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ABSTRACT 

Future autonomous combat vehicles will need to travel off-road through 

poorly mapped environments. Three-dimensional topography may be known only 

to a limited extent (e.g. coarse height), but this will likely be noisy and of limited 

resolution.  For ground vehicles, 3D topography will impact how far ahead the 

vehicle can “see”.  Higher vantage points and clear views provide much more 

useful path planning data than lower vantage points and occluded views from trees 

and structures. The challenge is incorporating this knowledge into a path planning 

solution. When should the robot climb higher to get a better view or else continue 

moving along the shortest path predicted by current information? We investigated 

the use of Deep Q-Networks (DQN) to reason over this decision space, comparing 

performance to conventional methods. In the presence of significant sensor noise, 

the DQN was more successful in finding a path to the target than A* for all but one 

type of terrain. 

 

Citation: E. Martinson, B. Purman, A. Dallas, “Topography Dependent 

Path Planning”, In Proceedings of the Ground Vehicle Systems Engineering and 

Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 10-12, 2021. 

 

1. INTRODUCTION 
Planning is a challenge most commonly broken 

up into separate problems: local/short-range and 

global/long-range (Figure 1). Local planning 

generally includes waypoint navigation and 

obstacle avoidance. It consumes local sensing data, 

operates at a fast update rate, and plans/executes a 

path to the next waypoint over short distances (e.g. 

<20-m). Long-range planning generates waypoints 

for waypoint-navigation to follow. It consumes 

information such as distant target locations, long-

range obstacle maps plus uncertainty and/or terrain 

data to select waypoints that local planning will 

follow. Whereas local planning must focus on 

speed and safety, long range planning can be much 

slower as it processes high sensing uncertainty and 

partial map visibility to re-plan a path to the goal 

each time the local-planner reaches a new 

waypoint. Long-range planning is the subset of 

planning addressed by this research. 

Traditional planning solutions have focused on 

finding optimal paths to a target. A* [1], in 

particular, is well known and has spawned a 

number of variants focused on maintaining 

optimality while reducing computational cost for 

robotic navigation such as D* [2], and D*-lite [3]. 

Within a constrained search space, these traditional 

methods are actually very good at finding paths 
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even when parts of 

the graph being 

searched are initially 

hidden. The real 

problem to 

traditional search is 

complexity. 

Navigation through 

dynamic obstacles 

and 3D terrains 

increases search 

complexity 

exponentially, and 

unlike greedy 

navigation approaches (e.g. potential fields [4]), 

these traditional methods may not be able to find a 

solution. In order to handle larger search spaces, 

such as 6+ degree of freedom manipulation spaces 

or dynamic obstacles require, new sampling based 

algorithms like RRT [5] were designed that no 

longer guarantee optimality. 

Perceptual uncertainty is yet another degree of 

complexity not handled well by traditional planning 

approaches. Unlike alternative forms of spatial 

complexity, however, perceptual uncertainty is 

difficult to model as discrete nodes in a search 

graph. A recent solution to handle both large search 

graphs and perceptual uncertainty is deep learning. 

So called end-to-end autonomous driving solutions 

are a prime example, where Nvidia has adapted 

deep convolutional neural networks to take image 

inputs and generate steering/acceleration 

commands [6]. Deep reinforcement learning [DRL] 

[7] extends this idea further, applying deep neural 

networks to policy learning in a reinforcement 

learning paradigm. However, because hundreds of 

thousands of hours can be required to train a DRL 

model, end-to-end efforts have largely remained in 

simulation with more practical efforts striving to 

reduce data complexity by selecting pre-

programmed maneuvers [8] and incorporating 

input from a human safety driver [9]. More 

generally, these deep learning solutions enable 

local planning with dynamic obstacles (e.g. cars) to 

follow global GPS plans.  

In comparison, this work focuses on path planning 

for off-road autonomous driving where dynamic 

obstacles are much less important than navigation 

through uncertain environments. For this reason, 

we have flipped the reinforcement learning 

paradigm – letting alternative fast local planners 

such as model predictive control [10] solve 

waypoint navigation and using a deep Q-Network 

[DQN] to solve global planning. In this paper, we 

will demonstrate that such a DQN can manage 

significant perceptual uncertainty by taking 

advantage of a diverse 3D topography to improve 

perception and more successfully navigate to the 

goal. In the future, we will focus on reducing policy 

training time to practical limits using imitation 

learning methods [11] [12], where a (manual or 

semi-manual) reference policy is used to train a 

learned policy.  

In the remainder of this work, we first present the 

scenario investigated to demonstrate the 

effectiveness of deep reinforcement learning, 

followed by algorithms and results. This paper 

concludes with a summary of future work to bring 

this effort to real autonomous vehicles. 

2. CHALLENGE 
Our planning problem focuses on solving grids. 

For this work, we focus on 10x10 grids with known 

topography, but unknown obstacles. Grid cells are 

assumed to represent 3-5 seconds of travel by the 

local planner, so at a reasonable 10 m/s (22mph) for 

an autonomous ground vehicle, each cell represents 

an area of 50x50m2. The combined grid in this 

scenario covers a square of 0.5km in width. 

2.1. Topography 
In this space, we assume that the general 

topography is known, but specific obstacles that 

restrict movement between cells are unknown. 

Topographic features include: hills, valleys, and 

forests. Each of these features impacts the visibility 

of obstacles to the robot. By default, the robot can 

only identify the presence of obstacles in 

neighboring grid-cells. From that location, it has a 

 
Figure 1. 3-Layer Planning 
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visibility of only 1. By climbing a hill, the robot can 

increase its visibility to potentially view the entire 

area at once. Conversely, when starting with higher 

initial visibility, descending into a valley, the 

robot’s visibility is reduced.  

Altogether, we explored 6 different types of 

topographies, each with a different impact on 

obstacle visibility. Each topography could be 

randomly varied to increase difficulty. 

➢ Flat – no topographic features to increase 

visibility. All cells had a maximum visibility 

range of only 1. 

➢ Hill – from the top of the hill, the entire map 

is visible, with a linear decrease to the bottom. 

The peak of the hill was randomly selected. 

➢ Valley – around the valley, the robot had a 

maximum visibility of 5 squares, while the 

bottom of the valley had a visibility of only 1. 

The valley bottom was randomly moved. 

➢ Forest – half of the map was indicated as 

forest with a limited visibility of only 1, while 

the other half was given full visibility. All four 

grid halves could be randomly selected. 

➢ Hill-Forest – starting with a hill topography, 

add a forest over a random half. 

➢ Valley-Forest – starting with a valley 

topography, add a forest over a random half. 

2.2. Obstacles 
The starting position on a map was always in 

[0,0], and the goal was at [9,9]. The shortest 

possible path to the goal without obstacles was 20. 

In this domain, however, obstacles represented an 

entire grid-cell of unpassable terrain. A robot trying 

to move into a cell containing an obstacle would be 

prevented from moving into that cell by local 

planning (i.e. obstacle avoidance). The location of 

obstacles in these grids were unknown to the robot 

in advance. Obstacles were generated by randomly 

selecting between 1-5 pairs of points on the map 

and drawing lines between them. Figure 3 

demonstrates examples of different randomly 

generated sets of obstacles. 

A local map tracked the presence of obstacles. 

Initially set to unknown for all grid cells, obstacles 

were detected by the robot upon moving into a cell, 

or after failing to move into another cell. The 

visibility range of that cell was used to update all 

cells within a Manhattan distance less than the cell 

visibility range.  

 
Figure 2. Impact of topographic features on the visibility of obstacles. The green crosses and red stars indicate robot 

start/stop positions respectively.  
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2.3.  Sensor Noise 
For each update, including cells without 

obstacles, sensor noise was approximated by 

probabilistically flipping each return with a 0-30% 

probability depending upon the experiment being 

conducted. The local grid counted the number and 

type of detections to vote for the most likely 

candidate (obstacle, clear, unknown). Because 

sensor noise was always <50%, the more frequently 

a cell was viewed by the robot, the more likely that 

the cell was modeled correctly in the local map. 

 

3. ALGORITHMS 
To plan paths through highly uncertain 2.5D 

environments, we have developed a Deep Q-

learning Network [DQN] that consumes a 3D 

gridded input consisting of:  

(1) Expected visibility from all grid cells 

(determined by a topographic map) 

(2) The detected class of each cell (uncertain 

obstacle, obstacle, clear, visited, and current 

location).  

(3) The previous and current location of the robot. 

Figure 4 [left] demonstrates a gridded input to the 

DQN showing the path of the robot (purple), clear 

space (blue), obstacles (black), and visibility 

(green). 

This 3D input is passed to a network consisting of 

3 convolutional layers and two fully connected 

layers (Figure 4) to select one of 4 actions (up, 

down, left, right) to indicate the cell in the grid 

containing the next waypoint location. In the 

local/long-range planning architecture (Figure 1), 

this cell center serves as the waypoint for local 

planning. The DQN can be executed on-demand 

(e.g. after reaching the target) or whenever new 

sensor data are ingested to ultimately guide the 

robot to the long-range target. 

3.1. Network Training 
The DQN is trained with 30000 simulated path 

planning problems to learn the target topography. 

For each new game, the topography and obstacles 

are randomly generated to create a new map. 

Training was initially conducted with 1-3 lines of 

obstacles, gradually increasing to 5 randomly 

 

 

Figure 4.(Left) Example obstacle, topographic, and 

combined maps used for navigation (Right) DQN 

architecture consisting of 2D convolutional (Conv) and 

fully connected (FC) layers. 

 

Random Obstacles

Start

Goal

Topographic

Combined Map

Robot Path

Actions 
(up,down,left,right)

10x10 3D Grid

Conv-2 (32x64)

Conv-3 (64x64)

FC-4 (256x256)

Conv-1 (3x32)

FC-5 (256x4)

 
Figure 3. Examples of randomly generated obstacle maps. 
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generated lines as network performance improved. 

Actions within the game are rewarded as follows: 

1) Large positive reward for reaching the target 

location (+1) 

2) Large negative reward for selecting a grid cell 

that contains an obstacle (-0.75) 

3) Large negative reward for failing to reach the 

target (remaining distance – 1).  

4) Mild negative reward for re-entering its own 

path (-0.05) 

5) Mild negative reward for each movement (-

0.01) to minimize the distance traveled. 

As per the classic reinforcement learning work 

[citation], actions are selected with an epsilon-

greedy [citation] policy – taking the action likely to 

generate the highest future reward except for a 

percentage (epsilon) of the time where a random 

action is selected. Epsilon decreases gradually over 

time from 100% to 10%. During testing, we 

continue to use an epsilon of 10% to avoid local 

minima.  

In addition to the epsilon greedy action selection 

policy taken from [citation], we also use memory 

re-play to speed up network training – re-exposing 

the network to previous runs rather than simply 

updating it with the latest data.  

3.2. A* Bootstrapping 
As part of a separate effort to speed up training 

convergence times, A* is used to provide initial 

paths to the goal as training data. These initial 

paths, representing ~300 games, provide immediate 

positive reward to the DQN. With memory replay 

enabled, these games are preserved and stored 

alongside the epsilon greedy action selection result 

to be used in updating the network until it starts 

identifying its own paths to the goal. Without the 

A* bootstrapping, it can take thousands of games 

before the robot regular finds a successful path. 

4. RESULTS 
A DQN was trained for each of the 6 different 

topographies and 4 different amounts of sensor 

noise [0%,10%,20%,30%]. For each topography 

and noise level investigated, the resulting DQN 

model was compared to a sequential A* baseline 

algorithm on a set of 500 randomly generated 

games. With 10x10 maps, robots were given a 

maximum of 100 turns to reach the goal. Three 

metrics were evaluated: 

1) Success Rate – in what percentage of games 

did the robot reach the goal? 

2) Path Length – what was the average path 

length across all 500 games, including those 

games where the robot failed to reach the 

goal? 

3) # of Observed Cells – how many cells did the 

robot classify (occupied/clear) at least once 

during its trip? 

In terms of success rate, the highest average 

performance was demonstrated by A* with zero 

sensing noise (Figure 6). With any level of sensing 

noise greater than zero, the DQN outperformed A*, 

improving success rates by 10% with 30% sensing 

noise on average. This difference in success rates 

varied significantly between different topographies 

(Figure 7). With valleys, a difference of 18% was 

observed between the DQN and A* solutions. All 

other solutions still saw differences greater than 

5%. 

In terms of path length, the DQN was not much 

better than A* (Figure 8). Only with the valley did 

the DQN significantly outperform – likely because 

the DQN also had a much higher success rate than 

A*. These close results, however, are not a great 

 
Figure 5. The DQN solution demonstrates significantly 

improved success rates over A* when sensor noise are 

present. 
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surprise as the DQN continues to select a random 

action 10% of the time as part of its final solution. 

This means that even with full visibility it cannot 

achieve optimality. 

Even with similar average path lengths, however, 

the DQN solution is observing more cells on 

average than A* (Figure 9). In summary, the DQN 

works well under these conditions because it 

leverages topography. Without terrain that can be 

used to improve low visibility, A* and the DQN 

demonstrate comparable path lengths. Under high 

visibility conditions (visibility≥3), A* outperforms 

the DQN even with high added sensor noise. With 

low general visibility and varied terrain, the DQN 

takes advantage of the topography to improve 

performance. 

5.  FUTURE WORK 
The motivation for a DQN-based path planning 

approach was to investigate strategies for off-road 

navigation with noisy sensors.  At any given time, 

sensors provide limited information due to sensor 

noise and occlusion within the scene.  RL-based 

path planning allows a robot to learn strategies for 

maneuvering in the environment given these 

sensing limitations. The work presented here 

provides promising results within a limited 

simulation environment. A deployment to robotic 

hardware in conjunction with a strong longer range 

planner would be an obvious next step. However, 

there is more work that can also be done prior to 

such a deployment to improve our understanding of 

the approach. In particular, we see 3 promising 

extensions: 

1) Growing the complexity of the simulation 

scenario - Introducing a wider range of terrain 

types, larger scenes, and more realistic 

challenges in a high-quality simulation 

environment to validate planning in the 

presence of sensor noise and occlusion.   

2) Reducing the number of training epochs – 

We expect that significant volumes of training 

will be required on robotic hardware to adapt 

any simulation results to the real world.  

However, the current number of simulated 

iterations are beyond practical limits of real-

world hardware-based training missions. For 

 
Figure 6. Success rate per topographic area with 30% 

added sensor noise. 

 

 
Figure 7. Average path length comparison between the DQN 

and A* solutions with 30% sensor noise. 

 

 
Figure 8. Average count of observed cells per map between the 

DQN and A* solutions with 30% sensor noise. 
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this purpose, we proposed earlier deploying 

imitation learning methods as a form of 

supervisory feedback. Our initial A* 

bootstrapping algorithm is a form of such 

feedback, but we expect further training 

reductions can be made with higher quality 

training environments. To account for limited 

supervisory effectiveness, learning to search 

methods [13] can also be deployed to improve 

beyond a reference policy. 

3) Generalizing to arbitrary terrains – These 

results demonstrated how the DQN could 

learn to adapt to each individual terrain, 

improving over A*, but we did not 

demonstrate a single model that outperformed 

A* in all environments. To generalize to 

arbitrary terrains, we would need to train the 

model for much longer and likely change the 

network model itself. An alternative, less 

training intensive solution, is to build up 

individual, terrain-dependent solutions, and 

then intelligently switch between them with 

either logical reasoning [14] or self-aware 

[15] methods. 

Finally, we’re interested in exploring other 

potential domains where this may be applicable, 

and how well the underlying path planner transfers 

between domains.  Unmanned Aerial Systems 

(UAS) and Unmanned Underwater Vehicles 

(UUV) face similar types of problems when 

developing path planning solutions.  Long-term 

weather forecasts and limited fidelity map data are 

often used to develop path plans.  This type of 

information is often sufficient for use cases in wide 

open terrain.  However, unexpected weather 

conditions, congestion due to other vehicles, and 

maneuvers in proximity to unmapped terrain can 

limit path planning effectiveness.  As we improve 

our understanding within the ground-vehicle 

domain, we will also explore the DQN’s ability to 

learn strategies for mitigating these other dynamic 

aspects of path planning with real-world 

environments.  
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