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ABSTRACT 

Off-road autonomous navigation poses a challenging problem, as the surrounding terrain is 
usually unknown, the support surface the vehicle must traverse cannot be considered flat, and 
environmental features (such as vegetation and water) make it difficult to estimate the support 
surface elevation. This paper will focus on Robotic Research’s suite of off-road autonomous 
planning and obstacle avoidance tools.  Specifically, this paper will provide an overview of our 
terrain detection system, which utilizes advanced LADAR processing techniques to provide an 
estimate of the surface.  Additionally, it will describe the kino-dynamic off-road planner which 
can, in real-time, calculate the optimal route, taking into account the support surface, obstacles 
sensed in the environment, and more.  Finally, the paper will explore how these technologies have 
been applied to a wide variety of different robotic applications. 
 
 

1. INTRODUCTION 
Reliable autonomous mobility in an outdoor 

cross-country environment presents a set of 
challenges that are not common to on-road systems. 
Specifically: 
 The support surface that the vehicle must 
traverse s not given and cannot assume to be flat as 
in the on-road environments. Vegetation and water 
make it challenging to estimate the support surface 
elevation. 
 Unlike on-road scenarios, a-priori 
knowledge of the terrain is not available or is poor 
in most cases. 
 Problems of localization and therefore 
registration are exacerbated by the fact that 
differential GPS is not available for many military 
applications. 
 Real-time sensing and scene interpretation 
are costly and produce large onboard computational 
and bandwidth requirements. 

 Classification of vegetation between 
traversable and non-traversable is at large an 
unsolved problem. 
 Medium range sensing (50 to 200 meters) is 
very poor. 
Developing platforms in off-road environments has 
the added challenge of the large amount of support 
personnel needed to test, deploy, and maintain the 
robotic platforms. Robotic Research is one of the 
few autonomy providers that not only has 
developed the software and hardware needed for 
the deployment of off-road robotic systems, but 
also, since its inception, emphasized the need to 
work in tough field conditions that mimic realistic 
military scenarios. This paper will present the 
approach and results.  

 
2. ARCHITECTURE 

  Planning algorithms have been in literature for 
many years [1]. Hierarchical approaches to 
planning and representation have been studied 
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under the label of operations research for an even 
longer period of time. There are undeniable 
advantages to organizing the control system 
hierarchical structures [2]. Some of these 
advantages included: 
 Reduction of computational burden. 
 Homogeneous resolution within each level 
and therefore easier representation. 
 Ability to re-plan at different rates at each 
level (slower re-planning at the top of the hierarchy 
and faster re-planning at the bottom of the 
hierarchy). 
 Distribution of computational burden between 

levels (i.e. distributed computing). 
 Efficient compression of representation.  
  In our case, we follow the RCS hierarchical 
architecture [3], [4]. RCS is a hierarchical control 
system divided into a multiplicity of levels of 
resolution. At the top of the hierarchy, the 
representation is coarse with large time and space 
horizons and slow re-planning cycles. At the 
bottom of the hierarchy, the opposite is true. Fast 
re-planning cycles at the bottom provide the 
stability and quick response; however, the scope is 
small in the time and space. In comparison with 
behavioral approaches, hieratical systems tend to 
create a more explicit world representation. Cost 
criteria are used to evaluate a model of the system 
traversing the predicted world representation to 
achieve the assigned goal. First, a very coarse 
behavior is generated at the top of the hierarchy, 
and then this same behavior is refined at each level 
of the hierarchy. Proponents of hierarchical 
architectures argue that applying cost evaluation 
criteria is much easier to resolve using a complete 
representation as opposed to dealing with multiple, 
sometimes contradicting, sets of behaviors. 
However, complex world representations and the 
complexity of testing plan combinations make the 
implantation of hierarchical systems challenging. 
RCS contains both reactive and deliberative 
(planning) components. Hierarchical architectures 
tend to lean toward planning solutions because they 
have a representation that allows the prediction 

components necessary for planning. Behavioral 
approaches tend to be more reactive in nature, 
which is sufficient for simple environments. 
  Within a hierarchy, sensing and perception loops 
tent to cluster the sensed data and, if needed, pass it 
to supervisor levels creating an upward flow of 
representation. On the other hand, commands tend 
to flow downward from coarse levels with large 
scopes, to the higher resolution levels with shorter 
scopes and faster control loops.  
  Figure 1 shows the outline of an RCS chain of 
command. Each level of the hierarchy (3 in the case 
of the figure) is composed of three different 
functional entities: Sensory Processing (SP), World 
Model (WM), and Behavior Generation (BG). 
 
Sensory Processing collects clusters and classifies 
data supplied by the sensors. The results of SP are 
sent to the WM for archival and registration. Low 
level SPs (bottom of the hierarchy) tend to deal 
with pixels and higher levels deal with discrete 
entities such as concepts that reflect several layers 
of sensor fusion.  
World Model serves as a repository of SP results as 
well as serves to the BG modules. It collects 
registers and fuses information across time, as well 
as being the keeper of all the a-priori knowledge. 
Since it keeps the models of the level’s working 
space, it predicts the outcome of behaviors 
generated by the GB module. 
Behavior Generation hypothesizes the sets of 
alternative plans that may satisfy the command sent 
from the level above and sends them to the WM for 
evaluation. Pans that satisfy the requirements of the 
supervisor as well as cost criteria sent with the 
command are then sent to the surrogate levels for 
further refinement and execution.  
  There are many subtleties of RCS that help to 
reduce complicity. The modular approach 
encourages reusability of code at different levels 
[5], [6]. 
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Figure 1: Outline of an RCS hierarchy 

 
3. AUTONOMOUS MOBILITY  

Figure 2 shows the different RCS levels used for 
autonomous vehicle control, as well as the different 
interfaces and suggestions for control cycle times. 
In this paper, we will concentrate on the Subsystem 
and Primitive levels for locomotion. 
  We assume that the Vehicle Level will generate 
coarse plans for the vehicle to follow, and that these 
paths will be sent to the Subsystem Level for 
execution.  
  At the bottom of the RCS hierarchy are the sensors 
and actuators. LADAR is the primary sensor used 
in our off-road platforms. This sensor provides 
about one hundred thousand measurements per 
second to a range of about 100 meters. Other 
sensors include color camera, inertial 
measurement, and Radar.  
 

 
Figure 2: RCS Hierarchy for mobile platforms 

 
4. SUPPORT SURFACE 
   In order to plan how to traverse the terrain in front 
of the vehicle, the BG modules need to be aware of 
the support surface. Determining the support 
surface is often a trivial task for on-road 
environments; however, in off-road environments, 
the presence of vegetation, dust, and water make 
the problem more difficult.  

Our approach has the following steps: 
 LADAR range measurements are 
geometrically transformed into a voxel 
representation, centered around the vehicle and 
collected as the vehicle moves through the terrain.  
 The voxels record both “hits” and 
“transparencies.” For each range measurement one 
hit occurs per laser beam at the measured distance. 
Whereas several transparencies occur along every 
laser beam, starting at the LADAR and extending 
just short of the measured distance. Voxels with 
recorded transparencies are partially if not 
completely transparent.  
 A robust minimum (height) is used between 
the hits and transparencies counts to determine the 
support surface.  
 A robust ratio between the transparencies 
and hits is used to determine the “density” of a 
particular voxel. We assume that a less transparent 
voxel will be more likely to be solid than a more 
transparent one. This is an assumption that is not 
always true (i.e. glass or steel wire). Therefore, 
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other attributes from the color cameras are used to 
better classify the traversability of the voxels.  
  Figure 3 shows the support surface found using 
the above described method for a terrain with 
shoulder height grass. The inverted cones show the 
path taken by the vehicle. The bottom of the cone 
is the location of the center of the navigation unit 
where the wheels should meet the support surface. 
The cones are 1 meter high. The blue surface is the 
predicted support surface. The walls that cross the 
path of the vehicle are the cross cuts of the voxel 
representation. This was done because if all voxels 
were displayed the support surface would not be 
viewable. The color of the cross cuts represents the 
number of hits (middle) and transparencies 
(bottom). The darker the red (green) color of the 
voxel, the more hits (transparencies) the particular 
voxel received. For most of the data collected, the 
error between the predicted support surface and the  
 
actual support surface does not exceed 0.25 meters 
for this kind of vegetation. The denser the 
vegetation the harder it is for laser beams to 
penetrate; and therefore, larger errors could be 
generated. The errors are monitored online as the 
vehicle compares predicted and actual elevation 
and makes adjustments to attitude and speed 
accordingly. Each voxel in the figure is 0.4 x 0.4. 
0.1 meters. 
  The voxel representation is only used at the 
Primitive Level since the number of hits available 
in the Subsystem Level is not large enough to 
determine an accurate support surface. The 
LADAR does not give consistent measurements of 
the horizontal plane beyond 20 meters because of 
the shallow angle of incidence. 
 

 

 

 
Figure 3: Grassy field (top) voxel hits through field (middle) 
and transparencies (bottom)collected for a vehicle traversing 
shoulder height vegetation 
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5. PLANNING ALGORITHM 
A support surface is only calculated in the 

Primitive Level. Therefore, the strategies used for 
calculating the cost traversal at the Primitive and 
Subsystem Level are significantly different.  

At the Primitive Level, the support surface is used 
to determine the stability as well as the roughness 
of the ride through several potential plans. At the 
Subsystem Level (past 20 meters) only sensed 
obstacles and a-priori data are used. The LADAR 
reasonably detects vertical obstacles up to 60 
meters.  

In both cases, the BG modules are graph based 
searches. [7] shows in more detail how these graphs 
are generated. Figure 4 shows the Primitive Level 
(curvy paths in the center) and the Subsystem Level 
(straight path in the outskirts) graphs. The top 
figure shows the graph used for an initial condition 
where the vehicle has the wheels pointed straight 
ahead, while the bottom picture shows the graphs 
used when the vehicle has the wheels placed on the 
smallest turning radius.   

 
5.1. Primitive Level 

The Primitive Level graph computed offline 
(Figure 4) contains some of the parameters needed 
to calculate the cost to traverse each potential path. 
For example, the length and the side accelerations. 
Cost must also be added to account for traversing 
the local terrain. This includes the support surface 
and the “density” of the terrain that must be 
traversed to follow each trajectory. Therefore, the 
BG module uses the WM representation to evaluate 
the cost of traversal. Figure 5 shows how vehicle 
masks are placed along each of the Primitive Level 
trajectories. These masks are used to compute pitch 
and roll along each path. The masks are also used 
to compute the amount of “density” that the vehicle 
must traverse to follow that trajectory. Other terms 
in the cost function include the roughness that each 
wheel will have to follow across the path, as well 
as checks for protruding objects that my hit the 
undercarriage of the vehicle.  
 

Figure 4: Egographs for the Primitive and Subsystem Level 
 
Another important factor in whether a particular 

tile has already been seen. The cost evaluation will 
assign larger costs to trajectories that place the 
wheels of the vehicle in tiles that have never been 
seen by the sensor because these tiles have 
unknown elevation and may be holes or ditches. As 
these unknown elevation tiles get closer to the 
vehicle, the cost of the trajectories that cross them 
increases nonlinearly with distance.  
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All of these parameters are taken under 
consideration in order to calculate the costs of each 
trajectory. They are computed as the search is 
underway. Therefore, trajectories (or edges of the 
graph) that are not opened by the search algorithm 
do not get evaluated. Re-planning at this level is 
done at 4-10 Hz.   
 

 
Figure 5: Placing vehicle masks across the paths to compute 
cost 

 
5.2. Subsystem Level 

The Subsystem Level representation only 
contains obstacles and a-priori data. In cases where 
only 30 meter DTED data is available, elevation is 
ignored as its accuracy is not sufficient for 
planning. The obstacles at this level are found by a 
cumulative probabilistic measure of the obstacles 
reported by the LADAR and stereo systems. The 
detections are accumulated in the world model as 
the vehicle is moving through the terrain. The 
trajectories used by this level are straight line 
approximations. It is not necessary to generate 
kinematically correct trajectories since the 
Primitive Level will have many opportunities 
(planning cycles) to refine the path selected by this 
level. The planner finds the optimal shortest 
obstacle free path available in the graph. The graph 
used by the Subsystem Level can be seen in Figure 
4.  

Figure 6 shows both levels at work. In this 
example, the vehicle was crossing a bridge in a 
wooded area. The top figure shows the Vehicle 
Level plan (purple trajectory) that misses the 
bridge. This trajectory was done by using 30 meter 
DTED. Because of the inaccuracies of the a-priori 
data and the GPS drift, the Vehicle Level plan only 
marks the path coarsely across the bridge. The 
Subsystem and Primitive Level of pith pictures 
show areas that have not been seen by any of the 
sensors.  

 

 

Figure 6: Primitive and Subsystem Levels traversing a 
bridge. Top and 3-D view 
 
6. HIGH MANEUVERABILITY PLANNER 

In some cases, such as physical blockages or 
barriers in a path, it is necessary to plan paths 
outside the geometry of the planned trajectory. In 
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these scenarios, the High Maneuverability Planner 
(HMP) is used. The HMP generates trajectories for 
the robot that avoid obstacles while meeting the 
constraints imposed by the operator (no-go areas, 
speed limits, etc.). The input to the HMP is a 
moving robot centered 3-D representation of the 
local environment. It outputs a trajectory to be 
followed by a path tracking module on the robot 
that controls wheel speeds and steering. The HMP 
combines all sensor information into a single 
representation of the environment that is the 
utilized to evaluate the cost of performing different 
actions. The resulting trajectories are sequences of 
vehicle state/time pairs that the vehicle control 
processes follow. Among other things, the state 
information includes the desired vehicle position 
and attitude. By including kino-dynamic 
constraints, HMP can protect the robot from 
accidents involving over-steering as well as 
collisions with obstacles. When conditions require 
invoking the HMP, the resulting path is used to 
temporarily augment the previous plan. Figure 7 
illustrates the interaction of the HMP with other 
planning methods. 

 

 
Figure 7: Interaction between HMP and other planning 
methods. 
 
7. RESULTS 

During the US Marine Corp Warfighter Lab 
(MCWL) Intuitive Robotic Control of Autonomous 
Behaviors (IROC) experiment in 2017, Robotic 
Research demonstrated a fully autonomous MUTT 
vehicle traversing a gauntlet of obstacles without 

the use of GPS. MCWL provided feedback that the 
Robotic Research autonomous vehicle, shown in 
Figure 8, completed the course faster than any other 
autonomous vehicle to date. 

 

Figure 8: Robotic Research autonomous MUTT vehicle 
traversing gauntlets at IROC (Muscatatuck, Indiana) 

 
8. CONCLUSIONS 
 The challenges that can be found in 
traversing cross country are not the same that are 
available for on-road environments.   
 RCS hierarchical architecture is well suited 
for off-road mobility. 
 Novel support surface computations and 
planning algorithms have been developed to deal 
with the challenges of the environment.  
 Kino-dynamic planning has been developed 
to deal with the most complex and/or dynamics 
environments.  
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