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ABSTRACT 

All-Terrain off-road environments are the next frontier for autonomous 

vehicles to overcome. However, there are many obstacles in the way of this goal. 

Artificial intelligence has proven to be an invaluable asset in developing perception 

and path planning systems capable of overcoming these obstacles, but these AI 

systems fundamentally rely on the availability of data related to the operational 

environment in order to succeed. Currently, there is no unifying ontology for this 

data. This has inhibited progress on training AI by reducing the availability of 

cross-integrable datasets. We present ATLAS: A labeling ontology composed of 

over 200 labels specifically designed to encompass all-terrain off-road 

environments. This ontology will lay the ground work for creating scalable 

standardized all terrain off-road data and will enable future AI by providing an 

expansive and well labeled ontology that can push the field of autonomous 

vehicles to new heights. 

Citation: W. Smith, D. Grabowsky, D. Mikulski, ”ATLAS, an All-Terrain Labelset for Autonomous Systems,” 

In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, 
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1. INTRODUCTION 

From military to civilian operations, interest in 

off-road autonomous robotics has seen a marked 

increase over the last decade. Applications such as 

exploration, search and rescue, and supply trains 

have become notable areas of investigation for the 

development of autonomous robots in these off 

road environments. To facilitate these applications,  

 

 

 

autonomous robots must rely on advanced 

perception systems to understand the environment 

around them [1]. Without perception, capabilities 

such as path planning and decision making are 

nearly impossible, making perception one of the 

primary cruxes of any autonomous robot [2]. This is 
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particularly true in outdoor environments where the 

terrain is largely variable and unstructured. 

There have been a wide variety of perception 

suites that have utilized artificial intelligence (AI) to 

great effect [3, 4, 5]. However, all of these intelligent 

systems are heavily reliant on the availability of well 

annotated data. While there are many extensive and 

well annotated datasets for structured 

environments, such as in the case of CityScapes [6] 

or A2D2 [7], this does not hold true for all-terrain 

off-road environments. The unstructured and 

extremely varied environments that compose the 

vast landscapes of earth make it difficult to develop 

an extensive and consistently labeled dataset. While 

datasets do currently exist, many can be found 

lacking due to those above mentioned difficulties. 

 Hence, this work presents ATLAS, an 
All-Terrain Labelset for Autonomous Systems. We 

seek to provide a unifying ontology for all-terrain 

off-road datasets that is both detailed enough to 

provide the necessary depth/expandability of labels 

for autonomous robots to flourish in these 

environments, as well as general enough to be easily 

portable to a wide variety of already existing 

datasets despite the variance that can be found in 

different biomes across the earth. By providing this 

unifying ontology, we seek to streamline a variety of 

datasets into a format which can be easily applied to 

a variety of AI aimed towards autonomous off-road 

environments. 

2. BACKGROUND 

Unlike common urban datasets such as 

CityScapes and KITTI, many off-road datasets are 

often heavily lacking in the number and quality of 

annotated images. Additionally, these off-road 

datasets tend to have a large imbalance of classes 

where some labels are present in less than two 

percent of the dataset. This is compounded by the 

fact that the annotation process for images 

collected in off-road environments is more difficult 

than that of structured environments due to the 

unstructured nature and wide variety of outdoor 

environments. For example, in most U.S. cities a 

stop sign can be considered a reoccurring structured 

object of interest that is a consistent size and shape. 

However, seemingly common outdoor features such 

as trees will have an incredibly varied appearance 

depending on species, location, season, and growing 

conditions. This makes a unified off-road labeling 

ontology essential to building datasets spanning 

difficult off-road environments. As seen in Table 1, 

currently available urban datasets lead off-road 

datasets in both number of images and number of 

labeled classes due to the lack of a standardized 

ontology for unstructured environments.  

Table 1: Comparison of the number of RGB image 

annotation and classes from off-road focused 

datasets (RELLIS-3D, RUGD, Freiburg Forest 

DeepScene, and YCOR) to CityScapes and A2D2 

Dataset # of Images # of Classes 

CityScapes [6] 25,000 30 

A2D2 [7] via 41,277 38 

RELLIS-3D [8] 6,235 20 

RUGD [9] 7,456 24 

YCOR [10] 1076 8 

DeepScene [2] 366 6 

 

Many datasets are also collected from singular 

environmental biomes, leading to bias in their 

ontologies that have been tailored for specific 

locations and are difficult to generalize. Figure 1 

even shows how two datasets gathered from a 

similar biome can produce different ontologies. 

These factors form what is the primary challenge to 

be overcome by the creation of this ontology. Once 

overcome, the amount of annotated data available  

for training AI will increase, allowing for systems to 

have more data and become better trained. 
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3. LABELSET ONTOLOGY 

3.1. Ontology Overview and Structure 

ATLAS was designed using a blend of scientific 

and visual object classification methodologies to 

provide a balance between accurately describing 

complex off-road scenes and optimizing 

performance of machine learning models trained on 

these labels. The base labels were adopted from the 

National Audubon Society Field Guides which 

provided a great foundation for easily recognizing 

plants and animals. We then further adapted the 

ontology by regrouping objects with similar shapes 

and patterns to maximize performance of machine 

learning models. This delicate balance between ease 

of classification and scientific accuracy allows ATLAS 

to work across a broad range of data that would not 

be possible with ontologies of currently available  

datasets. 
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Our label set is structured in an object-oriented 

manner that allows us to group several objects into 

a single label and add additional details by branching 

out from the parent classification. This helps to unify 

datasets with large variations in label naming 

conventions as well as make ATLAS backwards 

compatible with all existing datasets. By providing 

an inheritance-based mechanism to the labels, 

additional classifications can be added without 

changing the overall ontology structure. This opens 

the door for specialized applications which require 

high-fidelity labels while still supporting older 

datasets with high-level ontologies. ATLAS can be 

further broken down into two main categories: 

image labels and instance labels. 

Figure 2: Image labels 
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3.2. Image Labels 

Labels in this category apply to the image as a 

whole and multiple image labels can be used to 

describe a single image. This allows datasets 

annotated with ATLAS to be filtered and create 

specialized data subsets that are specially tailored to 

an individual user’s application. Although this does 

not directly impact the performance of machine 

learning models, by training on specialized data the 

model will be able to leverage the current 

environment to better detect objects and 

understand the scene. The ATLAS image labels are 

shown in Figure 2. 
The image labels help to record the biome, 

weather conditions, season, and time of day in 

which an image or video was captured. The weather 

labels are a simplified version of the National 

Audubon Society’s weather classification [11], which 

helps to flag images with edge case conditions that 

could influence the prediction of machine learning 

models. Biome labels allow off-road data from 

various regions to be separated to allow for 

specialized model weights for instance label 

prediction when working with objects that have high 

variance and may occur across multiple diverse 

biomes. Finally, Season and time of day labels 

ensure that model performance is not biased 

towards favorable conditions or lighting and 

provides a method to isolate conditions that may 

pose additional risk to autonomous platforms. 

3.3 Instance Labels 

Labels in this category apply to specific objects 

within the image and may occur zero or more times 

at any location within any given frame. This provides 

the bulk of the information captured about the 

scene and is recorded using polygon segments to 

preserve spatial information about the object. Based 

on the instance label, autonomous platforms will 

need to traverse the area differently depending on 

its surrounding objects and the fine granularity of 

the instance labels allow future autonomous 

platforms to base their action on specific objects 

rather than just a standard obstacle classification. 

The ATLAS instance labels are shown in Figure 3. 

The instance labels are broken down into 7 

primary groups: person, animal, landscape, 

vegetation, atmosphere, void, and obstacle. The 

animal labels were derived from the National 

Audubon Society classification for birds [12] [13], 

reptiles/amphibians [14], and mammals [15]. Each 

of these categories was then optimized for machine 

learning performance by further grouping animals of 

similar size, shape, color, and pattern into a single 

label. Similarly, the vegetation labels were also 

derived from the Audubon Society’s classification on 

trees [16] [17] and wildflowers [18] [19], but in 

addition to further visual grouping these labels were 

also refined based on a drivability metric or how 

likely an autonomous platform would be damaged if 

it were to collide with the given object. This is 

necessary, because unlike the animals, vegetation 

will not react to the presence of an autonomous 

platform so additional planning is needed to ensure 

safe operation. 

The obstacle labels are reused from the 

Cityscapes dataset, so that any datasets annotated 

with ATLAS or machine learning models trained with 

those datasets would also be compatible with 

existing urban datasets. Finally, landscape and 

atmosphere labels provide additional context about 

the environment to help autonomous platforms 

navigate rough terrain. These labels are designed to 

fully encompass elevation changes as well as ground 

composition, so that off-road platforms will have the 

ability to dynamically adapt to new elevation grades 

or soil properties to maintain traction. 

3.4 Labeling Rules 

In addition to the image and instance label sets, 

ATLAS also provides a series of rules that outline 

how the data should be annotated and what to do 

when encountering edge case conditions. This helps 
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to maintain consistency and quality across all groups 

and datasets using the ATLAS ontology. Much like 

the label sets, rules can be added or appended as 

needed, but the base rules are as follows. 

 

3.4.1 Rule I – Null & Void 

Objects that are known but do not fit within another 

ATLAS label can be marked as ‘void’ while objects 

that cannot properly be identified can be left 

unannotated and marked as ‘null.’ This provides a 

means to catch all edge case conditions that do not 

cleanly fit into the ontology. The void classification 

is a tier 1 label with no derived attributes; this 

represents objects of importance that should be 

considered for future revisions of ATLAS. On the 

other hand, null is an automated label that can be 

used to track the proportion of the image that has 

not been annotated in order to score the overall 

precision of the annotation. 

 

3.4.2 Rule II - Occlusions 

When visibility is reduced due to environmental 

conditions such as fog or various optical 

phenomena, all objects that can be identified 

behind the occlusion should still be annotated. By 

stacking labels, objects can still be identified in 

reduced visibility, or the occlusion can be ignored if 

desired. In the case of a solid object blocking more 

than half of another object, the blocked object 

should be marked as occluded to signify that only 

part of the object can be seen. 

 

3.4.3 Rule III – Panoptic Segmentation 

Polygon segments should be used in the form of 

Panoptic segmentation, where labels are annotated 

semantically or instance-based depending on the 

object’s relation to the zero-parallax plane. 

Traditionally, the zero-parallax plane is the point at 

which two stereo images converge to determine 

approximate depth from the sensors; in an image 

annotation perspective, this plane determines the 

boundary between objects in the near-plane and 

objects in the far-plane. To find the zero-parallax 

plane, monocular depth estimation will be used to 

determine relative distances for each object in the 

scene. Then, objects in the front 50% of the image 

will be separated into the near-image plane while 

the remaining objects are left in the far-image plane. 

Annotation rules will vary depending on which plane 

fully encapsulates the object.  Instance 

segmentation ensures that all objects are tracked 

separately regardless of class and this method of 

annotation should be used for all labels in the near-

plane. However, as objects get further away from 

the sensor, boundaries become increasingly difficult 

to find, especially for objects of the same class. In 

that case, all object in the far-plain will be labeled 

semantically to show context of the scene while 

reserving processing power for objects in the 

vehicle’s immediate path. 

 

3.4.4 Rule IV – Transition Zones 

When states of image labels cannot be classified 

using only one of the existing labels, multiple labels 

can be selected to show transition zones between 

the existing labels. Transition zones between biomes 

are often defined by the climate of the area using 

metrics such as average temperature or rainfall. 

These time-averaged metrics cannot be measured 

through data collected a single discrete point in 

time. Instead, the image labels may be stacked to 

represent these transition zones for images that 

contain features from multiple labels within the 

same category. 
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4 APPLICATIONS 

The object-oriented design of ATLAS allows it to 

be flexible for a wide variety of applications. The 

primary labels can be used to update existing 

datasets and create a path for expansion with more 

specific sublabels. New datasets can also utilize 

ATLAS to create a collection of images that will be 

compatible across both on and off-road 

environments, allowing advancements in the field 

of urban autonomy to more easily move into the 

off-road domain. ATLAS is not just for off-road 

environments, but rather it is a centralized 

framework for labeling objects that can be 

expanded or contracted to suit each user’s 

individual use-case while facilitating the sharing of 

information that has simply not been possible with 

the disjoint nature of currently available datasets. 

Figure 3: Instance Labels 
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5 CONCLUSION 

ATLAS is just the first step on a road to 

modernizing off-road perception. Next, we are 

looking to collect our own data using a specialized 

multi-spectral data collection rig in order to build 

the largest and most diverse off-road dataset 

available. This dataset, using the ATLAS ontology, 

with be a major breakthrough for robotic 

perception and will lead to significant 

advancements in the domain of off-road 

autonomy. Additionally, we are working on a novel 

data augmentation system using generative 

adversarial networks that will allow us to increase 

the size and variance of existing data to reduce 

class imbalance based on our image-level labels. 
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