
2021 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
AUTONOMY, ARTIFICIAL INTELLIGENCE & ROBOTICS (AAIR) TECHNICAL SESSION

AUGUST 10-12, 2021 - NOVI, MICHIGAN

Collaborative Migration of an
Autonomous Ground Vehicle Software System to ROS 2

Michael Boulet1, Ryan DelGizzi2, Scott Lathrop3, Brendan Leahy4, Jake Montez1,

Gary Rucinski1, Matthew Spinola5, William Thomasmeyer6, Jerry Towler7

1MIT Lincoln Laboratory, Lexington, MA; 2Stratom, Boulder, CO;

3Raytheon BBN, Columbia, MD; 4Robotic Research, Clarksburg, MD;
 5Neya Systems, Framingham, MA;

 6National Advanced Mobility Consortium, Ann Arbor, MI;
 7Southwest Research Institute, San Antonio, TX

All authors contributed equally to this work.

ABSTRACT

The Robotic Technology Kernel (RTK) is a government-owned library of
reusable software modules based on the first generation Robotic Operating System
(“ROS 1”) that can be formed into “autonomy stacks” for integration onto defense robotic
platforms. RTK has been used to demonstrate autonomous ground vehicle capabilities
spanning many programs and mission scenarios over the past five years. Future use of
RTK is dependent, however, on migrating it to be compatible with the 2nd generation of
ROS middleware (“ROS 2”) scheduled to replace ROS 1 in May, 2025.

This paper summarizes the methodologies, systems, results, and lessons learned
thus far from a project to migrate RTK to ROS 2 for the purpose of informing similar
ongoing or future large software-centric activities within the ROS and defense robotics
communities. A key conclusion is that a well-defined set of organizational practices and
technical guidance can enable a large, heterogeneous team of developers from multiple
industry, non-profit, and FFRDC organizations to successfully execute a complex DoD
software task.

Citation: M. Boulet, R. DelGizzi, S. Lathrop, B. Leahy, J. Montez, G. Rucinski, M. Spinola, W.
Thomasmeyer, J. Towler, “Collaborative Migration of an Autonomous Ground Vehicle Software System to
ROS 2”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS),
NDIA, Novi, MI, Aug. 10-12, 2021.

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 5459
This material is based upon work supported by the Department of the Army under Air Force Contract No. FA8702-15-D-0001 and the National Advanced
Mobility Consortium per U.S. Army Contracting Command Technical Direction Letter GVS OTA TR07; 70-201809. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Army.

© 2021 Massachusetts Institute of Technology; Stratom Inc.; Raytheon BBN Technologies; Robotic Research, LLC.; Neya Systems, LLC.; National
Advanced Mobility Consortium, Southwest Research Institute.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright
notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as
specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 2 of 12

INTRODUCTION

The U.S. Army Robotic and Autonomous
Systems (RAS) Strategy identifies the need for
advanced RAS capabilities over the near-, mid-,
and far-term horizons to address mission
challenges, maintain overmatch, and improve the
combat effectiveness of the future force. Realizing
the Army RAS Strategy requires the large-scale
development, testing, iteration, and integration of
software-centric technologies, such as autonomous
maneuver and decision-making.

The Robotic Technology Kernel (“RTK”) is a
large government-owned and -managed library of
reusable software packages which can be
combined to form various subsystems comprising
an “autonomy stack” for ground vehicles. RTK
provides perception and localization modules that
use different types of sensing hardware for object
detection, ranging, classification, and vehicle pose
estimation. RTK offers a variety of user-
selectable path planners suited for varying
environmental and autonomous navigation
requirements. It also includes modules for vehicle
management, motion control, communication
management, and a variety of supporting
development infrastructure for simulation and
verification.

Over the past five years, U.S. Army CCDC
Ground Vehicle Systems Center (“GVSC”) has
successfully employed RTK to demonstrate
autonomous ground vehicle capabilities (e.g.,
autonomous route, waypoint, and convoy
following) spanning many programs and mission
scenarios. It is now a relied-upon source of
software for both government and contractor
developers on major programs such as Combat
Vehicle Robotics (CoVeR), and Autonomous
Ground Resupply (AGR).

RTK is based on the Robot Operating System
(“ROS”), an open-source middleware software
framework for robotic applications [1]. The
framework provides software modules, tools, and
interfaces that simplify the development of robotic
behaviors and platforms. ROS enables
collaborative robotic software development

through common architectural constructs and open
development based on the permissive BSD open-
source license.

ROS originated in 2007 from a variety of
institutions including Stanford University and
Willow Garage, ultimately transitioning to Open
Source Robotics Foundation and then to Open
Robotics (“OR”), a non-profit organization. In
2014, OR introduced a second-generation version
of ROS (“ROS 2”) to address limitations in the
original version (“ROS 1”) and to support
advanced capabilities, such as multiple robot
teaming, real-time performance, and enhanced
message and network security. Table 1 provides a
summary of key differences between ROS 1 and
ROS 2 and the resulting impact on robotic system
development. ROS 2 has continued to mature to
the point that OR has decided to sunset ROS 1,
beginning with the release of its last version
(Noetic Ninjemys) in May 2020 and the
termination of support in May, 2025.

Given RTK’s dependence on ROS 1 and the
opportunity to take advantage of the new features
built into ROS 2, GVSC decided to initiate the
Modular Autonomy and Robotic Software
(“MARS”) project to migrate the RTK software
modules from ROS 1 to ROS 2. Beyond ensuring
the future sustainability of RTK, the MARS
project has four additional goals:

• increase the use of software development
best practices, such as unit testing and code
analysis, in RTK development.

• increase the number of organizations
contributing to RTK development,

 reduce the time needed to effectively use or
contribute to RTK through documentation
and changes to the RTK source code
structure, and

 incorporate cybersecurity features and
related best practices.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 3 of 12

 ROS1 ROS2 Impact
Communications
Middleware

Custom discovery
and publish /
subscribe

Data Distribution Service
(DDS) using the Real-time
publish subscribe (RTPS)
protocol

 Established, real-time middleware
 Support for multiple DDS vendors1
 Multiple Quality of Service (QoS) settings
 Security support (DDS-Security)
 Steeper learning curve

Security None2 DDS-Security + SROS2  Authentication, access control
 Data transmit integrity + confidentiality
 Security event logging

Build system Catkin Ament New build system to learn
Launch System XML XML and Python  Improved control over launch behavior

 More complexity
Languages C++03, Python2 C++14/17, Python3 Access to modern language features
OS Platforms Ubuntu 16.04 Ubuntu 20.04, OS X,

Windows 10
Larger, actively supported OS footprint

Single-process
support

Nodelet, add-on to
core ROS

Components, integrated into
core ROS

Enhanced support for running multiple modules
within a single process

Lifecycle node No standard
approach

Well-defined lifecycle
integrated into core ROS

Provides a standard approach to a common usage
pattern

Support Support ends 5/2025 Migration necessity

Table 1: Comparison of ROS 1 and ROS 2 elements. ROS 2 increases use of standard software
components, supports additional platforms, and provides new features based on ROS 1 experience.

1 Each DDS implementation requires an implementation of a ROS Middleware (RMW) to support abstraction of ROS2 topics,

services, and actions
2 ROS1 eventually bolted on an experimental secure ROS (SROS), which included a TLS shim between the network stack and

the ROS client library.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 4 of 12

CHALLENGES
Migrating an individual ROS software package

to the ROS 2 framework requires a large number
of changes to the source code and build files.
Although the details depend on specific properties
of each package, modifications typically include
revising the executable and test source code to
leverage the ROS 2 API, rewriting launch scripts
in ROS 2’s Python-based approach, replacing
ROS 1 message definitions with their ROS 2
counterparts, and updating the build instructions
and metadata to the ament architecture (the ROS 2
build system). Tools exist to automate simple
changes in API calls, such as ROS 2’s new use of
the “msg” namespace. However, the high degree
of flexibility deliberately designed into the ROS 1
architecture creates challenges in completely
automating the migration due to the many
different design patterns present in RTK and
conceptual-level differences in ROS 2. The
MARS program, along with much of the larger
ROS community, has concluded that dedicated
engineering effort to inspect and revise the source
code is typically necessary to successfully migrate
a package. While the effort to complete and test
these changes for an individual package can be
significant, the scope of the challenge is limited to
the package. Migrating a large system of packages
at the scale of RTK introduces additional technical
and programmatic challenges which must be
addressed to achieve the project objectives.

Dependency Management. A ROS package

will often depend on functionality provided by
other ROS packages. For example, a package
named C may need to receive and process a
message that is defined within a package named B.
A large ROS system, such as RTK, will typically
define hundreds of dependency relationships
across the total set of system packages. The ROS
build system requires that the migration of
packages to ROS 2 be performed in dependency
order. In the example above, package B must be
migrated to ROS 2 before package C could be

successfully compiled in ROS 2. Therefore, the
dependency relationships impose a series
constraint in the management of the migration
process, limiting the degree of parallelism that can
be applied to accelerate the migration timeframe
or reduce project risk. A delay in migrating a
single package could, if it is in the dependency
chain of many other packages, effectively stall the
entire project.

Distributed Team Structure. The level of effort

needed to migrate a single package will vary
widely based on many factors, such as the number
of ROS API calls and the number of executable
elements. At the start of the MARS program, past
experience migrating ROS packages similar to
RTK suggested that, on average, an RTK package
would require approximately 80 engineering
hours. A complete migration of RTK would
therefore require at least 15 000 hours of
engineering effort. Given the anticipated scale of
the migration effort coupled with the need for
continued capability development in the ROS 1
code base occupying the full-time effort of
existing RTK developers, MARS program
leadership concluded that a new team of engineers
was needed to execute the migration. Given that
ROS2 is a relatively recent development, there are
very few developers familiar with it. Therefore,
the MARS program elected to compose the
engineering team from multiple industry and non-
profit organizations. While the distributed team
structure has the advantage of leveraging a diverse
set of expertise, it also introduces a management
challenge in how to effectively coordinate effort
across organizational boundaries. An additional
challenge is the assembled engineering team’s
varying and, in some cases, limited direct
experience with the RTK code base.

Regressions. Every change made to a code base

introduces the possibility of altering the behavior
of the software which could impact the
functionality or performance of the integrated

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 5 of 12

system. There are many potential causes of
regressions in a ROS 2 migration, ranging from
the developer making an error in the conversion of
ROS API calls to subtle differences in timing in
the underlying ROS communication system.
Given the magnitude of changes required to
migrate RTK, the introduction of regressions is a
near-certainty regardless of the level of
engineering expertise or rigor. Therefore,
detecting the occurrence of regressions is a key
challenge.

Cybersecurity. Security adds complexity to an
already complex system, impacting performance.
Segmenting the architecture to support concepts
such as zero-trust (i.e., least privilege) and
resiliency (i.e., continuous delivery of mission-
critical functionality despite a cyber-adversary) is
difficult without an intuitive implementation that
scales with the number of nodes. Comingled ROS
and non-ROS interfaces further complicates trust
between components and how to mitigate. Adding
security modifies the way developers write and
test code. Given those challenges, it was important
for the MARS program to address cybersecurity
from the start of the migration as it forced the
broader team to consider the tradeoffs while
working to mitigate risk to a level acceptable to
stakeholders.

APPROACH
To address challenges identified above, the

MARS program developed a package-by-package
migration approach that incorporates cybersecurity
considerations, emphasizes continuous testing, and
leverages an Agile program management
methodology. The approach was documented in a
pair of documents. An Agile Software
Development Plan detailed the process and
practices for managing the software effort, which
is further described below. A Software
Development Plan described the technical
approach to the migration. Both documents were

updated as needed based on periodic retrospective
assessment.

Modular Software Migration. ROS packages

function as the atomic unit of dependency, build,
and distribution within a ROS system, so the
MARS migration effort is naturally divided on
package boundaries. It would therefore seem
natural to allocate the task of migrating an
individual package to development resources, i.e.,
individual developers or development teams
within one participating organization, in a
topologically-sorted dependency order. However,
collections of packages often have related
functionality. In RTK, for example, there are
several different vehicle planning algorithms
implemented in individual packages. Allocating
work to resources based purely on a topological
sort may fail to take advantage of similarities
across groups of packages. Therefore, MARS
grouped RTK packages into 14 subsystems:
Autonomy Mode Manager, CAN A-Kit Bridge,
Configuration, Diagnostics, IOP Bridge,
Localization, Motion Execution, Navigation,
Visual Perception, Sensors, Perception, Tools,
Vehicle Management System, and World Model.
Each subsystem was allocated as a whole to
participating organizations to facilitate
development of expertise within each subsystem.
Developers collaborated across subsystems to
identify a package migration order that satisfied
dependencies.

The program prioritized migration of packages
needed to perform autonomous capability on a
specific ground vehicle class, called the MRZR, in
order to facilitate system-level testing on a
hardware platform. 121 of the approximately 200
packages composing RTK are needed to operate
the MRZR. These 121 packages include roughly
5500 files and a total of 1.3 million lines of source
code. The remaining packages consist of those
needed to control other vehicle platforms, which
will be migrated to ROS 2 at a lower priority, and

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 6 of 12

deprecated packages, which will not be migrated
to ROS 2.

The work to migrate an individual package was
divided into four steps. The first step requires
inspecting the ROS 1 package source code and
any available documentation to create an XML-
based interface model and behavioral description
of its executable elements, i.e., nodes and
nodelets. Next, the unit and node-level tests are
added to the ROS 1 version of the package to
facilitate regression testing. In the third step, the
package source code and tests are migrated to
ROS 2 with minimal changes to the overall source
code structure. This step is intended to be a rapid
migration to enable the migration of any
dependent packages. In the final step, the source
code and tests are revised to meet project quality
goals, including resolution of any issues elicited
from static analysis tools.

Agile Collaboration. To address the need for
management and execution flexibility, the MARS
program adopted an Agile Scrum methodology.
Beginning with a collection of software
requirements or project expectations known as the
Product Backlog, Scrum defines a process for
selecting items from the Backlog, working on
them for a fixed period (a “Sprint”), reviewing the
work and making decisions about quality and
completeness, and then repeating the cycle to
finish uncompleted items or taking more items off
of the Backlog.

The Product Backlog for the RTK migration
effort consists of one or more of the four steps
used to migrate an individual package, described
above. At the beginning of each sprint, during the
Scrum Sprint Planning meeting, the development
organizations state which steps they expect to
execute for which packages. The status of each
committed step is reviewed at the end of the Sprint
at the formal Sprint Review before developing the
plan for the next Sprint.

For tracking purposes, each package/step
combination is tracked as a Story in the Jira issue

tracking system. The Story descriptions and
completion criteria are spelled out in the body of
the Story definition and are the same for every
step regardless of package. The Jira Sub-task issue
type is used to list the technical tasks that
complete each Story. Sub-tasks are assigned to
individual contributors from the partner
organizations. Sub-task status is initialized to
Backlog when created, and individual contributors
change the status to In Progress and Done as work
progresses. When all the Sub-tasks for a Story are
complete, the status of the Story is set to Done
also. The combination of Story, Story Status, Sub-
task, Sub-task Status, and assignment provide
accurate quantitative insight into the status of the
overall effort at every point in time.

 Modeling. To document the interfaces and
behavior of the executable components within the
RTK system, the MARS program developed a set
of models utilizing tools and techniques
commonly associated with Systems Engineering.
The RTK models are based on an XML schema
with elements aligned with ROS domain concepts.
The schema and structure allows for the ROS
interfaces to be captured in a standard way. The
ROS concepts defined in the profile include nodes,
messages, services, actions, topics, packages, and
nodelets.

The Systems Engineering community typically
leverages applications based on SysML models,
not custom XML schemas. To facilitate
collaboration, the MARS program developed a
tool to convert from the MARS XML models to a
SysML model within the Magic Draw software
application.

Testing. The MARS program leverages software

testing to detect any regression in package
functionality across the migration from ROS 1 to
ROS 2. Tests applied to the ROS 1
implementation of a package are expected to
execute with the same results in the ROS 2
version. Many packages in the existing ROS 1

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 7 of 12

RTK code base lack the tests necessary to detect
regressions. Therefore, the MARS program must
develop a suite of tests for the ROS 1 version of
packages.

The MARS program tests code at three levels as
appropriate: unit, integration, and system level
tests. Unit level tests validate individual
functionality of small pieces of code. Integration
level tests combine multiple pieces of software
and typically require more sophisticated or
complex input data. System level tests run large
amounts of code, typically in a fully simulated
environment.

Developers created function-level unit tests for
the ROS 1 version of RTK software packages
where the structure of ROS 1 RTK package is
amenable to such unit testing. Developers sought
to develop ROS 1 unit tests with a structure that
would support their use with minimal changes in
the migrated ROS 2 RTK package.

Developers created function-level and node-level
unit tests for RTK software packages migrated to
ROS 2. A goal of 80% line coverage was
established and adhered to except for small and
well-justified exemptions. Developers were given
the freedom to exercise engineering judgement in
deciding not to develop tests for certain functions,
files, or other units of code. These decisions were
documented in Jira.

Developers created node-level tests, i.e., tests
that used the ROS interface, for both ROS 1 and
ROS 2 RTK packages. Node-level tests were
designed to maximize code similarity across the
ROS 2 migration. Developing a test harness that
isolates the test node’s ROS interface from the test
logic is one recommended approach.

Many packages in RTK require interaction with
hardware, such as sensors and platform control
systems. However, not all hardware was always
available at test time, making achieving software
testing goals challenging. Due to the complexities
involved with shipping and running hardware at
multiple physical developer locations, the decision

was made to test these hardware packages in
software-only environments.

Two approaches were used to test these types of
packages. First, software emulators were built to
mimic the hardware system behavior, such as
connecting to a TCP socket and streaming data
packets. The second approach was data replay.
Data captures from physical hardware, such as
TCP packets or serial streams, were replayed to
the unit under test..

Development Automation. The MARS program

established a suite of tools and infrastructure,
known as a DevSecOps system, for automating the
build, testing, and reporting process. The primary
objective of the DevSecOps system is accelerating
MARS development velocity and improving code
quality through efficient access to information and
artifacts. The ready availability of package status
and metrics supports informed collaboration and
decision making across MARS participants and
stakeholders.

A pipeline was established to provide feedback
on all ROS 1 and ROS 2 development work.
These builds performed the following tasks for
every package being targeted in a particular run:

 Verify dependencies install correctly
from configuration files within the
package.

 Confirm the source code builds without
any errors.

 Run all functional tests.
 Run all static analysis tools.
 Publish dashboard with one-view

summary and navigation of CI results.
The static analysis executed includes the

following common tools:
 GCov – code coverage during test
 Cloc – count lines of code
 Cpplint – C++ linter
 Flake8 – Python format check
 Lint Cmake – CMake format check
 Pep257 – Python docstring check

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 8 of 12

 Xmllint – consistent XML style
 Clang-format – C++ format linter
 Clang-tidy – C++ checker for common

programming errors
The DevSecOps infrastructure supports system-

level testing by integrating a physics and
environment simulation engine to accurately
model sensor and platform behavior.

Cybersecurity. The MARS program established

a cybersecurity team to address challenges from
the start of the MARS project. The cybersecurity
team provides guidance to the migration team and
establishes the technical foundation for enabling
security within the runtime RTK system.

Implementation of security controls, through
DDS-Security, is a desired end goal of the
migrated ROS 2 RTK system. DDS-Security is a
security model and service plugin to the DDS
specification [2]. It includes plugins for
authentication, access control, cryptography,
encryption, and logging. The MARS program
developed an experimentation environment to
assess the impact of security on system
performance. The environment uses Apex.AI’s
open-source performance test package [3], [4].
The team had to make a few modifications as, at
the time, the performance test environment
targeted ROS 2 Dashing distribution rather than
Foxy, which is the targeted distribution for
MARS. Specifically, the package’s support for
DDS-Security in the Foxy distribution was
incorrect as the secure ROS 2 (SROS2)
application programming interface (API) changed
to use enclaves, different policy formats, and
environment variable names in Foxy. Rectifying
this incompatibility required modification of the
code’s naming scheme and updates to the tools
and startup scripts to support testing with and
without DDS-Security.

The experiments were run in a VMWareTM
Ubuntu 20.04 guest with 16GB of dedicated RAM
and 3, 2.9GHz CPU cores. Two ROS middleware
DDS implementations were evaluated, FastRTPS

and Cyclone DDS. Each experiment involved one
publisher sending a 1000-byte message to one
subscriber at a frequency of 1000
messages/second over a total time of 30 seconds.
UDP was the transport mechanism and the DDS
reliability quality of service was set to
BEST_EFFORT.

RESULTS

Package Migration. Following a planning and
study phase, migration of RTK packages began in
June 2020 and is continuing. Over a one-year
period, the MARS program has migrated a total of
81 packages to ROS 2 and partially migrated an
additional 34 packages. The migrated packages
span all subsystems and represent many different
types of packages, such as message-only
packages, Python-based packages, and packages
with C++-based nodes and nodelets.

Developing tests for each package is a
substantial component of the MARS effort. The
program, to date, has developed 1100 unit and
node-level tests that have raised the average code
coverage in RTK from 6.6% to 25.7%, an increase
of 289%. Furthermore, these tests have identified
several errors in the ROS 1 version of RTK that,
in addition to being fixed in MARS, have been
reported to the upstream ROS 1 RTK project.

Security performance. Figure 1 shows the

results of testing ROS 2 message passing latency
performance with and without security enabled.
The results, shown for the FastRTPS middleware
implementation, provide evidence that, on
average, the DDS-Security plugins do not appear
to have a significant impact on performance. Tests
using the CycloneDDS implementation, not
shown, give similar results. These experiments
will be extended in the next phase of the MARS
program to inform decisions as to where to apply
DDS-Security controls within the ROS 2 RTK
system.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 9 of 12

(a) FastRTPS without DDS-Security

(b) FastRTPS with DDS-Security

Figure 1: Latency measurements of ROS 2

using FastRTPS DDS (a) without DDS-Security
and (b) with DDS-Security. This experiment is
publishing a 1K byte message at 1 000Hz (1000
messages/second) for 30 seconds. The ROS 2
publisher and subscriber are running in the
same virtual machine but are transmitting
messages across their UDP/IP stack. Latency is
the time from when the publisher sends the
message to when the subscriber receives the
message. The results show a worst-case,
maximum of 38% increase in latency, but on
average latency is almost identical.

ANALYSIS
Qualitative analysis of the MARS program

execution has identified strengths and weakness of
the approach used to migrate RTK to ROS 2.

Agile Scrum. The structure of Scrum, which

facilitated shared understanding and collaboration
across the team, has proven to be an essential
component of the migration success. To
understand the benefits of the approach, consider
an alternative model in which each partner
organization managed their own work scope and
periodically reported out status. Without the
consistency of the package/step structure and
tracking in Jira, tracking progress and
understanding overall status would have been
extremely challenging. The common approach
eliminated these challenges. It normalized the
language used by individuals from across the
project to talk about progress, obstacles, and
questions, making discussions efficient. The
repetition of the Scrum cycle of planning, Sprint,
Backlog review, and Sprint review helped the
team fall into a regular cadence in which
expectations were known, exceptions could be
handled, status could be tracked, and workload
was adapted and shifted to take best advantage of
available resources.

Scrum was also used to manage the effort to
build and support a Continuous Integration /
Continuous Deployment (CI/CD) pipeline and to
explore the capabilities of the ROS 1 Bridge, a
software component that mediates message
package exchange between ROS 1 and ROS 2
nodes. Both of these efforts followed the same
Scrum methodology described above. In both
cases, requirements were less structured than the
repetitive package/step pattern used for the
migration work proper, but all other aspects of
Story definition, Sub-task creation and
assignment, planning, tracking, and review were
the same.

The ROS 1 Bridge was an unknown quantity to
the team. They used an iterative approach to

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 10 of 12

building the Product Backlog by starting with
small projects to demonstrate the Bridge working
for simple talker/listener configurations, gradually
including the build of the Bridge in the CI/CD
pipeline, and finally encompassing inclusion of
RTK message packages that had been migrated to
ROS 2 to build a Bridge that should work for all
packages being migrated.

Collaboration and Diverse Expertise. The

effort to transition rosbags, the native ROS data
capture format, from the ROS 1 API to the ROS 2
API highlighted the benefits of community-driven
development and the importance of coordination
tools in efficiently solving problems. Rosbags
were central to many of the tests written for the
project and were therefore a need in ROS 1 and
ROS 2 as a mechanism for persistent data
recording.

The rosbag API was expanded during the re-
design for ROS 2 to incorporate additional use
cases and middlewares. Despite DDS being the
default middleware of ROS 2, the implementation
of rosbags in ROS 2 includes facilities to record
and replay other data formats such as protobuf and
ZeroMQ. Additionally, the requirements for
rosbags in the ROS 2 environment incorporated
determinism, adaptability, scalability, random
access, ranged access, variable chunk sizes, and
backwards compatibility with ROS 1.

This expansion of use cases caused issues when
attempting to translate newly designed tests reliant
on rosbags from ROS 1 to ROS 2. First, the
rosbag structure was different and required
resampling the robags using the new ROS 2
format. In many instances, the interfaces that
ROS 1 tests relied on were not available in ROS 2.
In these cases, the project communication tools
such as Discourse, Confluence, and Jira, coupled
with regular Agile Scrum meetings, afforded the
developers space to discuss the issues and
coalesce on an approach that was both true to the
project at hand as well as the long-term goals of
ROS 2.

Cybersecurity. The reasons for migrating to

ROS 2 vary greatly from project to project, but
improved security features in ROS 2 are likely to
be high on any list of reasons for making the
switch.

Introducing new cyber infrastructure and features
to any system can be a daunting task. A port to
ROS 2 will include the need for introducing new
cybersecurity strategies as well as adapting code
to ROS 2 generally. Based on the experience of
the MARS program, it is recommended to assess
desired security goals at the outset so that related
migration challenges can be addressed from the
beginning and not as an afterthought.

DevSecOps. The DevSecOps systems proved to

be highly effective in providing developers timely
feedback on the status of their contributions. In
general, the use of pipelines elicited errors in
process sooner rather than later. For example, Git
strategy errors were caught and corrected early in
the code merge process. Additionally, by running
in standard container instances, common problems
such as code that “works on my machine” were
avoided.

The DevSecOps system also helped ensure
continuous enforcement of project objectives. The
Agile Product Owner was able to quickly establish
what lines of code where being executed during
the developed tests and make informed decisions
about the acceptance of developer contributions.
The system established confidence that the
resulting merge of development efforts into the
mainline repositories was stable and up to project
standards.

The DevSecOps processes described here
enabled developers, product owners, and
stakeholders to execute the RTK conversion with
increased velocity and confidence.

Software Testing. Overall, the application of

software testing has proven useful in identifying a
number of issues with the original ROS 1 RTK

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 11 of 12

implementation as well as ensuring that the ROS 2
migration did not introduce regressions. Continued
development and use of software testing at the
unit, node, and system level within RTK is
recommended. However, experience from the
MARS effort revealed that designing effective
tests, particularly for existing software, can be
challenging and time consuming. Increased
emphasis on test-focused training with additional
test code examples at the start of the MARS
program would likely have provided value and
improved consistency. Furthermore, the
development of software components providing a
node-level test harness may have accelerated test
development by facilitating reuse and
commonality.

Technical Debt. Tradeoffs made during early

development efforts often result in the
accumulation of technical debt associated with
software systems. For example, in the case of
RTK, it was determined that increased automated
unit test code coverage could improve early
detection of porting errors. Availability of
software design models could improve
understanding of how RTK is intended to operate,
giving developers an independent check of ported
code behavior.

With these expected benefits in mind, the MARS
program decided to address both of these areas.
Doing so has improved the confidence in both
porting decisions and execution. While these were
the two areas of technical debt the MARS program
chose to address, other programs may want to
consider other areas. The key is to assess all areas
of technical debt before beginning to port software
and decide whether it is finally time to address
some areas to accelerate the migration schedule or
improve the quality of the outcome.

FUTURE WORK

The MARS program is expected to continue
through June of 2022.

Hardware Demonstration. Deploying and
demonstrating the ROS 2 RTK system on a
physical robotic platform is a key planned
milestone. The program has developed a system-
level test plan that exercises a suite of RTK
features, such as obstacle avoidance and obstacle
avoidance. Executing the test plan with an MRZR
vehicle running the ROS 1 version of RTK, shown
below, established a system-level functionality
baseline. The program will repeat the test plan
with the ROS 2 implementation of RTK and
compare the performance with the ROS 1 version
in order to validate that the ROS 2 migration was
successful. Additionally, the system will be
similarly tested and analyzed with ROS 2 security
components enabled.

Figure 2: Testing the ROS 2 RTK system on a

physical robot platform, such as the MRZR
pictured here, is a critical component of the
ROS 2 RTK verification effort.

Sustainment. While completing the migration of

RTK to ROS 2 is a key objective, the program
also seeks to serve as a template for the future
development and maintenance of RTK as a
common core autonomy library. The MARS
program has demonstrated the feasibility of
executing a complex software effort by a large
team composed of Government and Industry
participants. Additionally, the program has
demonstrated the value of testing and automation
to enhance and maintain code quality. By
leveraging the approach used by MARS, the Army

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Collaborative Migration of an Autonomous Ground Vehicle Software System to ROS 2, Boulet, et al.

Page 12 of 12

Autonomous Ground Vehicle community could
establish a well-engineered, robust, and flexible
software system to serve as the foundation for
future capability development and transition.

ACKNOWLEDGEMENTS

The MARS program is a large collaborative
effort with many participants. The authors
acknowledge the effort of the full team in
contributing to the planning and results underlying
this paper.

REFERENCES
[1] Quigley, Morgan, et al. "ROS: an open-source

Robot Operating System." ICRA workshop on
open source software. Vol. 3. No. 3.2. 2009.

[2] “DDS-Security Specification Version 1.1,”
Available: https://www.omg.org/spec/DDS-
SECURITY/1.1/About-DDS-SECURITY/ ,
[Accessed December 15, 2020].

[3] A. Pemmaiah, D. Pangercic, D. Aggarwal, K.
Neumann, K. Marcey, “Performance Testing in
ROS2,” Available:
https://drive.google.com/file/d/15nX80RK6aS8
abZvQAOnMNUEgh7px9V5S/view [Accessed
December 15, 2020].

[4] K. Scott, W. Woodall, C. Lalancette, “2020
ROS Middleware Evaluation Report,” TSC-
RMW-Reports, November 5, 2020, Available:
https://osrf.github.io/TSC-RMW-Reports/
[Accessed December 15, 2020].

