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ABSTRACT

Many recent advances in autonomy are derived from algorithm optimization
and analysis with a large volume of data. The Autonomous Mobility Through
Intelligent Collaboration (AMIC) program established a resource to host and
access data to accelerate autonomy capability development across the U.S. Army
Robotics and Autonomous Systems enterprise. The repository is seeded with
high-quality multi-modal Autonomous Ground Vehicle sensor data collected from
relevant operating environments. Development of unmanned air-ground teaming
capability that extends the perception and planning horizon of an individual ground
vehicle exercises and informs the development of the data warehouse. Collected
data was also used to train a convolutional neural network to estimate relative
vehicle position from camera images for communication-free formation control.
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1 INTRODUCTION

Datasets are increasingly becoming critical assets
required to rapidly and efficiently develop advanced
autonomy in future ground vehicles. Data are
used throughout the autonomous ground vehicle
(AGV) development lifecycle. Offline data, such
as raw sensor measurements recorded during field
experiments, are often provided as input to software
modules to evaluate and improve their performance
without requiring time-consuming hardware cycles.
Stored data from a diverse set of environments can be
used to validate the robustness of an algorithm across
anticipated operational conditions.  Furthermore,
with the emergence of modern machine learning
techniques, developers leverage stored data to train
deep neural networks to achieve superior levels of
performance relative to traditional human-designed
algorithms.

Data availability tends to greatly accelerate
autonomy innovation and maturation.  Despite
the evident utility of data at the ready, the
national defense autonomous ground vehicle
community lacks available datasets of relevant
environments. While individual programs typically
collect significant volumes of AGV data during tests
and demonstrations, often at significant cost, the data
are rarely shared outside of the program or platform
owner.

The Autonomous Mobility through Intelligent
Collaboration (AMIC) program is developing an
open data architecture, guidance, and infrastructure
enabling the national defense community to
effectively collect, share, and leverage autonomous
ground vehicle data. The AMIC open data
architecture is aligned with the DoD Modular
Open Systems Approach (MOSA) and U.S. Army
Data Strategy principals to accelerate autonomy
innovation, maximize reuse, and enable competition
decoupled from vehicle ownership through shared,
readily available, interoperable, protected, and
trustworthy data.

This paper provides an overview of the AMIC

shared data repository in Section 2. Section 3 details
the development of a kit used to collect high-quality
ground vehicle sensor data. The kit is deployed to
relevant environments in order to seed the repository.
The utility of the data hub is validated with two
efforts building autonomy capability with machine
learning. Section 4 highlights the use of data to train
a semantic segmentation model that executes on an
unmanned aerial vehicle to inform AGV maneuver
beyond the ground vehicle’s sensor range. In Section
5, data are used in a supervised learning architecture
to estimate the relative position of peer vehicles for
formation control.

2 DATA HUB

The objectives, requirements, and design of the
AMIC Data Hub are detailed in [1]. In summary,
the AMIC Data Hub is a repository of data organized
into datasets. Users access the Data Hub over the
Internet using a web browser or through custom
software via an API. Datasets are augmented with
user-provided metadata such as a description, site
conditions, terrain type, and activity. The system
accepts arbitrary types of data. However, the Data
Hub additionally processes ROS bag files, which are
a common storage format used in the community,
to extract additional derived metadata. Derived
metadata include the location that the data was
collected from GPS position reports, the timestamp
of the initial and final recorded measurements, and
the types of data stored in the bag. Users may query
the AMIC Data Hub metadata to identify and then
download specific datasets of interest.

Since the prior publication referenced above, the
AMIC Data Hub has matured into an operational
prototype. A typical view of the AMIC Data Hub
website is shown in Figure 1. The Data Hub employs
authentication and other security measures to limit
access to authorized individuals.
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Figure 1: The AMIC Data Hub website’s dataset
detail page shows the vehicle’s trajectory and other
metadata without the user needing to download large
files.

3 DATA COLLECTION KIT

The AMIC Data Hub is able to accept data
recorded from any source including the U.S. Army’s
existing fleet of autonomous ground vehicles.
However, shipping full-sized AGVs to a large
number of geographically distant sites to collect data
in diverse environments and conditions is logistically
challenging, costly, and interferes with ongoing
autonomy development efforts. The AMIC Data
Collection Kit (DCK) is a modular assembly of
sensors similar to the sensing suite used on Army
AGVs. Deploying and integrating the DCK on
site-resident human-driven vehicles greatly reduces
the logistics burden to enable large-scale collection
of AGV sensor data across many environments.
Once data collection at a site is complete, the DCK is
returned, collected data are moved to the AMIC Data
Hub, and the DCK is refurbished to support the next
deployment.

3.1 Design

The Data Collection Kit consists of three core
components, the External Sensor Assembly, the
Internal Computer Assembly, and a readily available
commercial off-the-shelf (COTS) portable Power
System that serves as an Uninterruptible Power
Source (UPS) between the DCK and standard
commercial (12V) or military (24V) electrical power
sources. The sensor assembly consists of a suite of
sensors commonly employed on autonomous driving
vehicles. This includes multiple (6) High Definition
color GigE cameras providing images at 30 fps, three
Velodyne LiDARs, and a GPS/INS system. The
nominal sensor configuration on the prototype DCK
is shown in Figure 2. The attachment plates (both
center and side plates) are designed with a grid
of threaded attachment holes to accommodate easy
reconfiguration of sensor positions and orientations.
The DCK is also designed to record vehicle data,
e.g., throttle, brake, and steering angle, through a
commercial OBD2 port or CAN bus interface over
a DB9 connector.

External Sensor Assembly The Sensor
Assembly is designed to be modular and can be
attached to either commercial or military vehicles
using common rack-mounts or straps as shown in
Figures 2 and 3 respectively.

‘FS/INS (Hidden) Central LIDAR
Front Stereo \ /

Side LIDAR

Rear Stereo

.
2 =l

Side Camera\\ %
g4
<

Figure 2: Data Collection Kit System External
Sensor Assembly
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Figure 3: DCK Mounted on Military HMMWV

Internal Computer Assembly The Internal
Computer Assembly contains a ruggedized 9th-gen
17 CPU with 10x1GigE and 2x10GigE network
interfaces and 4x4TB SATA III hot-swapable
SSD drives configured as a Redundant Array
of Independent Disks (RAID-5) for both data
integrity and improved read/write performance.
The entire embedded computer system consumes
approximately 65W of power.

Portable Power System A COTS Portable
Power System (PPS) serves as an uninterrupted
power source to the kit in the event that vehicle
power is disrupted. The DCK was designed to
operate at less than 120W of total power which
is supportable by commercial vehicle’s accessory
power outlets and easily supplied by military vehicle
auxiliary power over standard NATO output ports.
Nominally the PPS remains charged via either 120V
AC shore power or through 12/24V vehicle DC
output power. The PPS is capable of providing
approximately 136W (13.6V @ 10A) of continuous
power for approximately 2.0 hours (288Whr) or
approximately 2.5 hours for the actual DCK.

3.2 Field Tests and Results

DCK field tests have been conducted at Fort
Devens, Massachusetts and at the National Training
Center (NTC) at Ft. Irwin, California in late August

of 2021. The goal of the NTC collection was to
exercise the DCK deployment concept of shipping
multiple DCKSs to a remote location, installing the
kits onto vehicles on-site, performing collections in
realistic military terrain environments, offloading the
collected data, uninstalling, and returning the Kkits.
The two test vehicles utilized were Ford Explorers,
shown in Figure 4. The two kits were shipped to the
site via standard UPS ground shipping using a single
crate to house the sensor assemblies plus two Pelican
cases for the supporting computer hardware. Once
the team arrived, the kits were installed onto the the
test vehicles within a time-frame of approximately
one hour for each vehicle.

The test plan for data collections at NTC included
a matrix of test conditions covering a variety
of terrain and road classes (Figure 5), lighting
conditions (Figure 6), speeds, distances, and vehicle
maneuvers such as formation follow.

In total, the team recorded approximately 40TB
of data, covering 500 miles of terrain, with 32 hours
of active collection, over 5 days of continuous testing
in conditions where ambient temperatures reached
~105°F each day with no system failures.

Figure 4: Ford Explorer Test Vehicles Used at NTC
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Figure 6: Lighting Conditions Collected at NTC

3.3 Future Work

The DCK concept has been successfully
prototyped and field tested in relevant military terrain
at Devens and NTC. Future collections are being
considered at additional Army training locations
for increased diversity in terrain environments and
seasonal conditions. Future kits may also carry
additional sensing modalities such as radar sensors
and infrared/thermal night vision cameras. There
is also considerable interest in using an increased
number of kits attached to a greater variety of Army
vehicles and collecting multi-vehicle data during live
training exercises. Recognizing the prototype DCK
instance described herein may not be compatible
with all Army vehicle types of interest, the DCK
concept is being expanded to include variant designs
capable of being more easily affixed to a variety of
combat vehicles where available onboard space is
extremely limited, and there may be no common
points for attachment. It is also critically important to
ensure the DCK does not interfere with active vehicle
components required during live training objectives.

4. UNMANNED AIR-GROUND TEAMING

Most of the research and development today
for autonomous ground vehicles focuses on single
vehicles. However, many people across the DoD
anticipate routine battlefield teaming. That is, they
envision that future ground vehicles will perform
missions while teaming with humans, other ground
vehicles, or even other types of autonomous systems.
As both a path-finding use-case for the AMIC effort
and to realize an application for the teaming of
air and ground vehicles, we have demonstrated a
selected teaming concept.

The general idea of an air-ground team is
to maximize overall mission effectiveness by
combining the advantages of the different vehicles.
For example, consider a navigation to cover mission.
An air vehicle has the ability to fly above the ground
and quickly scan the area to identify routes and detect
other entities in the scene. The ground vehicle has the
ability to move significant equipment and resources
over long distances quickly while automatically
routing locally using onboard perception sensors.
This is illustrated in Figure 7.

4.1 Approach

Our concept involves an unmanned aircraft that
is deployed from a ground vehicle. We consider
an air-ground team where the ground vehicle is
equipped with GPS and a LiDAR . The air vehicle is
equipped with an INS system and downward facing
camera and LiDAR. Neither team member is given
any a priori map or routing information, simply a
goal location for the ground vehicle to reach. The
approach is designed to require only a low level of
communications between the ground and air vehicle,
and to tolerate it being intermittent.

In order to keep the distance over which the
UAV can explore for routes high, we chose to
allocate the map and routing processing to the UAV
and therefore not require tethering, high-bandwidth
communications or re-docking for the data to
be processed on the ground vehicle’s computers.
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UAV with embedded sensing and processing performs real-time
surface mapping and object / obstacle classification

UAV sends advised routes for AGV and semantic,
image, or lidar-based maps (terrain, threats, etc.)

Autonomous Ground Vehicle formation
uses UAV-provided data for mission

planning & navigation

Figure 7: Air-ground teaming navigation concept

Compute capabilities in relatively small packages
now make this feasible for UAVs in this class (see
section 4.3 for details), though each algorithm must
still be carefully chosen to maintain accuracy while
keeping computational overhead reasonable. This
allocation could be evaluated differently if teaming
systems were limited only to smaller UAVs for the
task.

At the start of a navigation mission, the ground
vehicle launches the unmanned aircraft which is
equipped with embedded sensing and computing.
The aircraft then explores the area in the direction
of the goal and maps the terrain in real time.
This map includes 3D information, ground terrain
classification, and object/obstacle detection. The
aircraft then sends advised routes to the ground
vehicle, plus more detailed map information as
communication constraints permit. The ground
vehicle then uses this advised route to begin
navigating to the goal. As the vehicles move through
the space, this perception and planning loop happens
continuously and updates as appropriate until the

ground vehicle reaches the destination. For example,
if the aircraft detects an impassable obstacle along
the currently advised route, then it covers new ground
to explore and recalculate a new, feasible route,
which is then communicated to the ground vehicle.

4.2 UAV Autonomy Stack

The autonomy stack is shown in Figure 8 and
consists of three main areas: 1) 3D perception, which
is fed by 2) Off-line Model Training, and 3) Planning.

3D Perception. Our unmanned aircraft’s
perception pipeline involves three steps. First, read
in downward imagery and estimate semantic labels
for each pixel using a semantic segmentation neural
network model. Our implementation runs on a
GPU and is based on MIT’s ADE20K scene parsing
dataset [2]. The semantic labels correspond to
terrain and object classes relevant to ground vehicle
navigation such as grass, gravel, water, and trees.
Second, we fuse the semantic labels with LiDAR
point clouds by associating pixels to points. The
result of this process gives us points in 3D space with
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Figure 8: UAV autonomy stack

semantic labels. And finally, we fuse these points
into a 3D metric-semantic mesh using Kimera, which
is a real-time system that runs on the CPU [3].

Off-line Model Training. In order to train
our semantic segmentation network running on the
unmanned aircraft, we collected overhead imagery
over different sites and throughout various seasons.
We hand labeled a small collection of images (less
then 100). While this is generally considered too
small a training set for robust semantic segmentation,
we found that performance was sufficient to support
our experiments. See Figure 9 for an example.

Planning. The pipeline then flows the 3D
metric-semantic mesh to planning algorithms. The
AGV Mobility Planner analyzes the mesh for best
routes for an AGV, while also identifying the most
promising frontier points in the mesh. These ranked
frontier points are then used by the UAV Coverage
Planner to decide how to best cover new areas and
expand the mesh autonomously in real-time.

AGYV Mobility Planning. The UAV generates
a recommended global trajectory for the AGV by
first translating the 3D metric-semantic mesh into
a cost map that corresponds to estimated vehicle

traversability costs. The cost at each vertex is
function of the following extracted features [4]:

e Terrain class (i.e. grass, dirt, gravel, etc)
e Ground Slope

e Terrain Roughness

Once the AGV position has been observed by the
UAV and is part of the mesh, the AGV planner starts
generating candidate trajectories towards the goal. In
most cases, the UAV has not built a complete map
of the feasible region, so the UAV first generates
a set of feasible trajectories to promising frontier
points using the Batch Informed Trees planning
algorithm [5]. For each trajectory to a frontier
point, the full trajectory cost is the sum of the
discovered path and the estimated cost-to-go value
from the frontier point to the goal. The cost-to-go
value is a function of the frontier point cost and
Euclidean distance from the frontier point to the goal.
The AMIC AGV Planner generates a trajectory to
the goal position if possible and then selects the
minimum cost trajectory to pass to the AGV. An
example planned trajectory is illustrated by the red
path in Figure 11.
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Figure 9: An example overhead image and the semantic segmentation model’s predicted labels.

UAYV Coverage Planning. The UAV Coverage
Planner is responsible for guiding the UAV’s sensors
towards novel, unexplored terrain so that it can
build a complete map of the world below. Our
method is a next-best-view planner, where the most
promising frontier point from the AGV mobility
planner is used as the next, new direction to
explore. The planner first computes a desired
coverage region (2D polygon) that covers new
space beyond this next best frontier point. We
employ a polygon coverage planner [6] to plan
the UAV survey flight pattern within the desired
coverage region. This coverage planner respects
constraints such as geofences, maximum velocities,
and sensor field-of-view footprints that ensure the
entire region is covered. We finally send the survey
pattern waypoints to the UAV’s flight controller
via a MAVLink mission command that can be
automatically executed by the UAV. An example
planned survey pattern is illustrated by the blue
path in Figure 11. The UAV planner repeats this
process of selecting new frontier directions and
flying coverage patterns until the AGV reaches the
goal.

4.3 Experiments

The ground vehicle platform is a Polaris MRZR
that has been modified for autonomous driving
capability. Here it was configured to compute local
perception information using its onboard LiDAR and
to navigate using route waypoints communicated by
its UAV team partner. The control, perception and
planning autonomy stack was the RTK Core 2019.

The Harris Aerial Carrier H6 Hybrid serves as
the aerial platform. It is controlled by an autopilot
and carries an Nvidia Jetson AGX for all onboard
perception and planning. The unmanned aircraft
is equipped with an SBG Ellipse-D INS system
for accurate localization, and a FLIR Chameleon3
EO/RGB camera plus the Velodyne VLP32C LiDAR
for terrain sensing.  The vehicle and payload
assemblies are shown in Figure 10.

Flight Computer

Dual GPS Antenna Config (nVIDIA Jetson AGX)

EO/RGB Camera
(FLIR Chameleon3)
g

I £}
enerator £ YNg S
4 Assembly *
LWIR Camera \
% 2 (GERIECSeh) Dual Antenna
) GPSIINS

Comms (SBG Ellipse-D)
Autopilot N - Doodle Labs Embedded) - q
Harris Aerial PEBDEEET] Perception and Planning Payload Assembly

Carrier H6 Hybrid

LiDAR
(Velodyne VLP32C)

Figure 10: UAV demo hardware configuration
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Several experiments with the teamed navigation
mission were undertaken in the fall of 2021 at
Fort Devens. In Figure 11, the UAV-generated
traversability map is shown overlaid on top
of overhead satellite map and the resulting
recommended route to the goal is shown. The
MRZR was able to traverse to the goal using that
recommended route, aided by local corrections from
its internal local perception and replanning, fully
autonomously and without intervention by the safety
driver, traversing in about 3 minutes. In comparative
experiments with the MRZR given a comparably
far point to reach in the same environment, and
without any a priori map or route information, the
vehicle took about twice as long as it felt its way
using only local perception and some interventions
were required by the safety driver. While upgrades
and tuning to the local perception and planning
algorithms onboard are ongoing that will improve
performance in the solo situation, this nonetheless
demonstrates the utility of the freshly generated and
more global map provided by the aerial team partner.

Figure 11: UAV-AGV teaming experiment

5 AIFOR FORMATION CONTROL

Multi-vehicle coordination is an essential
capability for successful military operations. As
such, formation control of ground vehicles represents
a key component in many military tasks involving
multiple vehicles for coordinated tasks. Traditional

approaches to formation control require knowledge
of vehicle pose (i.e. location and orientation) through
the broadcasting of GPS coordinates and heading
information. However, hostile environments where
GPS may be denied or broadcasting of vehicle pose
may present a threat to the convoy are particularly
challenging for the formation control task. Execution
of effective vehicle formations can still be achieved
through relative vehicle state estimations in the
absence of global information.  Therefore, we
propose to address these environmental limitations
by training a convolution neural network (CNN) to
estimate the state of neighboring vehicles from only
visual RGB inputs. We demonstrate the effectiveness
of our approach on a custom dataset collected at Fort
Devens and show its ability to operate in real-time.

5.1 Approach

We train a CNN using M3D-RPN [7] for object
detection and pose estimation. This model uses only
a monocular RGB image as input and outputs 3D
bounding box coordinates for each detected vehicle
as well as its orientation relative to the camera on the
observer vehicle. We train the model using a custom
dataset collected with the DCK from Section 3.

We note that the algorithm currently only
performs vehicle detection, while algorithm
development for tracking may be done in the
future. As it stands, two vehicles of identical
appearance would not be distinguished by the
algorithm. However, a tracking algorithm could take
into account a (recent) history of vehicle movement,
so that visually similar vehicles could be individually
followed.

Data Collection Public datasets for autonomous
driving such as KITTI [8], nuScenes [9], and Waymo
[10] provide data for vehicle detection and relative
state estimation, but are limited to urban vehicles
and environments. To more closely mimic realistic
settings for military applications, we collected a
custom dataset at Fort Devens with an MRZR and a
Chevrolet Suburban as vehicle targets for detection.

Applications of a Shared Data Warehouse for Ground Vehicle Autonomy, Boulet, et al.
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The DCK used for our data collection was mounted
on the observer vehicle, a Ford Explorer, which
captured RGB images of the target vehicles while all
three vehicles moved in common formation patterns.
Figure 12 shows the setup of the three vehicles
used for our data collection. In total, our dataset
is composed of about 47k images with diverse
background and lighting conditions, as well as a
large range of relative vehicle angles so that a variety
of perspectives of the target vehicles was collected.
For our initial work, we have 2 classes of vehicles:
MRZR and Suburban. We hope to expand upon the
variety of military vehicles in our collection once
more types become available.

Figure 12: Vehicles used for our data collection at
Fort Devens. The MRZR and Suburban were target
vehicles, while the Explorer equipped with the DCK
was the observer vehicle.

Label Creation Traditional labeling of objects
in images has followed a labor-intensive manual
process. However, since all our vehicles (observer
and targets) are equipped with GPS and INS modules
in addition to cameras, we leverage these data to
automatically create our labels. Using GPS time
to synchronize across vehicle platforms, our labels
include relative position (x, z) and heading (¢) of
target vehicles with respect to the observer camera,
as well as vehicle class (i.e. MRZR, Suburban) and

dimensions. Figure 13 illustrates the relative pose
parameters from a birdseye view diagram reflecting
the setup in the camera view above it.

Be[-180°, +180°] |, 1 4%
Suburban
(Target) MRZR
(Target)
-X +X

camera
(Observer)

Figure 13: Birdseye view of relative vehicle position
(x,z) and orientation (¢) with respect to camera.

Given camera parameters, relative vehicle
location is projected into pixel space, and bounding
boxes may be drawn on the image to inform
the estimated relative state of the target vehicles.
Examples of annotated images are shown in Figure
14. Note that only RGB imagery is used during
inference, while GPS location and odometry are used
only to create labels for training.

”

Figure 14: Sample annotations of the MRZR and
Suburban vehicles from various relative poses.

Design Implementation We train a CNN based
on M3D-RPN (Figure 15) to detect target vehicles
and estimate their relative position and heading.
M3D-RPN enhances upon the region proposal

Applications of a Shared Data Warehouse for Ground Vehicle Autonomy, Boulet, et al.
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network (RPN) first proposed in Faster R-CNN [11],
tailored for 3D. The RPN acts as a sliding window
detector which scans every spatial location of an
input image for objects matching a set of predefined
anchor templates as defined in [7]. The matches
are then regressed from the discretized anchors into
continuous parameters of the estimated object. An
example is shown in Figure 16.

(1-a) n
bsp
local

Figure 15: Overview of our system, where C, 621), and
bsp are the predicted class, 2D and 3D bounding box
parameters, respectively, and « is a learned weight.

Figure 16: Sample relative state estimation.

The M3D-RPN architecture is comprised of a
DenseNet [12] backbone followed by two parallel
paths for global and local feature extraction.
The global features use regular spatial-invariant
convolution, while the local features denote
depth-aware convolution that uses non-shared
kernels in the row-space.  These features are
combined via a learned weight o and used for the
multi-task framework where we simultaneously learn
the vehicle class as well as 2D and 3D bounding box
parameters as defined in [7]. The multi-task loss
function is as follows:

L = L.+ ALy, + ALy, (D

where L. is a multinomial logistic loss, L;,, 1s a
logistic loss for 2D bounding box learning, and Ly,
is a smooth L1 regression loss for 3D bounding box
learning; \; and )\, are hyperparameters.

5.2 Experimental Results

Our dataset is composed of about 47k images,
which we performed a 90/10 split for training and
test. The input image size is 512x1760 pixels, while
the size of the sliding window (i.e. the input to
the CNN) is 224x224. We use stochastic gradient
descent (SGD) as our optimizer with a learning
rate of 0.002, which we adopt from the original
M3D-RPN paper. We are able to perform real-time
inference at 0.2 sec per image on a Titan X GPU.

We achieved a detection rate (DR) of 92% and
93% for the MRZR and Suburban, respectively, as
shown in Table 1, which also includes positional
and angular accuracy measures. We suspect that the
elongated body shape of the Suburban may have led
to noticeably lower angular error than that for the
MRZR. In general, errors observed are more related
to the visual appearance of the vehicles (i.e. when the
observed vehicle is partially off camera, occluded,
or too far), than specific to any particular formation.
Regardless, we believe the accuracy achieved for
both vehicles is adequate for formation control tasks.

DR e, (m) e.(m) ¢ ()
MRZR | 92% 078 121 1042
Suburban || 93% 1.68 196  6.82

Table 1: Accuracy results on our custom dataset.

5.3 Discussion and Future Work

We addressed the challenge of formation control
in hostile environments where location broadcasting
is forbidden by learning to estimate relative state
estimation of neighboring vehicles with a CNN using
only visual imagery. To attain representative military
settings, we collected a custom dataset at Fort Devens
that included an army vehicle, the MRZR, to train our
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network. Having achieved good accuracy and as our
model is able to run inference in real-time at about
0.2 sec per image, we plan to feed the estimated state
of target vehicles to a planner and operate a closed
loop system for formation control. In the near term,
we are planning a vehicle following task. Eventually,
we hope to adapt to more complex formations and
environments.

6. CONCLUSION

The AMIC data hub contains a large volume
high-quality data collected from sites similar to
anticipated AGV operating environments.  We
have demonstrated the ability to use the data to
train machine learning models to provide autonomy
capability for air-ground teaming and formation
control. We believe that continued growth in the
volume and diversity of data stored in the data hub
will enable the community to build and validate
innovative algorithms to realize the Army’s RAS
vision.
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