑐
𝑘 . If the cell is currently observed (𝑧𝑟,𝑐

𝑘 = 1), this

cell is not occluded and the probability of occlusion is set to

zero, 𝑚𝑟,𝑐
𝑘 = 0. If the cell is not currently observed (𝑧𝑟,𝑐

𝑘 = 0),

there are two options: the cell has already been observed or

the cell has never been observed. If the cell has already been

observed, it already has zero occlusion probability and this is

propagated, 𝑚𝑟,𝑐
𝑘 = 𝑚𝑟,𝑐

𝑘−1 = 0. If the cell has never been

observed, we run the update equation.

The update equation examines the previous occlusion

probability 𝑚𝑟,𝑐
𝑘−1 and the scan cell detection probability 𝑠𝑟,𝑐.

We assume that successive 𝑠𝑟,𝑐 are independent. As described

above, this may not always be the case. If the cell scan

detection probabilities are indeed independent (or assumed to

be independent through a heuristic described below), the

update equation is performed. If the cell scan detection

probability at time 𝑘 is not independent of the cell scan

detection probability at time 𝑘 − 1, the update equation does

not apply, and the previous value propagates through, 𝑚𝑟,𝑐
𝑘 =

𝑚𝑟,𝑐
𝑘−1. The update equation is shown in Equation (1).

𝑚𝑟,𝑐
𝑘 = 1 − (1 − 𝑠𝑟,𝑐)(1 − 𝑚𝑟,𝑐

𝑘−1) (1)

This update equation describes a sequence of Bernoulli

random variables that are independent but not identically-

distributed due to the changing parameter 𝑠𝑟,𝑐. This equation

is written in a recursive format and represents the probability

that a cell is not observed over a sequence of observation

probabilities. If the cell is not in the sensor field of view, then

𝑠𝑟,𝑐 = 0, and the probability simply propagates, 𝑚𝑟,𝑐
𝑘 =

𝑚𝑟,𝑐
𝑘−1. This decision flow is shown in Figure 1.

Because the sensor FOV model does not (typically)

represent a truly random process, at least at our level of

abstraction, if a vehicle is stationary, successive 𝑠𝑟,𝑐 may not

be independent. We create an independence heuristic which

allows us to approximate when successive 𝑠𝑟,𝑐 are

independent. Because a sensor’s detections are usually

spatially-repeatable (i.e. when a sensor is stationary, it gets

returns from approximately the same grid cells in each scan),

we choose to make this independence heuristic based on

sensor movement. Since the previous iteration update, if the

sensor has moved some fractional (e.g. half) amount of the

grid cell size then the successive 𝑠𝑟,𝑐 values are assumed to be

independent and Equation (1) applies. If this movement is not

detected, we assume no independence and the cells in map 𝑀

are not updated per the description above. A similar rule can

be created for heading or rotational changes.

At each update, the map is sent to an obstacle detection and

avoidance system providing information about occlusions.

Occlusion information can help infer non-drivable areas.

Figure 1. Flowchart for cell update process.

2.3. Integration into an Obstacle Detection
System

The obstacle detection and avoidance system on an

autonomous vehicle typically includes the use of a 2D

drivability grid 𝐷. This grid represents if a vehicle can safely

traverse some area. The cells nearby a projected or assigned

path are checked for drivability. If not drivable, the obstacle

avoidance system is configured to either stop for or maneuver

around the non-drivable area. In this section we describe how

the occlusion map can represent non-drivable areas.

We choose to represent the occlusion map probabilities as

four states: (1) Observed, (2) Unknown, (3) Not Likely

Occluded, and (4) Likely Occluded. The mapping between

each cell occlusion probability 𝑚𝑟,𝑐
𝑘 and these states are

shown in Table 1.

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Algorithm for Point Cloud Occlusion Mapping on an Autonomous Ground Vehicle, Bybee, et al.

Page 4 of 8

Table 1. Occlusion Probability to Occlusion State Mapping

Cell State Probability Range

Observed 𝑚𝑟,𝑐
𝑘 = 0

Unknown 𝑚𝑟,𝑐
𝑘 = 𝜖

Not Likely Occluded 𝜖 < 𝑚𝑟,𝑐
𝑘 < 𝑜𝑡ℎ𝑟𝑒𝑠ℎ

Likely Occluded 𝑜𝑡ℎ𝑟𝑒𝑠ℎ ≤ 𝑚𝑟,𝑐
𝑘 ≤ 1

The threshold 𝑜𝑡ℎ𝑟𝑒𝑠ℎ which differentiates Not Likely

Occluded from Likely Occluded is chosen such that 𝜖 <
𝑜𝑡ℎ𝑟𝑒𝑠ℎ < 1, and is tunable for the sensor, operating speed,

and other configuration parameters. In most applications, we

choose to indicate the Likely Occluded state as non-drivable

with the other states as drivable. A state-transition model is

shown in Figure 2.

Figure 2. Occlusion state transition model for each cell. States Not

Likely Occluded and Likely Occluded are combined in this

diagram because they are only differentiated by a user-defined

threshold.

The probability-to-state mapping operates on each cell

individually. However, because small occluded areas may not

be considered non-drivable for a particular application, spatial

voting or filtering can take place. Different methods such as

k-nearest-neighbors classification [11], the number of Likely

Occluded cells in a Moore Neighborhood, or other techniques

can be used to ensure that only larger Likely Occluded areas

are marked as non-drivable in the drivability grid. In our

implementation, we choose to do spatial voting based on the

number of Likely Occluded cells in the Moore Neighborhood.

3. EXPERIMENTAL RESULTS AND
DISCUSSION

These experiments were performed at Autonomous

Solutions, Inc. (ASI) facilities in Petersboro, UT. We show

how the sensor field of view is modeled for an Ouster OS-1

64 LiDAR sensor mounted on the Ford Escape in Section 3.1.

We also show the distances a moderate drop-off is detected

by this algorithm in Section 3.2, using a Velodyne VLP16

sensor.

The occlusion mapping algorithm is implemented in C++,

including some code/structure optimizations allowing for

real-time operation. The computer running the occlusion

mapping algorithm is a 64-bit i7-3720-QM 2.60 GHz 8-core

machine with 7.4 GiB memory running Ubuntu 16.04. The

algorithm, implemented in C++ with a ROS2/DDS [12]

communication layer, ran with an average of 7.3% CPU

(based on data from the top task manager utility). This shows

reasonable CPU load for our algorithm. The algorithm

complexity is primarily based on the number of grid cells

within the sensor field of view. We ran the algorithm at 10

Hz, matching the Ouster and Velodyne sensor scene scan rate.

3.1. Ouster OS-1 64 Sensor Field-of-View
Model

In this experiment, we show both empirical FOV modeling

and simulated distribution modeling for the Ouster OS-1 64

sensor.

We first show empirical modeling with real data. This is

done by collecting representative data while driving through

an open area. The point cloud is transformed into the vehicle

frame by means of its mounting information. Points within the

vehicle bounding box are ignored. The remaining points are

inserted into a 2D histogram corresponding to the pmf grid 𝐺,

then normalized according to the total number of points. This

forms the pmf grid.

We collected data from the Ouster OS-1 64 sensor mounted

on a Ford Escape driving in an open field. The terrain was

smooth, but the vehicle rolled and pitched considerably. We

selected 102 scans from the data to form this model. An

example point cloud from the data collection is shown in

Figure 3. The grid resolution is 0.25 meters. We show an

image representing 𝐺 in Figure 4. We create the cell scan

detection probability over a scan using 𝑁 = 65,536 and 𝛼 =
1.0. This is shown in Figure 5.

We now show the simulated sensor modeling for the Ouster

OS-1 64 LiDAR. It has a vertical scan line range of −16.6° ≤
𝛾 ≤ 16.6° and a horizontal scan range of −180° ≤ 𝜃 < 180°
[13]. We choose to restrict the horizontal scan range to only

ahead of the sensor −90° ≤ 𝜃 < 90°. With only half the

horizontal scan range, we expect 655,360 points per second.

At a scan rate of 10 Hz, we have 𝑁 = 65,536 points per scan.

Its maximum range at 10% reflectivity is 40 meters. Because

we are generating the grid map 𝐺 in vehicle frame, we require

knowledge of the mounting rotation and translation (𝑅, 𝒕) of

the sensor relative to the vehicle frame.

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Algorithm for Point Cloud Occlusion Mapping on an Autonomous Ground Vehicle, Bybee, et al.

Page 5 of 8

Figure 3. Example point cloud from the Ouster sensor, colored by

radial angle. Note the blind spots due to roof mounting brackets.

The approximate vehicle bounding box (yellow) is shown, with

the vehicle facing to the right.

Figure 4. PMF (grid 𝐺) from empirical Ouster data. Note the

shadows present, caused by the mounting brackets. The

approximate vehicle bounding box (yellow) is shown, with the

vehicle facing to the right. The side of the grid is approximately

80 meters.

Figure 5. Cell scan detection probability map (grid 𝑆) for

empirical Ouster data. Note the shadows present, caused by the

mounting brackets. The approximate vehicle bounding box

(yellow) is shown, with the vehicle facing to the right. The side

of the grid is approximately 80 meters (same spatial scale as

Figure 4).

We uniformly sample 𝑛𝛾 and 𝑛𝜃 angles at angular

differences of Δγ and Δ𝜃 in the vertical and horizontal

directions, respectively, to get 𝑛 = 𝑛𝛾𝑛𝜃 rays within the

simulated field of view. Note that these values do not

necessarily correspond to the sensor laser count or data rate.

Each unit-length ray 𝒓𝑖 is formed by transforming the

spherical coordinates to Euclidean coordinates, 𝒓𝑖 =

[

 sin (

𝜋

2
− 𝛾) cos (𝜃)

sin (
𝜋

2
− 𝛾) sin (𝜃)

cos (
𝜋

2
− 𝛾)]

. For each ray we desire to know where

it intersects the ground plane relative to the vehicle frame.

This can be done by using the vector representation of the line

𝒍𝑖 coincident with the ray, 𝒍𝑖(𝑑) = 𝒕 + 𝑑𝑅𝒓𝑖 where 𝑑 ∈
[𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥] and represents the distance along the ray from

the sensor. The ground intersection occurs when the 𝑧-

component of 𝒍𝑖 is zero. The corresponding value 𝑑 can be

found in closed-form. Because not all rays intersect the

ground plane, we ignore any points with values of 𝑑 that are

greater than the maximum range 𝑑𝑚𝑎𝑥 , smaller than the

minimum range 𝑑𝑚𝑖𝑛 , negative, or infinite. We also remove

any points that fall within the vehicle bounding box. This

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Algorithm for Point Cloud Occlusion Mapping on an Autonomous Ground Vehicle, Bybee, et al.

Page 6 of 8

leaves a valid ground point 𝒑𝑖 representing where the ray 𝒓𝑖

intersects the ground.

With the valid ground points 𝒑𝑖 we form a 2D histogram

from these points according to their horizontal positions in the

grid 𝐺, then normalize each histogram bin according to the

total number of valid points. This forms the desired pmf grid

𝐺.

We simulate the Ouster OS-1 64 sensor using this method.

This was done with Δ𝛾 = 0.001°, Δ𝜃 = 0.001°, 𝒕 = [
3.0
0.0
2.0

],

and pitched 7° down from horizontal. The grid resolution is

0.25 meters. We show an image representing 𝐺 in Figure 6.

We create the cell scan detection probability using 𝑁 =
65,536 and 𝛼 = 1.0. This is shown in Figure 7.

Comparing the results of the simulated modeling to the

empirical modeling shows significant similarities. The

simulated model shows a smoother surface than the empirical

model. The empirical model naturally models things like

mounting bracket shadows but is limited to specific vehicle-

sensor configurations.

Figure 6. PMF (grid 𝐺) of simulated Ouster FOV. The

approximate vehicle bounding box (yellow) is shown, with the

vehicle facing to the right. The side of the grid is approximately

80 meters.

Figure 7. Cell scan detection probability map (grid S) for

simulated Ouster FOV. The approximate vehicle bounding box

(yellow) is shown, with the vehicle facing to the right. The side

of the grid is approximately 80 meters (same spatial scale as

Figure 6).

3.2. Drop-Off Detection on Autonomous
Ford Escape with Velodyne VLP16

We have done extensive testing and analysis of this

algorithm with a Velodyne VLP16 mounted on a Ford Escape

equipped with the ASI vehicle automation kit. We quantify

the utility of this algorithm with the distance a moderate drop-

off is detected as occluded head-on at various speeds. The

selected drop-off is approximately eight feet down at a nearly-

undrivable slope. This is shown in Figure 8. The approach to

the drop-off is shown in Figure 9.

Three manually-driven runs were made at the drop-off

while recording the output of this algorithm. The vehicle

started approximately 60 meters uphill from the drop-off and

accelerated to speeds of approximately 5 mph, 10 mph, and

15 mph, slowing down in time to stop for the edge of the drop-

off. The algorithm used 𝛼 = 0.02 with 1.0-meter grid cells

and 𝑜𝑡ℎ𝑟𝑒𝑠ℎ = 0.5 with a simulated VLP16 field-of-view

model. The algorithm output was post-processed to identify

the approximate distance from the vehicle control point

(center of rear axle) at which the algorithm first indicated the

drop-off was occluded. These results are shown in Table 2.

The drop-off was successfully identified as an occlusion in

each case over 20 meters away. The occlusion map is shown

in Figure 10. With reasonable braking and good friction, this

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Algorithm for Point Cloud Occlusion Mapping on an Autonomous Ground Vehicle, Bybee, et al.

Page 7 of 8

should give an autonomous system plenty of time to slow or

stop for the drop-off at these speeds.

Figure 8. Drop-off used for the test.

Figure 9. Approach to the drop-off. The drop-off is highlighted.

Table 2. Occlusion detection distance at various speeds.

Approximate Speed Occlusion Detection Distance

5 mph 25.1 meters

10 mph 22.3 meters

15 mph 21.2 meters

Figure 10. Occlusion map for 15 mph run after drop-off is detected

as Likely Occluded. Green grid dots show Observed cells; red grid

dots show Likely Occluded cells. Unknown and Not Likely

Occluded cells are not shown. Current VLP16 points are colored

in a blue. The vehicle bounding box is in yellow. Note how the

unobserved area “within” the hillside (left of the vehicle) are also

marked as occluded in addition to the drop-off (forward of the

vehicle).

4. CONCLUSION AND FUTURE WORK
This algorithm shows a robust input to an obstacle detection

and avoidance system. It is robust because it does not process

the data implicitly and has a relatively simple probabilistic

model. It quickly and accurately identifies large occlusions,

typical of negative obstacles and areas behind large objects,

and works with a variety of point cloud sensors. It does not

rely on machine learning or deep learning to perform its tasks

and needs very little configuration to become operable. One

other benefit is that when a sensor becomes obscured due to

dust, foliage, or precipitation, or has a sensing or

communication failure, this algorithm identifies areas that

have not been sensed and can warn the vehicle when no data

is observed in its operating area or path.

Future work includes investigating better independence

heuristics for sequential field-of-view measurements.

Incorporating a forgetting factor when a cell has not been

observed for some time may also be useful; this would help

emphasize more recent occlusions in a changing environment.

Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Algorithm for Point Cloud Occlusion Mapping on an Autonomous Ground Vehicle, Bybee, et al.

Page 8 of 8

ACKNOWLEDGEMENTS
This research is funded by the U.S. Department of Defense

SBIR contract W56HZV-17-C-0050. Intellectual property

protections are being pursued by Autonomous Solutions, Inc.

REFERENCES
[1] P. Papadakis, “Terrain traversability analysis methods

for unmanned ground vehicles: a survey,” in Engineering

Applications of Artificial Intelligence, 26.4 (2013): 1373-

1385.

[2] A.L. Rankin, A. Huertas, and L.H. Matthies. "Night-

time negative obstacle detection for off-road autonomous

navigation." Unmanned Systems Technology IX. Vol. 6561.

International Society for Optics and Photonics, 2007.

[3] Z. Jiang, J. Wang, Q. Song, and Z. Zhou. "Negative

obstacle sensing based on real data of ultra-wideband SAR."

(2015): 5-5.

[4] H. Karunasekera, H. Zhang, T. Xi, and H. Wang. "Stereo

vision based negative obstacle detection." 2017 13th IEEE

International Conference on Control & Automation (ICCA).

IEEE, 2017.

[5] N. Heckman, J.F. Lalonde, N. Vandapel, and M. Hebert.

"Potential negative obstacle detection by occlusion labeling."

2007 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2007.

[6] J. Larson and M. Trivedi. "Lidar based off-road negative

obstacle detection and analysis." 2011 14th International

IEEE Conference on Intelligent Transportation Systems

(ITSC). IEEE, 2011.

[7] A. Sinha and P. Papadakis. "Mind the gap: Detection and

traversability analysis of terrain gaps using LIDAR for safe

robot navigation." Robotica 31.7 (2013): 1085-1101.

[8] L. Chen, J. Yang, and H. Kong. "Lidar-histogram for fast

road and obstacle detection." 2017 IEEE International

Conference on Robotics and Automation (ICRA). IEEE,

2017.

[9] R.D. Morton and E. Olson. "Positive and negative

obstacle detection using the HLD classifier." 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems.

IEEE, 2011.

[10] E. Shange, X. An, T. Wu, T. Hu, Q. Yuan, and H. He.

"Lidar based negative obstacle detection for field autonomous

land vehicles." Journal of Field Robotics 33.5 (2016): 591-

617.

[11] N.S. Altman. "An introduction to kernel and nearest-

neighbor nonparametric regression." The American

Statistician 46.3 (1992): 175-185.

[12] “ROS2 Overview.” Open Robotics, 5 April 2019,

https://index.ros.org/doc/ros2/. Accessed 2 May 2019.

[13] “OS-1 Lidar Sensor.” Ouster Lidar, Ouster, Inc., 2019,

www.ouster.io/product-os1/. Accessed 27 March 2019.

https://index.ros.org/doc/ros2/
http://www.ouster.io/product-os1/

