
2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
AAIR TECHNICAL SESSION

AUGUST 11-13, 2020 - NOVI, MICHIGAN

Automated Tuning and Calibration for Unmanned Ground Vehicles
Nate Bunderson, PhD1, David Bevly, PhD2, Austin Costley1, William Bryan2,

Gregory Mifflin2, Cristian Balas3

1Autonomous Solutions, Inc., Petersboro, UT

2Department of Mechanical Engineering, Auburn University, Auburn, AL
3CCDC GVSC, Warren, MI

ABSTRACT
A critical and time-consuming part of commissioning an unmanned ground

vehicle (UGV) is tuning and calibrating the navigation and control systems. This

involves selecting and modifying parameters for these systems to obtain a desired

response. Tuning these parameters often requires experience or technical expertise

that may not be readily available in a time of need. Even the simple task of

measuring the mounting location of the sensors introduce opportunities for user

error. In addition, the tuning parameters for these systems may change significantly

between UGVs. These challenges motivate the need for automated tuning and

calibration algorithms to set parameters without the interaction from a user. This

work presents automated tuning and calibration approaches for UGVs.

Citation: N. Bunderson, D. Bevly, A. Costley, W. Bryan, G. Mifflin, C. Balas “Automated Tuning and Calibration

for Unmanned Ground Vehicles”, In Proceedings of the Ground Vehicle Systems Engineering and Technology

Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020.

1. INTRODUCTION
Preparing an unmanned ground vehicle (UGV)

for operation typically requires calibration and

tuning. These processes include setting parameters

that represent physical characteristics (i.e. mass,

wheelbase, sensor mounting locations) of the

vehicle (calibration), and parameters that determine

the behavior of the localization and control

algorithms (tuning). Establishing a base-line

calibration and tuning parameter set often requires

specialized knowledge and the manual

modification of parameters to achieve a desired

performance. This process scales poorly and can be

time-consuming for fleets of autonomous vehicles.

This work presents a method for auto-calibrating

sensor mounting locations with respect to a known

point on the vehicle. This is accomplished by

leveraging a machine learning technique that uses a

dynamic vehicle model and a known series of

inputs to emulate the IMU signals at the known

point.

Additionally, two methods for autotuning the

controller parameters to improve system

performance are presented. The first method is an

algorithm that searches a defined parameter space

to improve the model of the system behavior. A

model predictive control strategy is employed so

the improved model will directly improve the

controller performance. The second method is an

DISTRIBUTION STATEMENT A. Approved for public

release; distribution unlimited. OPSEC#4277

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 2 of 12

adaptive control law that mimics the behavior of a

human driver that will adjust to uncertainty in the

system model.

This paper presents the auto-calibration method in

Section 2. Then the model predictive path

controller is presented in Section 3. Section 4

presents the autotuning algorithm and provides

results for estimating parameters for the steering

model and dynamics model of an automated ground

vehicle. Section 5 then provides the formulation

and results from the controller based on human

behavior. Lastly, Section 6 gives an overview of the

conclusions drawn from this research.

2. SENSOR MOUNTING ESTIMATION AND
CALIBRATION

The goal of the sensor calibration module is to

locate and orient the sensors on an autonomous

vehicle relative to a known control point. This will

allow for more accurate sensor integration. In

addition, it will enable flexibility in sensor

configuration. Once the calibration routine is

performed, the sensors on the vehicle may be

positioned at the discretion of the team operating

the autonomous vehicle.

A calibration routine can be run to locate a sensor

relative to another sensor. However, assuming full

modularity of the sensor configuration, no sensor

will be placed at the known control point. To locate

a sensor relative to the control point, the output of

a sensor fixed at that location will need to be

emulated.

Figure 1 Vehicle Model Diagram for derivation of the Dynamic

Bicycle Model

2.1. Solution Approach
To calibrate the sensors relative to a fixed control

point, an inertial measurement unit will be

emulated for that point. To approximate the output

of the inertial measurement unit, a vehicle model

will be developed for the control point. Without

knowledge of an exact description of the

translational and rotational accelerations, the model

will be constructed using experimental data.

A machine learning approach was taken for this

task. A recurrent Gaussian kernel network [1] was

built to perform the IMU emulation. Neurons are

added sequentially to form a single hidden layer of

Gaussian kernels. In each training cycle, the

algorithm adds a neuron at the location of

maximum residual error. The network continues to

train until it is stopped by a cross-validation

algorithm. The cross-validation algorithm prevents

overfitting of the training dataset.

When operated in open-loop mode, the network

will predict the target acceleration values, ax, ay,

and az, based on the vehicle’s current position in the

state-space of past input values.

A rigid-body transformation is then used to

estimate the lever arm from the control point to the

IMU physically attached to the vehicle. A standard

least squares algorithm can then be applied to

extract the true lever arm parameters from the noisy

lever arm predictions.

�̂�𝑠𝑒𝑛𝑠𝑜𝑟 = 𝑹 (�̂�𝑐𝑝 + 𝛼 × 𝑟 + 𝜔 × 𝜔 × 𝑟) (1)

Equation (1) defines the rigid-body

transformation equation used to estimate the lever-

arm, r, between the control point and an IMU

located on the vehicle.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 3 of 12

Figure 2 Recurrent Neural Network Architecture of the Same Type

as the calibration algorithm

2.2. Sensor Calibration Results
The calibration algorithm was trained and tested

on simulated data obtained from the Carsim 9

engine. The simulated dataset was produced based

on a set of sine sweep steer angle inputs. Velocity

in the inertial frame was kept constant, while the

other inputs to the neural network could vary freely

in the simulation.

Figure 3 Sine sweep steer angle input, used to generate simulated

training data

Seven measured quantities were used as inputs to

the neural network model: steer angle (ẟ),

longitudinal velocity (vx), lateral velocity (vy),

vertical velocity (vz), pitch rate (ωθ), roll rate (ωφ),

and yaw rate (ωψ). All of these values can be

reliably measured with common sensors and are not

dependent on the location of the sensor on the

vehicle.

Figure 4 The seven input time series, taken from a single training

run

From these input time series, the neural network

model generated a prediction of each of the three

translational accelerations, ax, ay, and az. Given the

rigid-body assumption, the angular velocities

should remain the same anywhere on the vehicle.

Hence, the complete IMU model is given by these

three predicted values.

Figure 5 Lateral Acceleration predicted by the neural network

model differs from truth by a constant value

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 4 of 12

Figure 6 Longitudinal Acceleration also differs from truth by a

small constant. The initial spike is not detected

The lever arm between the control point and

another simulated IMU is then estimated. A small

constant bias can be noted in both plots. The origin

of this bias is unclear, but an investigation of the

neural network reveals that the issue lies with the

way that the mean value of the time series is

approximated. Despite the errors in the model

predictions, the lever arm estimates are accurate so

long as the transformation matrix remained well-

conditioned. The noise in the predictions appears to

be a result of issues with the transformation matrix.

However, a simple least-squares algorithm will

filter it out to a large extent.

Figure 7 Estimated Lever arm time series in blue, and true lever

arms in black

However, if the transformation matrix is ill-

conditioned, whether because some variables are

not observable, or because the angular

accelerations derived from the measured angular

velocities are inaccurate, then the lever arm

estimates are degraded. Lx, the estimate in the

longitudinal direction, is strongly affected.

Deviation from truth of nearly a meter has been

observed. The other two parameter estimates are

less strongly affected.

The simulated results indicate that, given enough

training data, and a well-conditioned

transformation matrix, the algorithm can

effectively estimate the lever arm between an IMU

and a fixed control point on an autonomous vehicle.

The other sensors can then be calibrated relative to

the IMU using known techniques.

3. GRAFTERPLUS – MODEL PREDICTIVE
PATH CONTROLLER

To showcase the autotuning algorithm presented

in Section 4, a model predictive path controller

(MPPC) called GrafterPlus was developed. A

model predictive controller (MPC) uses a model of

the system to be controlled to predict the behavior

given a series of inputs. An optimization problem

is formulated to minimize a cost function to

determine an optimal series of inputs to track a

given command signal [2].

In the context of path control, a dynamic or

kinematic model of a ground vehicle is used to

predict the system behavior and provide a trajectory

for the vehicle to follow. A cost function penalizing

cross-track and heading errors is formulated and the

error is computed along a trajectory. The

optimization routine determines a series of steer

angle inputs that minimize the error along the

trajectory. The first input from the optimal series of

inputs is used as the next command to the vehicle.

This process is repeated at every control interval.

MPC techniques have been used for decades [3].

Due to the high computational cost of this method,

they have historically been restricted to systems

with very slow dynamics. However, the increase in

processor speed in recent years has made this

method of control more attractive for a wider

variety of problems.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 5 of 12

The GrafterPlus controller has three stages,

namely, propagate, plan, and predict. These stages

are described as follows:

Propagate: Propagate the current vehicle state

forward to obtain a vehicle state estimate after a

given delay.

Plan: Create graft path to connect vehicle state

from Stage 1 to point along desired path. The

connection point is determined by the look-ahead

parameter, dl.
Predict: Use vehicle model to calculate the

curvature command that will result in an average

steering velocity (over a specified time horizon)

required by the graft path in Stage 2.

This process is shown graphically in Figure 8,

where Stage 1 is represented by the red dashed line,

and Stage 2 is represented by the blue dashed line.

The look ahead parameter, dl, is shown below the

desired path. Stage 3 is not explicitly depicted but

it includes computing a curvature command due to

the planned path in Stage 2.

Figure 8 Graphical representation of GrafterPlus algorithm. The

first and second stages are shown in red and blue, respectively. The

third stage is to compute the curvature command associated with the

graft path from Stage 2.

The vehicle model used in the Predict stage of

GrafterPlus is the dynamic bicycle model described

in Section 4.2. This model includes cornering

stiffness parameters that strongly influence the

lateral dynamics. Selecting this parameter to reflect

the true cornering stiffness of the vehicle greatly

influences the accuracy of the path controller.

Figure 9 shows the results from two simulations of

Grafter Plus with different cornering stiffness

parameters. The simulated vehicle had a cornering

stiffness of 250 N. The figure shows that when the

parameter was correctly set in Grafter Plus the off-

path error was significantly reduced. This

motivates the need to autotune such parameters to

accurately model the system behavior and improve

the performance of the path controller.

Figure 9 Off path error results for simulations of Grafter Plus with

different corning stiffness parameters. The cornering stiffness of the

simulated vehicle was 250 N. The plot shows that correctly setting

this parameter results in improved performance.

4. AUTOTUNING PATH CONTROL
An autotuning algorithm was developed for an

MPPC that uses a model of the system dynamics to

simulate the step response of the system. A series

of discretized (step) inputs is provided to both the

model and the vehicle. The response of the model

and vehicle are compared, model parameters are

adjusted, and the process is repeated for each

combination in the parameter space. The

parameters associated with the smallest modeling

error are then used in the controller.

The path controller presented in Section 3 is a

good candidate for autotuning as it has very few

parameters and the parameters generally relate to

physical quantities of the ground vehicle. This

section presents the autotuning approach for two

models used in the Grafter Plus path controller.

First, the steering model of the system is modeled

as a second order system where the damping ratio

and natural frequency are estimated. Second, a

dynamic bicycle model is used to model the lateral

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 6 of 12

dynamics of the vehicle and the cornering stiffness

parameter in the model is estimated.

Figure 10 shows an example of two system step

responses. The blue curve represents the true

response of the system and the black curve

represents the response of the modeled system. The

error is calculated as the area between the curves.

The objective of the autotuning algorithm is to

modify parameters of the modeled system to

minimize this area.

Figure 10 Example system response where the error is the area

between the actual system response and the simulated (or estimated)

system response.

The general autotuning algorithm used for the

steering model and bicycle model autotuning is

given in Algorithm 1. This algorithm was found to

have the best results if the input signal were

discretized to provide a series of step responses that

could be compared with the step response of the

model given a specific parameter set. With the

input signal discretized into a series of steps, the

true response of the system is stored in a “bin” for

each command. The algorithm then loops through

the combinations of parameters defined in the

parameter space and simulates the step response of

the model for each binned input. The error is

computed as the accumulated difference between

the system response and the modeled response. The

parameter set associated with the smallest error is

determined to be the best parameter set for

modeling the system.

Algorithm 1 Autotuning algorithm used for both steer model, and

bicycle model parameter autotuning.

Autotuning Algorithm

1: 𝑃 = { parameter space} (set parameter space)

2: min_error, p_opt (initialize variables)
3: for p : P

4: for b : bins (loop through bins)

5: m = SimModel(p, b.cmd) (simulate model)
6: t = GetTrueOutput(b)

7: error += ComputeError(t, m) (compute error from truth)

8: if error < min_error
9: min_error = error

10: p_opt = p (store best parameter set)

11: end if
12: end for

13: end for

It remains to define the models used in the

autotuning algorithm. The second order steering

model is defined in Section 4.1 which relates a

steering angle command to vehicle curvature. Then

the dynamic bicycle model is defined in Section

4.2.

4.1. Steering Model
The steering model is assumed to be a second

order system parameterized by a damping ratio, ζ,

and natural frequency, ωn, given by

 𝑃(𝑠) =
𝜔𝑛

2

𝑠2 + 2ζ𝜔𝑛 + 𝜔𝑛
2
 (2)

where the input and output of the system are the

setpoint and feedback of the vehicle curvature,

respectively. The natural frequency and damping

ratio determine the response of the system. Figure

11 shows the second order system response to a

variety of damping ratio and natural frequency

values.

Second order systems are commonly used to

model higher-order systems. This is an attractive

approach for the autotuning algorithm because by

changing a couple of parameters a large variety of

system responses can be achieved.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 7 of 12

Figure 11 Second order system example for varying values of

damping ratio and natural frequency

The geometry of the bicycle model of a ground

vehicle shows that the curvature of the vehicle is

approximately proportional to the front wheel

angle. To account for this approximation and non-

linearities in the steering system, the relationship

between steering wheel angle and curvature is

modeled as a 3rd order polynomial. Figure 12 shows

an example of sampled curvature measurements in

response to steer angle commands. The blue circles

represent the curvature measurements and the red

line is a best-fit polynomial used to represent the

mapping between steering wheel angle and

curvature.

Figure 12 Steer polynomial example that relates steer angle to

curvature.

In addition to the parameters in a second order

system, the autotuning algorithm is also able to

estimate a pure delay, d, from command to steering

response. Thus, the three parameters estimated by

the autotuning algorithm are ζ, ωn, and d. The full

steering model is shown in Figure 13 which

illustrates the signal path of steer angle command

to modeled curvature.

Figure 13 Steer model that takes steering wheel angle (hand

wheel angle) and converts to curvature

The first step of the autotuning algorithm is to

determine a parameter space. Table 1 provides an

example parameter space for the steering model of

an automated ground vehicle. This parameter space

is very large and should account for a variety of

ground vehicle types, however, it is left to the

designer to determine appropriate ranges for the

specific system of interest.

Table 1 Parameter space for steer model autotuning.

 Min Max Δ Unit

d 0.05 1 0.05 s

ωn 2 20 1 rad/s

ζ 0.1 2 0.1 -

Figure 14 shows the results of the autotuning

algorithm for the steer model parameters. The blue

line is the system response to a series of step inputs

(the command values can be inferred by the shape

of the response curves). The red curve is associated

with a poor estimate of the system response,

whereas the green curve (which tracks the system

response very well) is the response of the model

using the parameters determined by the autotuning

algorithm. These results show that the autotuning

algorithm can accurately estimate the steer model

parameters.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 8 of 12

Figure 14 Steer model autotuning results.

4.2. Dynamic Lateral Bicycle Model
Inherent to a model predictive control strategy is

a model of the system dynamics. This model is used

to predict the behavior of the system given a series

of inputs. An optimization routine is used to

minimize the error between the commanded signal

(path) and the predicted system behavior by

modifying the series of inputs. The first input of the

optimal solution is provided to the vehicle and the

rest are discarded. The process is repeated at every

control interval. This control strategy has been

shown to be effective as a path controller for

autonomous ground vehicles [4].

Typically, there are discrepancies between the

system and the model used in MPC. An autotuning

algorithm can be used to further refine the model

and improve the accuracy controller.

In Grafter Plus, a linearized bicycle model [5] [6]

has been chosen to model the lateral dynamics of a

ground vehicle. The dynamics of this model are

given by

[
�̇�
�̇�𝑦

] =

[

 −

𝑎2𝐶𝛼𝑓 + 𝑏2𝐶𝛼𝑟

𝐼𝑧𝑉𝑥

−
𝑎𝐶𝛼𝑓 − 𝑏𝐶𝛼𝑟

𝐼𝑧𝑉𝑥

−
𝑎𝐶𝛼𝑓 − 𝑏𝐶𝛼𝑟

𝑚𝑉𝑥

− 𝑉𝑥 −
𝐶𝛼𝑓 + 𝐶𝛼𝑟

𝑚𝑉𝑥]

[
𝑟
𝑉𝑦

]

+

[

𝑎𝐶𝛼𝑓

𝐼𝑧
𝐶𝛼𝑓

𝑚]

𝛿

(3)

where 𝑟 is the yaw rate, 𝑉𝑦 is the lateral velocity, 𝑎

and 𝑏 are the distances between the CG to the front

and rear axles, 𝐶𝛼𝑓 and 𝐶𝛼𝑟 represent the cornering

stiffness of the front and rear tires, 𝑚 is the mass

of the vehicle, and 𝐼𝑧 is the moment of inertia about

the positive z-axis. Most of these parameters are

well known or easy to measure. An exception to

this is the cornering stiffness parameters which are

difficult to estimate and often have a high degree of

uncertainty. Thus, the cornering stiffness

parameters are an ideal candidate for autotuning.

The linearized bicycle model was implemented in

the Grafter Plus path controller and the autotuning

algorithm was used to tune the cornering stiffness

parameters of the vehicle using Algorithm 1. The

results of a simulated test is shown in Figure 15,

where the curvature of the actual model is

represented by the green line. The red line is the

curvature of the model with the autotuned

cornering stiffness (18 N). The dark blue and light

blue lines are the curvature of two other models

from the parameter space provided to the

autotuning algorithm.

Figure 15 Vehicle curvature during model parameter autotuning

tests in simulation. The green line represents the curvature of the

actual system. The red line represents a model with the autotuned

cornering stiffness (15). The blue lines are models using other

parameters checked by the autotuning algorithm.

5. MANUAL DRIVING ADAPTIVE CONTROL
(MDAC)
The motivation behind Manual Driving Adaptive

Control (MDAC) is to design a controller that

behaves similarly to a human. This involves two

main components. First, MDAC should follow the

same driving characteristics of a typical human

driver, such as similar path following dynamics and

smoothness. Second, it should be able to adapt to a

wide variety of vehicles and vehicle types, just as a

human can drive anything from a large truck to a

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 9 of 12

small sports car with the same basic knowledge. In

this work, the lateral aspect of the MDAC is

investigated.

 To achieve these desired characteristics, various

controller architectures were explored and tested.

Dynamic model-based controllers can perform well

on a specific platform if tuned well [7], but they

require very accurate vehicle models and do not do

well when applied to a different platform. Robust

controllers can guarantee stability margins for a

wider range of systems; however, they cannot

handle extremely large levels of uncertainty or

guarantee the desired performance [8]. Direct

adaptive control, such as model reference adaptive

control, was therefore a logical next step due to

abilities to handle large amounts of uncertainty

while guaranteeing stability and performance [9].

Nevertheless, when implemented in high fidelity

simulation and on a real vehicle, it was found to

perform much worse than expected. This was due

poor estimates of certain vehicle states needed for

the adaptive controller and higher order dynamics

not captured in the reference model.

Figure 16 MDAC Architecture

 Figure 16 shows the architecture that was chosen

for the MDAC. It employs a cascaded approach

with the path dynamics in the outer loop (blue) and

the yaw dynamics in the inner loop (orange). These

path dynamics can be made to match the path

dynamics of typical human driving behavior, which

is mostly independent of vehicle type. Then the

yaw dynamics, which are often unknown, are dealt

with separately. This system is implemented using

Robotic Operating System (ROS) in C++ and

Python.

 Generating the desired reference path to follow is

the first step. In this work, two methods were used

for this: vision-based lane detection and GPS

waypoint following. The vision-based system uses

a camera to detect lane markings and would be used

in a lane keeping system. This was implemented in

simulation in Gazebo and on the vehicle real-time.

The GPS waypoint path generation uses a GPS

receiver to record the desired reference path. This

would be used on or off road to follow a

predetermined route or to follow another connected

vehicle, such as in vehicle platooning [4]. This

reference path is rotated and translated into the

frame of the controlled vehicle and sent to the path

following node.

 The path following node then calculates the

desired yaw rate as

 𝑟𝑑𝑒𝑠 = 𝑟𝐹𝐹𝑊 + 𝑟𝐹𝐵 (4)

 to follow the reference path. This is based on a

feedforward term (to follow the curvature of the

path) that is calculated by multiplying the

longitudinal velocity of the vehicle by the curvature

of the path. Thus, the feedforward term is given by

𝑟𝐹𝐹𝑊 = 𝜅(𝑠) ∗ 𝑉𝑥, 𝜅(𝑠) =
𝑑𝜃

𝑑𝑠
 (5)

and a feedback term (to correct deviations from the

path) as

𝑟𝐹𝐵 = −𝐾𝑝 ∗ 𝑒𝐿𝐴. (6)

The error in the feedback equation is the

lookahead error. To mimic human driving

behaviors, the lookahead distance is adapted based

on vehicle speed and path profile. The lookahead

distance acts like damping in the system and is

increased proportional to longitudinal speed. This

replicates how a driver on the interstate looks

further ahead than they do when driving slow

through a parking lot. Additionally, the lookahead

distance is increased as the curvature of the path

decreases. This is similar to how human drivers

should look further ahead on a straight road than a

tight twisty one.

 The desired yaw rate from the path following

node is sent to the yaw controller. While various

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 10 of 12

controller types were tested for this piece, the best

results were from inverting a simple kinematic

model. This model only relies on knowing a

wheelbase length and the current vehicle speed,

which makes it easily adapted to different

platforms. Figure 17 shows how well the yaw

controller is able to track the commanded yaw rates

during a simulation run around a test track in

Gazebo.

Figure 17 Yaw Response using Kinematic Steering Model

 The steer angle calculated by the yaw controller is

sent to the test vehicle through the Controller Area

Network (CAN) bus, utilizing the original

equipment manufacturer steering motor.

5.1. Results
The Manual Driving Adaptive Control was first

tested in simulation using a test track Gazebo

environment and the Dataspeed MKZ Gazebo

model. The simulation uses the vision-based lane

detection for the reference path generation. Figure

18 shows the results for a full lap of the Gazebo test

track. The plot displays a higher lateral error than

the true path error because it was calculated using

the lateral lookahead error from the camera at the

closest path point in the camera’s field of view. The

distance to the closest path point is approximately

8 meters. Although this is not the truth value, it

shows the way the vehicle is generally behaving

relative to the path and is able to be used for

comparison purposes. Qualitatively, the controller

kept the vehicle within the lane bounds at all times

during the run.

Figure 18 Simulation Lookahead Error Results

Real world testing was done using a double lane

change path of GPS waypoints. The double lane

change was chosen because it is a high dynamic

maneuver and can be easily compared to a human

driver. This test was run at various speeds and the

results can be seen in Figure 19 and Figure 20. The

tests were done at various speeds, but 5 m/s and 10

m/s are shown here. Each plot shows three

consecutive runs.

Figure 19 5 m/s Double Lane Change

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 11 of 12

Figure 19 shows that for 5 m/s, the lateral error is

less than half a meter throughout the maneuvers.

Quantitatively, the steering was extremely smooth

and precise.

Figure 20 10 m/s Double Lane Change

At 10 m/s the max lateral error remained around

half a meter for all three runs as shown in Figure

20. Again, the steering was exceptionally smooth.

 Overall, Manual Driving Adaptive Control

(MDAC) was successful at maintaining low lateral

errors at a variety of speeds, while also mimicking

the path following behavior of a human driver.

Combined with the smoothness of steering

actuation, MDAC provides another possible

approach to lateral vehicle control, without having

to do extensive manual tuning.

6. CONCLUSION
This work presents methods for automating the

calibration and tuning of an autonomous vehicle.

The calibration method leveraged a recurrent

Gaussian kernel network to estimate the sensor

mounting location of an IMU. Prior to operation the

neural network would need to be trained on data

from the vehicle of interest. Once trained, this

process could be used to estimate the mounting

location of the IMU anywhere on the rigid body.

Two methods for autotuning controller gains were

presented. The first method involves a brute force

parameter search approach attempting to minimize

differences between the responses of a reference

model and the vehicle. Results were provided

indicating accurate model estimation, which was in

turn used in an MPPC to improve path control. The

second method was an adaptive controller called

MDAC, which attempts to mimic the behavior of a

human driver adapting to a new vehicle. MDAC

was able to follow a reference path with about 0.5

m of maximum lateral error. MDAC provides

another approach of controlling an uncertain UGV

without relying on a dynamic model.

7. REFERENCES

[1] N. Benoudjit, C. Archambeau, A. Lendasse, J. Lee

and M. Verleysen, "Width optimization of Gaussian

kernels in Radial Basis Function Networks," in

European Symposium on Artificial Neural Networks,

Belgium, 2002.

[2] J. B. Rawlings and D. Q. Mayne, Model predictive

control: theory, computation, and design, vol. II,

Madison, WI: Nob Hill Publishing, 2017.

[3] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O.

M. Scokaert, "Constrained model predictive control:

Stability and optimality," Automatica, vol. 36, no. 6,

pp. 789-814, 2000.

[4] F. Borrelli, P. Falcone and T. Keviczky, "MPC-

based approach to active steering for autonomous

vehicle systems," International Journal of Vehicle

Automation Systems, vol. 3, no. 2, pp. 265-291, 2005.

[5] P. Polack, F. Altche, B. d'Andrea-Novel and A. d.

La Fortelle, "The Kinematic Bicycle Model: a

Consistent Model for Planning Feasible Trajectories

for Autonomous Vehicles?," in IEE Intelligent

Vehicles Symposium, 2017, 2017.

[6] J. Kong, M. Pfeiffer, G. Schildbach and F. Borrelli,

"Kinematic and Dynamic Vehicle Models for

Autonomous Driving Control Design," in IEEE

Intelligent Vehicles Symposium, Seoul, 2015.

[7] N. R. Kapania and J. C. Gerdes, "An Autonomous

Lanekeeping System for Vehicle Path Tracking and

Stability at the Limits of Handling," in International

Symposium on Advanced Vehicle Control, Tokyo,

2014.

[8] D. Gu, P. Petkov and M. Konstantinov, Robust

Control Design with MATLAB, Glasgow: Springer,

2005.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Automated Tuning and Calibration for Unmanned Ground Vehicles, Bunderson, et al.

Page 12 of 12

[9] T. Yucelen, Model Reference Adaptive Control,

New York City: Wiley, 2019.

[10] J. Ward, P. Smith, D. Pierce, D. Bevly, P.

Richardson, S. Lakshmanan, A. Argyris, B. Smyth, C.

Adam and S. Helm, "Cooperative Adaptive Cruse

Control (CACC) in Controlled and Real-World

Environments: Testing and Results," in Proceedings

of the Ground Vehicle Systems Engineering and

Technology Symposium, Novi, 2019.

[11] K. Åström and T. Hägglund, PID controllers: theory

design and tuning, NY: Instrument Society of

America, 1995.

[12] A. O'Dwyer, Handbook of PI and PID controller

tuning rules, Singapore: World Scientific Publishing,

2009.

