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ABSTRACT 
Significant advances in sensing, robotics, and wireless networks have 

enabled the collaborative utilization of autonomous aerial, ground and underwater 

vehicles for various applications. However, to successfully harness the benefits of 

these unmanned ground vehicles (UGVs) in homeland security operations, it is 

critical to efficiently solve UGV path planning problem which lies at the heart of 

these operations. Furthermore, in the real-world applications of UGVs, these 

operations encounter uncertainties such as incomplete information about the target 

sites, travel times, and the availability of vehicles, sensors, and fuel. This research 

paper focuses on developing algebraic-based-modeling framework to enable the 

successful deployment of a team of vehicles while addressing uncertainties in the 

distance traveled and the availability of UGVs for the mission. 
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1. INTRODUCTION 
 

Intelligence, surveillance and reconnaissance (ISR) 

are critical missions within military operations, and 

modern-day combat zones pose important 

challenges for ISR [6] [8-9]. ISR operations are 

maintained through effective and efficient 

information collection. Unmanned ground vehicles 

(UGVs) are an important asset for ISR, target 

engagements, convoy operations for resupply 

missions, search and rescue, environmental 

mapping, disaster area surveying and mapping. 

Depending upon the nature of the missions, 

UGVs are preferred over other collection assets. 

Some of the instances where UGVs are preferred 

include: unsuitable terrain for human or unmanned 

aerial vehicles (UAVs), harsh and hostile 

environment, tedious information collection 

process for humans, and many more. 

Despite the numerous advantages of UGVs, their 

size and limited payload capacity lead to fuel 

constraints and therefore, they are required to make 

one or more refueling stops in a long mission. 

 

DISTRIBUTION A. Approved for public release: 

distribution unlimited. OPSEC# 2818. 
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Moreover, these operations encounter unknown 

terrain or obstacles, resulting in uncertainty in the 

fuel (or time) required to travel among different 

points of interests (POIs); for example, in a hostile 

terrain with improvised explosive devices (IEDs), 

conducting anti-IED sweeps and explosive 

ordinance disposal can lead to unexpected delays 

for UGVs. In fact, in many applications, even the 

locations of the POIs are not precisely known 

(uncertain) due to inaccurate a-priori map or 

imperfect and noisy exteroceptives sensory 

information or perturbations; for example, in a fire 

monitoring application, the POIs of UGVs change 

based on the random propagation of the fire [5]. 

Likewise, other types of system uncertainties 

include availability of UGVs with specific 

attributes such as sensors or terrain-compatible 

vehicle dynamics. 

Due to these challenges, to successfully harness the 

benefits of the UGVs, it is critical to efficiently 

solve the UGV path-planning problem (UGVPP). 

Note that the NP-hard problems such as multiple 

traveling salesman problem (TSP) and distance-

constrained vehicle routing problem are special 

cases of the UGVPP. In this project, we consider 

extensions of UGVVPP with aforementioned 

uncertainties, and refer to this class of problems as 

Stochastic AVPP (S-AVPP). Motion planning 

literature [3] for AVs classifies uncertainties into 

four categories: vehicle dynamics, knowledge of 

environment, operational environment, and pose 

information. Uncertainties in operational 

environment like wind and atmospheric 

turbulences suite to UAVs and pose information is 

regarding localization of UGVs. This project 

focuses on UGVPP with uncertainties in vehicle 

dynamics and knowledge of environment. Some of 

the previous works include: analysis of robustness 

of modular vehicle fleet considering uncertainties 

in demand of vehicles [7]; path planning for 

multiple UGVs for deterministic data using 

heuristic [1]; single vehicle path planning problems 

for UGVs considering environmental uncertainties 

[4-5]. The path planning problem for multiple 

UGVs considering uncertainties in vehicle 

dynamics and environmental uncertainties 

simultaneously using algebraic modelling 

framework is new to the literature. Furthermore, 

these algorithms will also be applicable to tackle 

similar challenges arising in path-planning for 

UGVs and underwater vehicles, which are used for 

crop monitoring, ocean bathymetry, forest fire 

monitoring, border surveillance, and disaster 

management. 

 

 
Figure 1: An illustration of considering the availability of 

UGVs as uncertain in the UGVPP. (a) Optimal solution for a 

deterministic UGVPP which is sub-optimal for the UGVs 

when considering uncertainty for the availability of UGVs. 

(b-c) Optimal solutions for stochastic UGVPP instances 

having different chances of availability for UGV2. Note that 

as the chances of the availability of UGV2 reduces, the 

number of assigned POIs to UGV2 also reduces. 

 

2. NOTATION 

Let 𝑇 = {𝑡1, . . . , 𝑡𝑛}  denote the set of points of 

interests (POIs), let d0 denote the depot where a set 

of heterogeneous unmanned ground vehicles 

(UGVs) M: = {1. . . |M|}, each with fuel capacity 

Fm, 𝑚 ∈  𝑀 , are initially stationed, let 𝐷̅ =
{𝑑1, . . . , 𝑑𝑘} denote the set of additional k depots or 

refueling sites, and let 𝐷 =  𝐷̅ ∪ {𝑑0}. All of the 

|M| UGVs stationed at the depot d0 are assumed to 

be fueled to capacity. The model formulations are 

defined on a directed graph 𝐺 = (𝑉, 𝐸) where 𝑉 =
𝑇 ∪ 𝐷 denotes the set of vertices and E denotes the 
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set of edges joining any pair of vertices. We assume 

that G does not contain any self-loops. For each 

edge (𝑖, 𝑗) ∈ 𝐸 , we let 𝑐𝑖𝑗  and 𝑓𝑖𝑗
𝑚  represent the 

travel cost and the nominal fuel that will be 

consumed by UGV 𝑚 ∈ 𝑀  while traversing the 

edge (i, j). We remark that 𝑓𝑖𝑗
𝑚 is directly computed 

using the length of the edge (i, j) and the fuel 

economy of the UGV. Additional notations that 

will be used in the mathematical formulation are as 

follows: for any set 𝑆 ∁ 𝑉 , 𝛿+(𝑆) = {(𝑖, 𝑗)  ∈ 𝐸 ∶
𝑖 ∈ 𝑆, 𝑗 ∉ S} and 𝛿−(𝑆) = {(𝑖, 𝑗)  ∈ 𝐸 ∶ 𝑗 ∈ 𝑆, 𝑖 ∉ 

S. When S = {i}, we shall simply write δ+(i) and δ-

(i) instead δ+({i}) and δ-({i}), respectively. 

The notation introduced next is for describing the 

uncertainty associated with the UGVs’ fuel 

consumption. Let f denote a discrete random 

variable vector representing the fuel consumed by 

any UGV to traverse any edge in E. The vector f has 

|E| x |M| components, one for each edge, and the 

random variable in the vector f corresponding to 

edge (i, j) is denoted by fij. Let Ω denote the set of 

scenarios for f, where 𝑤 ∈ 𝛺 represents a random 

event or realization of the random variable f with a 

probability of occurrence p (ω). We use 𝑓𝑖𝑗
𝑚(ω) to 

denote the fuel consumed by an UGV m when 

traversing the edge (i, j), and 𝑓(𝜔) =

({𝑓𝑖𝑗
1(𝜔)}(𝑖,𝑗)𝜖𝐸 , . . . , {𝑓𝑖𝑗

|𝑀|(𝜔)}(𝑖,𝑗)𝜖𝐸) to denote the 

random vector for the realization𝑤 ∈ 𝛺. Finally, 

we use E to denote the expectation operator, i.e. 

EΩ(𝛼) =  ∑ 𝑝(ω)𝛼ω∈Ω .Table 1 lists all the 

notations introduced in this section for ease of 

reading. In the next section, we present two-stage 

stochastic program formulations using the notation 

introduced in this section. 

 

3. MATHEMATICAL FORMULATION 
 

The first-stage decision variables represent ‘here-

and now’ decisions that are determined before the 

realization of randomness, and second-stage 

decisions are determined after scenarios 

representing the uncertainties are presented. The 

first-stage decision variables in the stochastic  

 

 
 

program is used to compute the initial set of routes 

for each of the UGVs such that either each POI is 

visited by only one of the UGVs or all the UGVs 

collect maximum incentives from the POIs, while 

ensuring that no UGV ever runs out of fuel as it 

traverses its route. The fuel constraint for each 

UGV in the first stage is enforced using the nominal 

fuel consumption value 𝑓𝑖𝑗
𝑚 for each edge (i, j) ∈ E. 

For a realization 𝑤 ∈ 𝛺, the second-stage decision 

variables are used to compute the recourse costs 

that must be added to the first-stage routes based on 

the realized values of 𝑓
𝑖𝑗
𝑚 (ω) for all (𝑖, 𝑗) ∈ 𝐸  and 

𝑚 ∈ 𝑀. 

Specifically, the first-stage decision variables are as 

follows: each edge(𝑖, 𝑗) ∈ 𝐸  is associated with a 

variable 𝑥𝑖𝑗
𝑚 that equals 1 if the edge (𝑖, 𝑗) is 

traversed by ‘m’ UGV, and 0 otherwise. We let 𝑥 ∈

{0, 1}|𝐸|𝑋|𝑀| denote the vector of all decision 

variables  𝑥𝑖𝑗
𝑚 . There is also a flow variable zij 

associated with each edge(𝑖, 𝑗) ∈ 𝐸 that denotes the 

total nominal fuel consumed by any UGV as it 

starts from depot i and reaches the vertex SS. 

Additionally, for any A ⊂   E, we let 𝑥𝑚(𝐴) =
 ∑ 𝑥𝑖𝑗

𝑚
(𝑖,𝑗)∈𝐴 . Analogous to the variable  𝑥𝑖𝑗

𝑚 in the 

first stage, we define a binary variable 𝑦𝑖𝑗
𝑚(𝜔) for 

each edge(𝑖, 𝑗) ∈ 𝐸. The variables 𝑦𝑖𝑗
𝑚(𝜔) are used 
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to define the refueling trips needed for any vehicle 

when the route defined by the first-stage feasible 

solution x is not feasible for the realization 𝑤 ∈ 𝛺. 

 

4. FORMULATION 1 
 

Given a team of heterogeneous UGVs (each UGV 

with a different capacity and travel time between 

POIs) and multiple refueling depots, a set of target 

POIs to visit and stochastic travel times or fuel 

consumption, find a path for each UGV such that 

each POI site is visited by at most one UGV, and 

the overall distance traveled by the UGVs is 

minimized. 

 
4.1. OBJECTIVE FUNCTION 
 

The objective function for the two-stage stochastic 

programming model is the sum of the first-stage 

travel cost and the expected second-stage recourse 

cost. The second-stage recourse cost for a 

realization 𝑤 ∈ 𝛺 of the fuel consumption of the 

vehicles is the cost of the additional refueling trips 

that are required for the realization 𝑤. The recourse 

cost is a function of the first-stage routing decision 

x and the realization 𝑤. Letting the recourse cost be 

denoted by 𝛽(𝑥, 𝑓(𝜔)), the objective function for 

the two-stage stochastic optimization problem is 

given by 

 
4.2. FIRSTSTAGE ROUTING CONSTRAINT 
 

The constraints for the first-stage enforce the 

routing constraints, i.e., the requirements that each 

POI i ∈ T should be visited by only one of the UGV 

s and that each UGV never runs out of fuel as it 

traverses its route. In the first-stage, the fuel 

constraint is enforced using the nominal value of 

fuel consumed by any UGV to traverse any edge (i, 

j) ∈ E. The first-stage routing constraints are as 

follows: 
 

 

 
Constraint (2a) forces the in-degree and out-degree 

of each refueling station to be equal. Constraints 

(2b) and (2c) ensure that all the UGVs leave and 

return to depot d0. Constraint (2d) ensures that a 

feasible solution is connected. For each POI i, the 

pair of constraints in (2e) require that some UGV 

visits the POI i. Constraint (2f) forces the in-degree 

and out-degree of each POI to be equal. Constraint 

(3a) eliminates subtours of the targets and also 

defines the flow variables zij for each edge (i, j) ∈ E 

using the nominal fuel consumption values 𝑓𝑖𝑗 . 

Constraints (3b) – (3c) together impose the fuel 

constraints on the routes for all the UGVs. Finally, 

constraint (3d) imposes binary restrictions on the 

decision variables 𝑥𝑖𝑗
𝑚. 
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5. FORMULATION 2 
 

Given a team of UGVs and a subset of it is 

randomly available for the mission, and a set of 

POIs sites to visit, find a path for each UGV such 

that each POI is visited by at most by one UGV, and 

an objective based on the incentives of POIs visited 

by the UGVs is maximized. 
 

5.1. OBJECTIVE FUNCTION 
 

The objective function for the two-stage stochastic 

programming model is the sum of the first-stage 

profit and the expected second-stage profits. The 

second-stage profit for a realization ω ∈ Ω of the 

fuel consumption of the UGV is the change in profit 

for the realization ω. The reduction in profits is a 

function of the first-stage routing decision x and the 

realization ω. Letting the recourse cost be denoted 

by β(x, z, f(ω)), the objective function for the two-

stage stochastic optimization problem is given by 

 

 
5.2. FIRST STAGE ROUTING 

CONSTRAINTS 
 

The constraints for the first-stage enforce the 

routing constraints, i.e., the requirements that each 

POI in T can be visited at least once by some UGV 

and that each UGV never runs out of fuel as it 

traverses its route. In the first-stage, the fuel 

constraint is enforced using the nominal value of 

fuel consumed by any UGV to traverse any edge (i, 

j) ∈ E. The first-stage routing constraints are as 

follows: 
 

 
Constraint (7a) forces the in-degree and out-degree 

of each refueling station to be equal. Constraints 

(7b) and (7c) ensure that all the UGVs leave and 

return to depot d0, where m is the number of UGVs. 

Constraint (7d) ensures that a feasible solution is 

connected. For each target i, the pair of constraints 

in (7e) state that some UGV visits the POI i only 

once. Constraint (7f) forces the in-degree and out-

degree of each POI station to be equal. Constraints 

(7g) -(7h) eliminates sub-tours of the POIs and also 

defines the flow variables 𝑧𝑖𝑗
𝑚 for each edge (i, j) ∈ 

E and UV h. Constraints (7i) impose the fuel 

capacity constraints on the routes for all the UGVs. 

Finally, constraint (7j) imposes restrictions on the 

decision variables. 
 

5.3. SECOND – STAGE CONSTRAINTS 
 

The second-stage model for a fixed x, z, and f(ω) is 

given as follows: 
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In the second-stage, αm(ω) takes a value of 1 or 0 

denoting the availability of an UGV m for the 

scenario ω or not. Variable 𝑣𝑖𝑗
𝑚(𝜔) maintains the 

feasibility of the constraints (8b) -(8c) for the given 

first-stage values x and z. Constraint (8c) states the 

dependence of 𝑥𝑖𝑗
𝑚  and 𝑣𝑖𝑗

𝑚(𝜔), and finally binary 

restrictions for 𝑣𝑖𝑗
𝑚(𝜔) are presented in (8e). Let the 

relaxed recourse problem for β(x, z, f(ω)) be 

represented as βr(x, z, f(ω)). In βr(x, z, f(ω)), the 

constraints (8e) are replaced by 0 ≤ vijh(ω) ≤ 1.  

 

THEOREM5.1 The objective values of β(x, z, 

f(ω)) and βr(x, z, f(ω)) are same. 

 

6. ALGORITHM 
 

The constraints (7i) are the typical knapsack 

constraints and the formulation will resemble 

‘orienteering problem’. We will refer the 

formulation with and without knapsack constraints 

as TS-OP and TS, respectively. In this section, we 

present a decomposition algorithm to solve 

problem TS and TS-OP. The formulations TS and 

its variants can be provided to any commercial 

branch-and-cut solvers to obtain an optimal 

solution. However, observe that the formulations 

will contain constraint (7d) to ensure any feasible 

solution is connected. The number of such 

constraints is exponential and it may not be 

computationally efficient to enumerate all these 

constraints and provide them upfront to the solvers. 

Additionally, stochastic integer programs are large 

in scale due to the variables and constraints in the 

scenarios and they require decomposition 

algorithms to exploit the special structure of the 

problem. These challenges and opportunities 

motivated us to design a decomposition algorithm 

to solve the instances for TS and its variants. 

 

6.1. DECOMPOSITION ALGORITHM 
 

The decomposition algorithm is a variant of L-

shaped algorithm where the deterministic 

parameters are used to obtain first-stage solutions, 

and then the second-stage programs are solved 

based on the obtained first-stage solutions. Then the 

optimality cuts are generated and added to the first-

stage program to approximate the value function of 

the second-stage cost. The dual information of all 

the realization of the random data are used to 

generate the optimality cuts for the first-stage. The 

use of L-shaped method for TS is possible only due 

to the theorem (5.1). Otherwise due to the binary 

restrictions for second-stage variables, the value 

function will be non-convex and lower semi-

continuous in general, and a direct use of L-shaped 

method is not possible. The first-stage problem is 

solved as a mixed-integer program with binary 

restrictions for x variables and by theorem (5.1), the 

second-stage programs are solved as linear 

programs. 

6.1.1 PROBLEM REFORMULATION 

 

For the sake of decomposition, the first-stage 

problem (6) -(7j) is reformulated as the following 

master problem (MP) and we add an unrestricted 

variable θ to the first-stage program. In the 

formulation TS-MP, let h(ω) and µ(ω) represent the 

right-hand side and dual values for the second-stage 

constraints (8b) - (8e) and vijh(ω) ∈ {0,1} are 

replaced by 0 ≤ vijh(ω) ≤ 1. Similarly, T(ω) and 

TI(ω) represent the co-efficient matrices for the 
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first-stage variables x and z in the second stage 

constraint (8b) -(8e), respectively. The first-stage 

master program for the decomposition algorithm 

TSMP is given as follows: 
 

 

 
 

In the master problem (10), for a scenario ω, π1(ω), 

π2(ω), and π3(ω) are the dual vectors of the 

constraints (8b), (8c), and (8d), respectively. 

Similarly, T1, T2, and T3 represent the co-efficient 

matrices for the variables 𝑥𝑖𝑗
𝑚  in the constraints 

(8b), (8c), and (8d), respectively. Also, S1 and S3 

represent the co-efficient matrices for the variables 

𝑧𝑖𝑗
𝑚 in the constraints (8b), and (8d), respectively. 

Finally, π(ω) and h(ω) represent the dual vector and 

right-hand side for the constraints (8b) -(8e). θ is an 

unrestricted decision variable. Constraints (10a) are 

the optimality cuts, which are computed based on 

the optimal dual solution of all the subproblems 

given as the second-stage problem βr(x, z, f(ω)). 

Optimality cuts approximate the value function of 

the second stage subproblems βr(x, z, f(ω)). It 

should be noted that the model TS-MP has 

relatively complete recourse property, i.e., βr(x, z, 

f(ω)) < ∞for any 𝑥𝑖𝑗
𝑚 and 𝑧𝑖𝑗

𝑚.  

 

We would like to emphasize that the number of 

optimality cuts generated from second-stage dual 

values can be a single cut or multi-cut. In single-

cut, a cut is generated across all the second-stage 

problems and in multi-cut, each second-stage 

program will be approximated by a cut in the first-

stage program. In our computational experiments, 

we adopted a single cut approach as we do not want 

to stress the first-stage problem as it already 

consists of binary variables and sub-tour 

elimination constraints (7d). Also, the presented 

algorithm can be extended to instances of TS-OP as 

the changes occur only in first-stage constraints. 
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6.2. SUB-TOUR ELIMINATION 
CONSTRAINTS 

 

In our algorithm, we relax the constraints (7d) from 

the formulation, and whenever the first-stage 

problem obtains an integer feasible solution to this 

relaxed problem, we check if any of the constraints 

(7d) are violated by the integer feasible solution. If 

so, we add the infeasible constraint to the first-stage 

problem. This process of adding constraints to the 

problem sequentially has been observed to be 

computationally efficient for the TSP, VRP and a 

huge number of their variants. 

Now, we will detail the algorithm used to find a 

constraint (7d) that is violated for a given integer 

feasible solution to the relaxed problem. A violated 

constraint (7d) can be described by a subset of 

vertices S ⊂ V\{d0} such that S ⋂ D ≠ ∅ and x(S) 

= |S| for every d ∈ S ⋂ D. We find the strongly 

connected components of S. Every strongly 

connected component that does not contain the 

depot is a subset S of V\{d0} which violates the 

constraint (7d). We add all these infeasible 

constraints and continue solving the original 

problem. Many off-the-shelf commercial solvers 

provide a feature called “solver callbacks” to 

implement such an algorithm into its branch-and-

cut framework.  

 

7. COMPUTATIONAL EXPERIMENTS 
 

In this section, we discuss the computational 

performance of the branch-and-cut algorithm for 

formulations presented in the Sec. 3. The mixed-

integer linear programs were implemented in Java, 

using the traditional branch-and-cut framework and 

the solver callback functionality of CPLEX version 

12.6.2. All the simulations were performed on a 

Dell Precision T5500 workstation (Intel Xeon 

E5630 processor @2.53 GHz, 12 GB RAM). The 

computation times reported are expressed in 

seconds, and we imposed a time limit of 3,600 

seconds for each run of the algorithm. The 

performance of the algorithm was tested with 

randomly generated test instances. 

 

Instance generation 

The problem instances were randomly generated in 

a square grid of size [100,100]. The number of 

refueling stations was set to 4 and the locations of 

the depot and all the refueling stations were fixed a 

priori for all the test instances. The number of POIs 

varies from 10 to 40 in steps of five, while their 

locations were uniformly distributed in the square 

grid; for each |𝑇| ∈ {10, 15, 20, 25, 30, 25, 40}, we 

generated five random instances. For each of the 

above generated instances, the number of UGVs in 

the depot was 3, and the fuel capacity of the UGVs, 

F, was varied linearly with a parameter λ. λ is 

defined as the maximum distance between the 

depot and any POI. The fuel capacity F was 

assigned a value from the set {2.25 λ, 2.5 λ, 2.75 λ, 

3 λ}. The travel costs and the fuel consumed to 

travel between any pair POIs vertices were 

assumed to be directly proportional to the 

Euclidean distances between the pair and rounded 

down to the nearest integer. 
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Figure 2: This figure demonstrates the use of two-stage model 

when uncertainties are considered for travel time among 

depots and points of interests. Gamma distribution is used to 

characterize uncertainty in travel time and continuous beta 

distribution for uncertainty in fuel consumption. The results 

from stochastic model are compared with deterministic 

model. For the overall performance under travel time 

uncertainty, the average improvement is between 6% and 

20% (in comparison to deterministic solutions) 
 

 

8. CONCLUSION 
 

Path planning problem for manned and unmanned 

UGVs is an important area of research for efficient 

use of UGVs. This paper presents two different 

stochastic programming models to address 

uncertainties in travel time and availability of 

UGVs. To overcome the computational 

complexity, a decomposition algorithm is a 

presented. Computational experiments are 

performed to demonstrate the usefulness of 

stochastic models over their deterministic versions. 

 

 
 

Figure 3: This figure demonstrates the use of two-stage model 

when uncertainties are considered for fuel capacity. Gamma 

distribution is used to characterize uncertainty in travel time 

and continuous beta distribution for uncertainty in fuel 

consumption. The results from stochastic model are compared 

with deterministic model. For the overall performance under 

fuel capacity uncertainty, the average improvement is 

between 20% and 40% (in comparison to deterministic 

solutions) 
 

 
 

Figure 4: The results are for the formulation presented in the 

section 5. Each POI has a reward and is visited by at most one 

UGV, and the objective is to maximize the total reward 

collected by the UGVs. UGV 3’s availability with probability 

are 1, 0.75, 0.25, and 0 in Cases 1, 2, 3, and 4, respectively. 

The results are for 10 POIs. 
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Figure 5: The results are for the formulation presented in the 

section 5. Each POI has a reward and is visited by at most one 

UGV, and the objective is to maximize the total reward 

collected by the UGVs. UGV 3’s availability with probability 

are 1, 0.75, 0.25, and 0 in Cases 1, 2, 3, and 4, respectively. 

The results are for 20 POIs. 
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