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ABSTRACT 
A critical and time-consuming part of commissioning an unmanned ground 

vehicle (UGV) is tuning and calibrating the navigation and control systems. This 

involves selecting and modifying parameters for these systems to obtain a desired 

response. Tuning these parameters often requires experience or technical expertise 

that may not be readily available in a time of need. Even the simple task of 

measuring the mounting location of the sensors introduce opportunities for user 

error. In addition, the tuning parameters for these systems may change significantly 

between UGVs. These challenges motivate the need for automated tuning and 

calibration algorithms to set parameters without the interaction from a user. This 

work presents automated tuning and calibration approaches for UGVs. 
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1. INTRODUCTION 
Preparing an unmanned ground vehicle (UGV) 

for operation typically requires calibration and 

tuning. These processes include setting parameters 

that represent physical characteristics (i.e. mass, 

wheelbase, sensor mounting locations) of the 

vehicle (calibration), and parameters that determine 

the behavior of the localization and control 

algorithms (tuning). Establishing a base-line 

calibration and tuning parameter set often requires 

specialized knowledge and the manual 

modification of parameters to achieve a desired 

performance. This process scales poorly and can be 

time-consuming for fleets of autonomous vehicles. 

This work presents a method for auto-calibrating 

sensor mounting locations with respect to a known 

point on the vehicle. This is accomplished by 

leveraging a machine learning technique that uses a 

dynamic vehicle model and a known series of 

inputs to emulate the IMU signals at the known 

point.  

Additionally, two methods for autotuning the 

controller parameters to improve system 

performance are presented. The first method is an 

algorithm that searches a defined parameter space 

to improve the model of the system behavior. A 

model predictive control strategy is employed so 

the improved model will directly improve the 

controller performance. The second method is an 
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adaptive control law that mimics the behavior of a 

human driver that will adjust to uncertainty in the 

system model.  

This paper presents the auto-calibration method in 

Section 2. Then the model predictive path 

controller is presented in Section 3. Section 4 

presents the autotuning algorithm and provides 

results for estimating parameters for the steering 

model and dynamics model of an automated ground 

vehicle. Section 5 then provides the formulation 

and results from the controller based on human 

behavior. Lastly, Section 6 gives an overview of the 

conclusions drawn from this research. 

 

2. SENSOR MOUNTING ESTIMATION AND 
CALIBRATION 

The goal of the sensor calibration module is to 

locate and orient the sensors on an autonomous 

vehicle relative to a known control point. This will 

allow for more accurate sensor integration. In 

addition, it will enable flexibility in sensor 

configuration. Once the calibration routine is 

performed, the sensors on the vehicle may be 

positioned at the discretion of the team operating 

the autonomous vehicle. 

A calibration routine can be run to locate a sensor 

relative to another sensor. However, assuming full 

modularity of the sensor configuration, no sensor 

will be placed at the known control point. To locate 

a sensor relative to the control point, the output of 

a sensor fixed at that location will need to be 

emulated. 

 

 
Figure 1 Vehicle Model Diagram for derivation of the Dynamic 

Bicycle Model 

 

2.1. Solution Approach 
To calibrate the sensors relative to a fixed control 

point, an inertial measurement unit will be 

emulated for that point. To approximate the output 

of the inertial measurement unit, a vehicle model 

will be developed for the control point. Without 

knowledge of an exact description of the 

translational and rotational accelerations, the model 

will be constructed using experimental data.  

A machine learning approach was taken for this 

task. A recurrent Gaussian kernel network [1] was 

built to perform the IMU emulation. Neurons are 

added sequentially to form a single hidden layer of 

Gaussian kernels. In each training cycle, the 

algorithm adds a neuron at the location of 

maximum residual error. The network continues to 

train until it is stopped by a cross-validation 

algorithm. The cross-validation algorithm prevents 

overfitting of the training dataset. 

When operated in open-loop mode, the network 

will predict the target acceleration values, ax, ay, 

and az, based on the vehicle’s current position in the 

state-space of past input values. 

A rigid-body transformation is then used to 

estimate the lever arm from the control point to the 

IMU physically attached to the vehicle. A standard 

least squares algorithm can then be applied to 

extract the true lever arm parameters from the noisy 

lever arm predictions.  

�̂�𝑠𝑒𝑛𝑠𝑜𝑟 =  𝑹 ( �̂�𝑐𝑝 + 𝛼 × 𝑟 +  𝜔 × 𝜔 × 𝑟)  (1) 

 

Equation (1) defines the rigid-body 

transformation equation used to estimate the lever-

arm, r, between the control point and an IMU 

located on the vehicle. 
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Figure 2 Recurrent Neural Network Architecture of the Same Type 

as the calibration algorithm 

 

2.2. Sensor Calibration Results 
The calibration algorithm was trained and tested 

on simulated data obtained from the Carsim 9 

engine. The simulated dataset was produced based 

on a set of sine sweep steer angle inputs. Velocity 

in the inertial frame was kept constant, while the 

other inputs to the neural network could vary freely 

in the simulation.  
 

 
Figure 3 Sine sweep steer angle input, used to generate simulated 

training data 

 

Seven measured quantities were used as inputs to 

the neural network model: steer angle (ẟ), 

longitudinal velocity (vx), lateral velocity (vy), 

vertical velocity (vz), pitch rate (ωθ), roll rate (ωφ), 

and yaw rate (ωψ). All of these values can be 

reliably measured with common sensors and are not 

dependent on the location of the sensor on the 

vehicle.  

 
Figure 4 The seven input time series, taken from a single training 

run 

From these input time series, the neural network 

model generated a prediction of each of the three 

translational accelerations, ax, ay, and az. Given the 

rigid-body assumption, the angular velocities 

should remain the same anywhere on the vehicle. 

Hence, the complete IMU model is given by these 

three predicted values.   
 

 
Figure 5 Lateral Acceleration predicted by the neural network 

model differs from truth by a constant value 
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Figure 6 Longitudinal Acceleration also differs from truth by a 

small constant. The initial spike is not detected 

The lever arm between the control point and 

another simulated IMU is then estimated. A small 

constant bias can be noted in both plots. The origin 

of this bias is unclear, but an investigation of the 

neural network reveals that the issue lies with the 

way that the mean value of the time series is 

approximated. Despite the errors in the model 

predictions, the lever arm estimates are accurate so 

long as the transformation matrix remained well-

conditioned. The noise in the predictions appears to 

be a result of issues with the transformation matrix. 

However, a simple least-squares algorithm will 

filter it out to a large extent.  
 

 
Figure 7 Estimated Lever arm time series in blue, and true lever 

arms in black 

 

However, if the transformation matrix is ill-

conditioned, whether because some variables are 

not observable, or because the angular 

accelerations derived from the measured angular 

velocities are inaccurate, then the lever arm 

estimates are degraded. Lx, the estimate in the 

longitudinal direction, is strongly affected. 

Deviation from truth of nearly a meter has been 

observed. The other two parameter estimates are 

less strongly affected. 

The simulated results indicate that, given enough 

training data, and a well-conditioned 

transformation matrix, the algorithm can 

effectively estimate the lever arm between an IMU 

and a fixed control point on an autonomous vehicle. 

The other sensors can then be calibrated relative to 

the IMU using known techniques.  

 

3. GRAFTERPLUS – MODEL PREDICTIVE 
PATH CONTROLLER 

To showcase the autotuning algorithm presented 

in Section 4, a model predictive path controller 

(MPPC) called GrafterPlus was developed. A 

model predictive controller (MPC) uses a model of 

the system to be controlled to predict the behavior 

given a series of inputs. An optimization problem 

is formulated to minimize a cost function to 

determine an optimal series of inputs to track a 

given command signal [2].  

In the context of path control, a dynamic or 

kinematic model of a ground vehicle is used to 

predict the system behavior and provide a trajectory 

for the vehicle to follow. A cost function penalizing 

cross-track and heading errors is formulated and the 

error is computed along a trajectory. The 

optimization routine determines a series of steer 

angle inputs that minimize the error along the 

trajectory. The first input from the optimal series of 

inputs is used as the next command to the vehicle. 

This process is repeated at every control interval. 

MPC techniques have been used for decades [3]. 

Due to the high computational cost of this method, 

they have historically been restricted to systems 

with very slow dynamics. However, the increase in 

processor speed in recent years has made this 

method of control more attractive for a wider 

variety of problems.  
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The GrafterPlus controller has three stages, 

namely, propagate, plan, and predict. These stages 

are described as follows: 

Propagate: Propagate the current vehicle state 

forward to obtain a vehicle state estimate after a 

given delay. 

Plan: Create graft path to connect vehicle state 

from Stage 1 to point along desired path. The 

connection point is determined by the look-ahead 

parameter, dl.    
Predict: Use vehicle model to calculate the 

curvature command that will result in an average 

steering velocity (over a specified time horizon) 

required by the graft path in Stage 2. 

This process is shown graphically in Figure 8, 

where Stage 1 is represented by the red dashed line, 

and Stage 2 is represented by the blue dashed line. 

The look ahead parameter, dl, is shown below the 

desired path. Stage 3 is not explicitly depicted but 

it includes computing a curvature command due to 

the planned path in Stage 2. 
 

 
Figure 8 Graphical representation of GrafterPlus algorithm. The 

first and second stages are shown in red and blue, respectively. The 

third stage is to compute the curvature command associated with the 

graft path from Stage 2. 

The vehicle model used in the Predict stage of 

GrafterPlus is the dynamic bicycle model described 

in Section 4.2. This model includes cornering 

stiffness parameters that strongly influence the 

lateral dynamics. Selecting this parameter to reflect 

the true cornering stiffness of the vehicle greatly 

influences the accuracy of the path controller. 

Figure 9 shows the results from two simulations of 

Grafter Plus with different cornering stiffness 

parameters. The simulated vehicle had a cornering 

stiffness of 250 N. The figure shows that when the 

parameter was correctly set in Grafter Plus the off-

path error was significantly reduced. This 

motivates the need to autotune such parameters to 

accurately model the system behavior and improve 

the performance of the path controller. 

 

Figure 9 Off path error results for simulations of Grafter Plus with 

different corning stiffness parameters. The cornering stiffness of the 

simulated vehicle was 250 N. The plot shows that correctly setting 

this parameter results in improved performance. 

4. AUTOTUNING PATH CONTROL 
An autotuning algorithm was developed for an 

MPPC that uses a model of the system dynamics to 

simulate the step response of the system. A series 

of discretized (step) inputs is provided to both the 

model and the vehicle.  The response of the model 

and vehicle are compared, model parameters are 

adjusted, and the process is repeated for each 

combination in the parameter space. The 

parameters associated with the smallest modeling 

error are then used in the controller.  

The path controller presented in Section 3 is a 

good candidate for autotuning as it has very few 

parameters and the parameters generally relate to 

physical quantities of the ground vehicle. This 

section presents the autotuning approach for two 

models used in the Grafter Plus path controller. 

First, the steering model of the system is modeled 

as a second order system where the damping ratio 

and natural frequency are estimated. Second, a 

dynamic bicycle model is used to model the lateral 
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dynamics of the vehicle and the cornering stiffness 

parameter in the model is estimated.  

Figure 10 shows an example of two system step 

responses. The blue curve represents the true 

response of the system and the black curve 

represents the response of the modeled system. The 

error is calculated as the area between the curves. 

The objective of the autotuning algorithm is to 

modify parameters of the modeled system to 

minimize this area. 

 
Figure 10 Example system response where the error is the area 

between the actual system response and the simulated (or estimated) 

system response. 

The general autotuning algorithm used for the 

steering model and bicycle model autotuning is 

given in  Algorithm 1. This algorithm was found to 

have the best results if the input signal were 

discretized to provide a series of step responses that 

could be compared with the step response of the 

model given a specific parameter set. With the 

input signal discretized into a series of steps, the 

true response of the system is stored in a “bin” for 

each command. The algorithm then loops through 

the combinations of parameters defined in the 

parameter space and simulates the step response of 

the model for each binned input. The error is 

computed as the accumulated difference between 

the system response and the modeled response. The 

parameter set associated with the smallest error is 

determined to be the best parameter set for 

modeling the system.   

 

Algorithm 1 Autotuning algorithm used for both steer model, and 

bicycle model parameter autotuning. 

Autotuning Algorithm 

1: 𝑃 =  { parameter space} (set parameter space) 

2: min_error, p_opt (initialize variables) 
3: for  p : P  

4:  for  b : bins (loop through bins) 

5:  m = SimModel(p, b.cmd) (simulate model) 
6:  t = GetTrueOutput(b)  

7:  error += ComputeError(t, m) (compute error from truth) 

8:  if  error < min_error  
9:   min_error  =  error  

10:   p_opt  =  p (store best parameter set) 

11:  end if  
12:  end for    

13: end for   

 

It remains to define the models used in the 

autotuning algorithm. The second order steering 

model is defined in Section 4.1 which relates a 

steering angle command to vehicle curvature. Then 

the dynamic bicycle model is defined in Section 

4.2. 

 

4.1. Steering Model 
The steering model is assumed to be a second 

order system parameterized by a damping ratio, ζ, 

and natural frequency, ωn, given by 

 

 𝑃(𝑠)  =  
𝜔𝑛

2

𝑠2 + 2ζ𝜔𝑛 + 𝜔𝑛
2
 (2) 

 

where the input and output of the system are the 

setpoint and feedback of the vehicle curvature, 

respectively. The natural frequency and damping 

ratio determine the response of the system. Figure 

11 shows the second order system response to a 

variety of damping ratio and natural frequency 

values. 

Second order systems are commonly used to 

model higher-order systems. This is an attractive 

approach for the autotuning algorithm because by 

changing a couple of parameters a large variety of 

system responses can be achieved.  
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Figure 11 Second order system example for varying values of 

damping ratio and natural frequency 

The geometry of the bicycle model of a ground 

vehicle shows that the curvature of the vehicle is 

approximately proportional to the front wheel 

angle. To account for this approximation and non-

linearities in the steering system, the relationship 

between steering wheel angle and curvature is 

modeled as a 3rd order polynomial. Figure 12 shows 

an example of sampled curvature measurements in 

response to steer angle commands. The blue circles 

represent the curvature measurements and the red 

line is a best-fit polynomial used to represent the 

mapping between steering wheel angle and 

curvature. 

 
Figure 12 Steer polynomial example that relates steer angle to 

curvature. 

In addition to the parameters in a second order 

system, the autotuning algorithm is also able to 

estimate a pure delay, d, from command to steering 

response. Thus, the three parameters estimated by 

the autotuning algorithm are ζ, ωn, and d. The full 

steering model is shown in Figure 13 which 

illustrates the signal path of steer angle command 

to modeled curvature. 

 
Figure 13 Steer model that takes steering wheel angle (hand 

wheel angle) and converts to curvature 

The first step of the autotuning algorithm is to 

determine a parameter space. Table 1 provides an 

example parameter space for the steering model of 

an automated ground vehicle. This parameter space 

is very large and should account for a variety of 

ground vehicle types, however, it is left to the 

designer to determine appropriate ranges for the 

specific system of interest. 

 
Table 1 Parameter space for steer model autotuning. 

 Min Max Δ Unit 

d  0.05 1 0.05 s 

ωn 2 20 1 rad/s 

ζ 0.1 2 0.1 - 

 

Figure 14 shows the results of the autotuning 

algorithm for the steer model parameters. The blue 

line is the system response to a series of step inputs 

(the command values can be inferred by the shape 

of the response curves). The red curve is associated 

with a poor estimate of the system response, 

whereas the green curve (which tracks the system 

response very well) is the response of the model 

using the parameters determined by the autotuning 

algorithm. These results show that the autotuning 

algorithm can accurately estimate the steer model 

parameters.  
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Figure 14 Steer model autotuning results. 

4.2. Dynamic Lateral Bicycle Model 
Inherent to a model predictive control strategy is 

a model of the system dynamics. This model is used 

to predict the behavior of the system given a series 

of inputs. An optimization routine is used to 

minimize the error between the commanded signal 

(path) and the predicted system behavior by 

modifying the series of inputs. The first input of the 

optimal solution is provided to the vehicle and the 

rest are discarded. The process is repeated at every 

control interval. This control strategy has been 

shown to be effective as a path controller for 

autonomous ground vehicles [4]. 

Typically, there are discrepancies between the 

system and the model used in MPC. An autotuning 

algorithm can be used to further refine the model 

and improve the accuracy controller.  

In Grafter Plus, a linearized bicycle model [5] [6] 

has been chosen to model the lateral dynamics of a 

ground vehicle. The dynamics of this model are 

given by 
 

[
�̇�
�̇�𝑦

] =

[
 
 
 
 −

𝑎2𝐶𝛼𝑓 + 𝑏2𝐶𝛼𝑟

𝐼𝑧𝑉𝑥

−
𝑎𝐶𝛼𝑓 −  𝑏𝐶𝛼𝑟

𝐼𝑧𝑉𝑥

−
𝑎𝐶𝛼𝑓 − 𝑏𝐶𝛼𝑟

𝑚𝑉𝑥

− 𝑉𝑥 −
𝐶𝛼𝑓 + 𝐶𝛼𝑟

𝑚𝑉𝑥 ]
 
 
 
 

[
𝑟
𝑉𝑦

]

+

[
 
 
 
𝑎𝐶𝛼𝑓

𝐼𝑧
𝐶𝛼𝑓

𝑚 ]
 
 
 
𝛿 

(3) 

 

 

where 𝑟 is the yaw rate, 𝑉𝑦 is the lateral velocity, 𝑎 

and 𝑏 are the distances between the CG to the front 

and rear axles, 𝐶𝛼𝑓  and 𝐶𝛼𝑟  represent the cornering 

stiffness of the front and rear tires,  𝑚 is the mass 

of the vehicle, and 𝐼𝑧 is the moment of inertia about 

the positive z-axis. Most of these parameters are 

well known or easy to measure. An exception to 

this is the cornering stiffness parameters which are 

difficult to estimate and often have a high degree of 

uncertainty. Thus, the cornering stiffness 

parameters are an ideal candidate for autotuning.  

The linearized bicycle model was implemented in 

the Grafter Plus path controller and the autotuning 

algorithm was used to tune the cornering stiffness 

parameters of the vehicle using Algorithm 1. The 

results of a simulated test is shown in Figure 15, 

where the curvature of the actual model is 

represented by the green line. The red line is the 

curvature of the model with the autotuned 

cornering stiffness (18 N). The dark blue and light 

blue lines are the curvature of two other models 

from the parameter space provided to the 

autotuning algorithm. 

 

 
Figure 15 Vehicle curvature during model parameter autotuning 

tests in simulation. The green line represents the curvature of the 

actual system. The red line represents a model with the autotuned 

cornering stiffness (15). The blue lines are models using other 

parameters checked by the autotuning algorithm. 

 

5. MANUAL DRIVING ADAPTIVE CONTROL 
(MDAC) 
The motivation behind Manual Driving Adaptive 

Control (MDAC) is to design a controller that 

behaves similarly to a human. This involves two 

main components. First, MDAC should follow the 

same driving characteristics of a typical human 

driver, such as similar path following dynamics and 

smoothness. Second, it should be able to adapt to a 

wide variety of vehicles and vehicle types, just as a 

human can drive anything from a large truck to a 
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small sports car with the same basic knowledge. In 

this work, the lateral aspect of the MDAC is 

investigated. 

  To achieve these desired characteristics, various 

controller architectures were explored and tested. 

Dynamic model-based controllers can perform well 

on a specific platform if tuned well [7], but they 

require very accurate vehicle models and do not do 

well when applied to a different platform. Robust 

controllers can guarantee stability margins for a 

wider range of systems; however, they cannot 

handle extremely large levels of uncertainty or 

guarantee the desired performance [8]. Direct 

adaptive control, such as model reference adaptive 

control, was therefore a logical next step due to 

abilities to handle large amounts of uncertainty 

while guaranteeing stability and performance [9]. 

Nevertheless, when implemented in high fidelity 

simulation and on a real vehicle, it was found to 

perform much worse than expected. This was due 

poor estimates of certain vehicle states needed for 

the adaptive controller and higher order dynamics 

not captured in the reference model.  

 

 
Figure 16 MDAC Architecture 

  Figure 16 shows the architecture that was chosen 

for the MDAC. It employs a cascaded approach 

with the path dynamics in the outer loop (blue) and 

the yaw dynamics in the inner loop (orange). These 

path dynamics can be made to match the path 

dynamics of typical human driving behavior, which 

is mostly independent of vehicle type. Then the 

yaw dynamics, which are often unknown, are dealt 

with separately. This system is implemented using 

Robotic Operating System (ROS) in C++ and 

Python. 

  Generating the desired reference path to follow is 

the first step. In this work, two methods were used 

for this: vision-based lane detection and GPS 

waypoint following. The vision-based system uses 

a camera to detect lane markings and would be used 

in a lane keeping system. This was implemented in 

simulation in Gazebo and on the vehicle real-time. 

The GPS waypoint path generation uses a GPS 

receiver to record the desired reference path. This 

would be used on or off road to follow a 

predetermined route or to follow another connected 

vehicle, such as in vehicle platooning [4]. This 

reference path is rotated and translated into the 

frame of the controlled vehicle and sent to the path 

following node. 

  The path following node then calculates the 

desired yaw rate as 

 𝑟𝑑𝑒𝑠 = 𝑟𝐹𝐹𝑊 + 𝑟𝐹𝐵 (4) 

 

 to follow the reference path. This is based on a 

feedforward term (to follow the curvature of the 

path) that is calculated by multiplying the 

longitudinal velocity of the vehicle by the curvature 

of the path. Thus, the feedforward term is given by 

𝑟𝐹𝐹𝑊 = 𝜅(𝑠) ∗ 𝑉𝑥,  𝜅(𝑠) =
𝑑𝜃

𝑑𝑠
 (5) 

 

and a feedback term (to correct deviations from the 

path) as 

𝑟𝐹𝐵 = −𝐾𝑝 ∗ 𝑒𝐿𝐴.   (6) 

The error in the feedback equation is the 

lookahead error. To mimic human driving 

behaviors, the lookahead distance is adapted based 

on vehicle speed and path profile. The lookahead 

distance acts like damping in the system and is 

increased proportional to longitudinal speed. This 

replicates how a driver on the interstate looks 

further ahead than they do when driving slow 

through a parking lot. Additionally, the lookahead 

distance is increased as the curvature of the path 

decreases. This is similar to how human drivers 

should look further ahead on a straight road than a 

tight twisty one. 

  The desired yaw rate from the path following 

node is sent to the yaw controller. While various 
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controller types were tested for this piece, the best 

results were from inverting a simple kinematic 

model. This model only relies on knowing a 

wheelbase length and the current vehicle speed, 

which makes it easily adapted to different 

platforms. Figure 17 shows how well the yaw 

controller is able to track the commanded yaw rates 

during a simulation run around a test track in 

Gazebo. 

 
Figure 17 Yaw Response using Kinematic Steering Model 

  The steer angle calculated by the yaw controller is 

sent to the test vehicle through the Controller Area 

Network (CAN) bus, utilizing the original 

equipment manufacturer steering motor. 

 

5.1. Results 
The Manual Driving Adaptive Control was first 

tested in simulation using a test track Gazebo 

environment and the Dataspeed MKZ Gazebo 

model. The simulation uses the vision-based lane 

detection for the reference path generation. Figure 

18 shows the results for a full lap of the Gazebo test 

track. The plot displays a higher lateral error than 

the true path error because it was calculated using 

the lateral lookahead error from the camera at the 

closest path point in the camera’s field of view. The 

distance to the closest path point is approximately 

8 meters. Although this is not the truth value, it 

shows the way the vehicle is generally behaving 

relative to the path and is able to be used for 

comparison purposes. Qualitatively, the controller 

kept the vehicle within the lane bounds at all times 

during the run. 

 

 
Figure 18  Simulation Lookahead Error Results 

Real world testing was done using a double lane 

change path of GPS waypoints. The double lane 

change was chosen because it is a high dynamic 

maneuver and can be easily compared to a human 

driver. This test was run at various speeds and the 

results can be seen in Figure 19 and Figure 20. The 

tests were done at various speeds, but 5 m/s and 10 

m/s are shown here. Each plot shows three 

consecutive runs. 

 

 
Figure 19  5 m/s Double Lane Change 
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Figure 19 shows that for 5 m/s, the lateral error is 

less than half a meter throughout the maneuvers. 

Quantitatively, the steering was extremely smooth 

and precise. 
 

 
Figure 20  10 m/s Double Lane Change 

At 10 m/s the max lateral error remained around 

half a meter for all three runs as shown in Figure 

20. Again, the steering was exceptionally smooth.  

  Overall, Manual Driving Adaptive Control 

(MDAC) was successful at maintaining low lateral 

errors at a variety of speeds, while also mimicking 

the path following behavior of a human driver. 

Combined with the smoothness of steering 

actuation, MDAC provides another possible 

approach to lateral vehicle control, without having 

to do extensive manual tuning. 

 

6. CONCLUSION 
This work presents methods for automating the 

calibration and tuning of an autonomous vehicle. 

The calibration method leveraged a recurrent 

Gaussian kernel network to estimate the sensor 

mounting location of an IMU. Prior to operation the 

neural network would need to be trained on data 

from the vehicle of interest. Once trained, this 

process could be used to estimate the mounting 

location of the IMU anywhere on the rigid body.  

Two methods for autotuning controller gains were 

presented. The first method involves a brute force 

parameter search approach attempting to minimize 

differences between the responses of a reference 

model and the vehicle. Results were provided 

indicating accurate model estimation, which was in 

turn used in an MPPC to improve path control. The 

second method was an adaptive controller called 

MDAC, which attempts to mimic the behavior of a 

human driver adapting to a new vehicle. MDAC 

was able to follow a reference path with about 0.5 

m of maximum lateral error. MDAC provides 

another approach of controlling an uncertain UGV 

without relying on a dynamic model. 
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