
2021 NDIA GROUND VEHICLE SYSTEMS ENGINEERING and
TECHNOLOGY SYMPOSIUM

Autonomy, Artificial Intelligence & Robotics Technical Session
August 10-12, 2021 - Novi, Michigan

Topography Dependent Path Planning using Deep Q-Learning

Eric Martinson1, PhD, Ben Purman1, Andy Dallas1

1Soar Technology, Ann Arbor, MI

ABSTRACT

Future autonomous combat vehicles will need to travel off-road through

poorly mapped environments. Three-dimensional topography may be known only

to a limited extent (e.g. coarse height), but this will likely be noisy and of limited

resolution. For ground vehicles, 3D topography will impact how far ahead the

vehicle can “see”. Higher vantage points and clear views provide much more

useful path planning data than lower vantage points and occluded views from trees

and structures. The challenge is incorporating this knowledge into a path planning

solution. When should the robot climb higher to get a better view or else continue

moving along the shortest path predicted by current information? We investigated

the use of Deep Q-Networks (DQN) to reason over this decision space, comparing

performance to conventional methods. In the presence of significant sensor noise,

the DQN was more successful in finding a path to the target than A* for all but one

type of terrain.

Citation: E. Martinson, B. Purman, A. Dallas, “Topography Dependent

Path Planning”, In Proceedings of the Ground Vehicle Systems Engineering and

Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 10-12, 2021.

1. INTRODUCTION
Planning is a challenge most commonly broken

up into separate problems: local/short-range and

global/long-range (Figure 1). Local planning

generally includes waypoint navigation and

obstacle avoidance. It consumes local sensing data,

operates at a fast update rate, and plans/executes a

path to the next waypoint over short distances (e.g.

<20-m). Long-range planning generates waypoints

for waypoint-navigation to follow. It consumes

information such as distant target locations, long-

range obstacle maps plus uncertainty and/or terrain

data to select waypoints that local planning will

follow. Whereas local planning must focus on

speed and safety, long range planning can be much

slower as it processes high sensing uncertainty and

partial map visibility to re-plan a path to the goal

each time the local-planner reaches a new

waypoint. Long-range planning is the subset of

planning addressed by this research.

Traditional planning solutions have focused on

finding optimal paths to a target. A* [1], in

particular, is well known and has spawned a

number of variants focused on maintaining

optimality while reducing computational cost for

robotic navigation such as D* [2], and D*-lite [3].

Within a constrained search space, these traditional

methods are actually very good at finding paths

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Topography Dependent Path Planning using Deep Q-Learning, Martinson, et al.

Page 2 of 8

even when parts of

the graph being

searched are initially

hidden. The real

problem to

traditional search is

complexity.

Navigation through

dynamic obstacles

and 3D terrains

increases search

complexity

exponentially, and

unlike greedy

navigation approaches (e.g. potential fields [4]),

these traditional methods may not be able to find a

solution. In order to handle larger search spaces,

such as 6+ degree of freedom manipulation spaces

or dynamic obstacles require, new sampling based

algorithms like RRT [5] were designed that no

longer guarantee optimality.

Perceptual uncertainty is yet another degree of

complexity not handled well by traditional planning

approaches. Unlike alternative forms of spatial

complexity, however, perceptual uncertainty is

difficult to model as discrete nodes in a search

graph. A recent solution to handle both large search

graphs and perceptual uncertainty is deep learning.

So called end-to-end autonomous driving solutions

are a prime example, where Nvidia has adapted

deep convolutional neural networks to take image

inputs and generate steering/acceleration

commands [6]. Deep reinforcement learning [DRL]

[7] extends this idea further, applying deep neural

networks to policy learning in a reinforcement

learning paradigm. However, because hundreds of

thousands of hours can be required to train a DRL

model, end-to-end efforts have largely remained in

simulation with more practical efforts striving to

reduce data complexity by selecting pre-

programmed maneuvers [8] and incorporating

input from a human safety driver [9]. More

generally, these deep learning solutions enable

local planning with dynamic obstacles (e.g. cars) to

follow global GPS plans.

In comparison, this work focuses on path planning

for off-road autonomous driving where dynamic

obstacles are much less important than navigation

through uncertain environments. For this reason,

we have flipped the reinforcement learning

paradigm – letting alternative fast local planners

such as model predictive control [10] solve

waypoint navigation and using a deep Q-Network

[DQN] to solve global planning. In this paper, we

will demonstrate that such a DQN can manage

significant perceptual uncertainty by taking

advantage of a diverse 3D topography to improve

perception and more successfully navigate to the

goal. In the future, we will focus on reducing policy

training time to practical limits using imitation

learning methods [11] [12], where a (manual or

semi-manual) reference policy is used to train a

learned policy.

In the remainder of this work, we first present the

scenario investigated to demonstrate the

effectiveness of deep reinforcement learning,

followed by algorithms and results. This paper

concludes with a summary of future work to bring

this effort to real autonomous vehicles.

2. CHALLENGE
Our planning problem focuses on solving grids.

For this work, we focus on 10x10 grids with known

topography, but unknown obstacles. Grid cells are

assumed to represent 3-5 seconds of travel by the

local planner, so at a reasonable 10 m/s (22mph) for

an autonomous ground vehicle, each cell represents

an area of 50x50m2. The combined grid in this

scenario covers a square of 0.5km in width.

2.1. Topography
In this space, we assume that the general

topography is known, but specific obstacles that

restrict movement between cells are unknown.

Topographic features include: hills, valleys, and

forests. Each of these features impacts the visibility

of obstacles to the robot. By default, the robot can

only identify the presence of obstacles in

neighboring grid-cells. From that location, it has a

Figure 1. 3-Layer Planning

Architecture for Off-road Driving

Long Range
RL Planning

(200x200m grid)
Obstacles/Height

Local
Planning

Local Sensing
(<20-m)

Next
Waypoint

Velocity/
Angle

Motors

Public Component

New Work

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Topography Dependent Path Planning using Deep Q-Learning, Martinson, et al.

Page 3 of 8

visibility of only 1. By climbing a hill, the robot can

increase its visibility to potentially view the entire

area at once. Conversely, when starting with higher

initial visibility, descending into a valley, the

robot’s visibility is reduced.

Altogether, we explored 6 different types of

topographies, each with a different impact on

obstacle visibility. Each topography could be

randomly varied to increase difficulty.

➢ Flat – no topographic features to increase

visibility. All cells had a maximum visibility

range of only 1.

➢ Hill – from the top of the hill, the entire map

is visible, with a linear decrease to the bottom.

The peak of the hill was randomly selected.

➢ Valley – around the valley, the robot had a

maximum visibility of 5 squares, while the

bottom of the valley had a visibility of only 1.

The valley bottom was randomly moved.

➢ Forest – half of the map was indicated as

forest with a limited visibility of only 1, while

the other half was given full visibility. All four

grid halves could be randomly selected.

➢ Hill-Forest – starting with a hill topography,

add a forest over a random half.

➢ Valley-Forest – starting with a valley

topography, add a forest over a random half.

2.2. Obstacles
The starting position on a map was always in

[0,0], and the goal was at [9,9]. The shortest

possible path to the goal without obstacles was 20.

In this domain, however, obstacles represented an

entire grid-cell of unpassable terrain. A robot trying

to move into a cell containing an obstacle would be

prevented from moving into that cell by local

planning (i.e. obstacle avoidance). The location of

obstacles in these grids were unknown to the robot

in advance. Obstacles were generated by randomly

selecting between 1-5 pairs of points on the map

and drawing lines between them. Figure 3

demonstrates examples of different randomly

generated sets of obstacles.

A local map tracked the presence of obstacles.

Initially set to unknown for all grid cells, obstacles

were detected by the robot upon moving into a cell,

or after failing to move into another cell. The

visibility range of that cell was used to update all

cells within a Manhattan distance less than the cell

visibility range.

Figure 2. Impact of topographic features on the visibility of obstacles. The green crosses and red stars indicate robot

start/stop positions respectively.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Topography Dependent Path Planning using Deep Q-Learning, Martinson, et al.

Page 4 of 8

2.3. Sensor Noise
For each update, including cells without

obstacles, sensor noise was approximated by

probabilistically flipping each return with a 0-30%

probability depending upon the experiment being

conducted. The local grid counted the number and

type of detections to vote for the most likely

candidate (obstacle, clear, unknown). Because

sensor noise was always <50%, the more frequently

a cell was viewed by the robot, the more likely that

the cell was modeled correctly in the local map.

3. ALGORITHMS
To plan paths through highly uncertain 2.5D

environments, we have developed a Deep Q-

learning Network [DQN] that consumes a 3D

gridded input consisting of:

(1) Expected visibility from all grid cells

(determined by a topographic map)

(2) The detected class of each cell (uncertain

obstacle, obstacle, clear, visited, and current

location).

(3) The previous and current location of the robot.

Figure 4 [left] demonstrates a gridded input to the

DQN showing the path of the robot (purple), clear

space (blue), obstacles (black), and visibility

(green).

This 3D input is passed to a network consisting of

3 convolutional layers and two fully connected

layers (Figure 4) to select one of 4 actions (up,

down, left, right) to indicate the cell in the grid

containing the next waypoint location. In the

local/long-range planning architecture (Figure 1),

this cell center serves as the waypoint for local

planning. The DQN can be executed on-demand

(e.g. after reaching the target) or whenever new

sensor data are ingested to ultimately guide the

robot to the long-range target.

3.1. Network Training
The DQN is trained with 30000 simulated path

planning problems to learn the target topography.

For each new game, the topography and obstacles

are randomly generated to create a new map.

Training was initially conducted with 1-3 lines of

obstacles, gradually increasing to 5 randomly

Figure 4.(Left) Example obstacle, topographic, and

combined maps used for navigation (Right) DQN

architecture consisting of 2D convolutional (Conv) and

fully connected (FC) layers.

Random Obstacles

Start

Goal

Topographic

Combined Map

Robot Path

Actions
(up,down,left,right)

10x10 3D Grid

Conv-2 (32x64)

Conv-3 (64x64)

FC-4 (256x256)

Conv-1 (3x32)

FC-5 (256x4)

Figure 3. Examples of randomly generated obstacle maps.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Topography Dependent Path Planning using Deep Q-Learning, Martinson, et al.

Page 5 of 8

generated lines as network performance improved.

Actions within the game are rewarded as follows:

1) Large positive reward for reaching the target

location (+1)

2) Large negative reward for selecting a grid cell

that contains an obstacle (-0.75)

3) Large negative reward for failing to reach the

target (remaining distance – 1).

4) Mild negative reward for re-entering its own

path (-0.05)

5) Mild negative reward for each movement (-

0.01) to minimize the distance traveled.

As per the classic reinforcement learning work

[citation], actions are selected with an epsilon-

greedy [citation] policy – taking the action likely to

generate the highest future reward except for a

percentage (epsilon) of the time where a random

action is selected. Epsilon decreases gradually over

time from 100% to 10%. During testing, we

continue to use an epsilon of 10% to avoid local

minima.

In addition to the epsilon greedy action selection

policy taken from [citation], we also use memory

re-play to speed up network training – re-exposing

the network to previous runs rather than simply

updating it with the latest data.

3.2. A* Bootstrapping
As part of a separate effort to speed up training

convergence times, A* is used to provide initial

paths to the goal as training data. These initial

paths, representing ~300 games, provide immediate

positive reward to the DQN. With memory replay

enabled, these games are preserved and stored

alongside the epsilon greedy action selection result

to be used in updating the network until it starts

identifying its own paths to the goal. Without the

A* bootstrapping, it can take thousands of games

before the robot regular finds a successful path.

4. RESULTS
A DQN was trained for each of the 6 different

topographies and 4 different amounts of sensor

noise [0%,10%,20%,30%]. For each topography

and noise level investigated, the resulting DQN

model was compared to a sequential A* baseline

algorithm on a set of 500 randomly generated

games. With 10x10 maps, robots were given a

maximum of 100 turns to reach the goal. Three

metrics were evaluated:

1) Success Rate – in what percentage of games

did the robot reach the goal?

2) Path Length – what was the average path

length across all 500 games, including those

games where the robot failed to reach the

goal?

3) # of Observed Cells – how many cells did the

robot classify (occupied/clear) at least once

during its trip?

In terms of success rate, the highest average

performance was demonstrated by A* with zero

sensing noise (Figure 6). With any level of sensing

noise greater than zero, the DQN outperformed A*,

improving success rates by 10% with 30% sensing

noise on average. This difference in success rates

varied significantly between different topographies

(Figure 7). With valleys, a difference of 18% was

observed between the DQN and A* solutions. All

other solutions still saw differences greater than

5%.

In terms of path length, the DQN was not much

better than A* (Figure 8). Only with the valley did

the DQN significantly outperform – likely because

the DQN also had a much higher success rate than

A*. These close results, however, are not a great

Figure 5. The DQN solution demonstrates significantly

improved success rates over A* when sensor noise are

present.

0 10 20 30

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sensing Noise (%)

Su
cc

e
ss

 R
at

e
 (

%
)

Success Rate vs Sensing Noise

A* (avg)

DQN (avg)

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Topography Dependent Path Planning using Deep Q-Learning, Martinson, et al.

Page 6 of 8

surprise as the DQN continues to select a random

action 10% of the time as part of its final solution.

This means that even with full visibility it cannot

achieve optimality.

Even with similar average path lengths, however,

the DQN solution is observing more cells on

average than A* (Figure 9). In summary, the DQN

works well under these conditions because it

leverages topography. Without terrain that can be

used to improve low visibility, A* and the DQN

demonstrate comparable path lengths. Under high

visibility conditions (visibility≥3), A* outperforms

the DQN even with high added sensor noise. With

low general visibility and varied terrain, the DQN

takes advantage of the topography to improve

performance.

5. FUTURE WORK
The motivation for a DQN-based path planning

approach was to investigate strategies for off-road

navigation with noisy sensors. At any given time,

sensors provide limited information due to sensor

noise and occlusion within the scene. RL-based

path planning allows a robot to learn strategies for

maneuvering in the environment given these

sensing limitations. The work presented here

provides promising results within a limited

simulation environment. A deployment to robotic

hardware in conjunction with a strong longer range

planner would be an obvious next step. However,

there is more work that can also be done prior to

such a deployment to improve our understanding of

the approach. In particular, we see 3 promising

extensions:

1) Growing the complexity of the simulation

scenario - Introducing a wider range of terrain

types, larger scenes, and more realistic

challenges in a high-quality simulation

environment to validate planning in the

presence of sensor noise and occlusion.

2) Reducing the number of training epochs –

We expect that significant volumes of training

will be required on robotic hardware to adapt

any simulation results to the real world.

However, the current number of simulated

iterations are beyond practical limits of real-

world hardware-based training missions. For

Figure 6. Success rate per topographic area with 30%

added sensor noise.

Figure 7. Average path length comparison between the DQN

and A* solutions with 30% sensor noise.

Figure 8. Average count of observed cells per map between the

DQN and A* solutions with 30% sensor noise.

 hill valley forest hillForest valleyForest

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
er

ce
n

ta
ge

 C
o

m
p

le
te

d

Success Rate Per Topographic Area

A*

DQN

 hill valley forest hillForest valleyForest

0

10

20

30

40

50

60

70

A
ve

ra
ge

 P
at

h
 L

en
gt

h

Path Length Per Topographic Area

A*

DQN

 hill valley forest hillForest valleyForest

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 O
b

se
rv

ed
 C

el
l A

re
a

Observed Cells Per Topographic Area

A*

DQN

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Topography Dependent Path Planning using Deep Q-Learning, Martinson, et al.

Page 7 of 8

this purpose, we proposed earlier deploying

imitation learning methods as a form of

supervisory feedback. Our initial A*

bootstrapping algorithm is a form of such

feedback, but we expect further training

reductions can be made with higher quality

training environments. To account for limited

supervisory effectiveness, learning to search

methods [13] can also be deployed to improve

beyond a reference policy.

3) Generalizing to arbitrary terrains – These

results demonstrated how the DQN could

learn to adapt to each individual terrain,

improving over A*, but we did not

demonstrate a single model that outperformed

A* in all environments. To generalize to

arbitrary terrains, we would need to train the

model for much longer and likely change the

network model itself. An alternative, less

training intensive solution, is to build up

individual, terrain-dependent solutions, and

then intelligently switch between them with

either logical reasoning [14] or self-aware

[15] methods.

Finally, we’re interested in exploring other

potential domains where this may be applicable,

and how well the underlying path planner transfers

between domains. Unmanned Aerial Systems

(UAS) and Unmanned Underwater Vehicles

(UUV) face similar types of problems when

developing path planning solutions. Long-term

weather forecasts and limited fidelity map data are

often used to develop path plans. This type of

information is often sufficient for use cases in wide

open terrain. However, unexpected weather

conditions, congestion due to other vehicles, and

maneuvers in proximity to unmapped terrain can

limit path planning effectiveness. As we improve

our understanding within the ground-vehicle

domain, we will also explore the DQN’s ability to

learn strategies for mitigating these other dynamic

aspects of path planning with real-world

environments.

6. REFERENCES

[1] N. Nilsson, Problem-Solving Methods in

Artificial Intelligence, McGraw-Hill, 1971.

[2] A. Stentz, "The focussed D* algorithm for

real-time re-planning," in Proceedings of

the Joint Conference on Artificial

Intelligence, 1995.

[3] S. a. L. M. Koenig, "D* Lite," in

Proceedings of the American Association of

Artificial Intelligence, 2002.

[4] R. Arkin, Behavior-Based Robotics, MIT

Press, 1998.

[5] S. Karaman and E. Frazzoli, "Sampling-

based algorithms for optimal motion

planning," International Journal of

Robotics Research, vol. 30, no. 7, pp. 846-

894, 2011.

[6] M. Bojarski, B. Firner, B. Flepp, L. Jackel,

U. Muller, K. Zieba and D. D. Testa, "End-

to-End Deep Learning for Self-Driving

Cars," 17 Aug 2016. [Online]. Available:

https://developer.nvidia.com/blog/deep-

learning-self-driving-cars/. [Accessed 24

May 2021].

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A.

Rusu, J. Veness, M. G. Bellemare, A.

Graves, M. Riedmiller, A. K. Fidjeland, G.

Ostrovski, S. Petersen, C. Beattie, A. Sadik,

I. Antonoglou, H. King and D. Ku, "Human-

level Control through Deep Reinforcement

Learning," Nature, vol. 518, p. 529–533,

2015.

[8] P. Wang, C.-Y. Chan and H. Li,

"Automated Driving Maneuvers Under

Interactive Environment Based on Deep

Reinforcement Learning," in

Transportation Research Board, 2019.

[9] A. Kendall, J. Hawke, D. Janz, P. Mazur,

D. Reda, J.-M. Allen, V.-D. Lam, A.

Bewley and A. Shah, "Learning to Drive in

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Topography Dependent Path Planning using Deep Q-Learning, Martinson, et al.

Page 8 of 8

a Day," wayve.ai, 2018. [Online].

Available: https://wayve.ai/blog/learning-

to-drive-in-a-day-with-reinforcement-

learning. [Accessed 23 Jan 2019].

[10] J. Liu, P. Jayakumar, J. L. Stein and T.

Ersal, "A nonlinear model predictive control

formulation for obstacle avoidance in high-

speed autonomous ground vehicles in

unstructured environments," Vehicle System

Dynamics, vol. 56, no. 6, pp. 853-882, 2018.

[11] S. Ross and D. Bagnell, "Efficient

reductions for imitation learning.," in

International conference on artificial

intelligence and statistics , 2010.

[12] S. Ross and J. A. Bagnell, "Reinforcement

and imitation learning via interactive no-

regret learning," in arXiv preprint

arXiv:1406.5979., 2014.

[13] K. W. Chang, A. Krishnamurthy, A.

Agarwal, H. Daume and J. & Langford,

"Learning to search better than your

teacher.," in International Conference on

Machine Learning, 2015.

[14] J. Laird, The Soar Cognitive Architecture,

MIT Press, 2012.

[15] E. Martinson, N. Paul and L. Moshkina,

"Improving Success and Efficiency of

Underwater Autonomous Tasks through

Dynamic Re-planning and Episodic

Reasoning," in Proceedings of SPIE, 2021.

