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ABSTRACT
This paper presents a Gaussian process model of terrain slope for use in

a GPS-free localization algorithm for ground robots operating in unstructured
terrain. A wheeled skid-steer robot is used to map the terrain slope within an
operational area of interest. The slope data is sampled sparsely and used as
training data for a Gaussian process model with a two-dimensional input. Three
different covariance functions for the Gaussian process model are evaluated with
hyperparameters selected through maximizing the log marginal likelihood. The
resulting Gaussian process model is used in the measurement update function of a
localization particle filter to generate expected slope values at particle positions.
Preliminary localization testing shows sub-ten meter accuracy with no initial
knowledge of position. However, the overall performance of the filter is highly
dependent on the variability of the terrain that the robot traverses.
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1. INTRODUCTION
Prior work has shown that terrain variations

can be used for vehicle localization in both
structured (roadways) and unstructured (off-road)
terrains. In both instances, an a priori map of
the terrain is required and significant efforts have
been undertaken to model the terrain and reduce
data requirements for map storage. To provide
localization in such environments, we propose the
use of estimation filters with terrain inclination
measurements provided by Gaussian processes (GPs)

trained on previously collected data points. The
objectives of this research are to collect terrain
variation data using a skid-steer teleoperated robot,
model terrain variations using GPs, and use the
models for GPS-free localization of a robot driving
in the mapped area.

For vehicle road networks, particle filters and
unscented Kalman filters have been shown to
accurately estimate location when provided with a
previously collected map of road surface inclination
[1]. Within unstructured environments, terrain
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variation has been utilized for localization of smaller
ground robots [2]. Gaussian Process Function (GPF)
models have been applied to Wi-Fi localization
problems both terrestrially and on the International
Space Station [3], [4], and have also been utilized to
model large areas of terrain [5]. Currently there is
no work combining GP models with localization for
small to medium sized ground robots, which is the
area of work presented in this research.

The use of GPs for terrain modeling in
combination with particle filtering is a unique
aspect of this work. The combination of these
techniques for GPS-free localization of ground
robots in unstructured environments has not been
presented in the literature. Since GPS signals are
prone to jamming, other methods of localization
that do not rely on external inputs are of
interest. In addition, this approach will allow
for the evaluation of how map resolution impacts
localization accuracy. This tradeoff is key when
determining data collection techniques and data
storage/transmission requirements.

The remainder of this paper will discuss the three
phases of this research: terrain map data collection,
GP terrain modeling, and particle filter localization.
A discussion of conclusions and future areas of work
ends the paper.

2. TERRAIN DATA COLLECTION
The first phase of this research was the collection

of terrain slope data with associated position data
to use as inputs to the terrain modeling algorithm.
A wheeled skid-steer robot equipped with the
required sensors was used to collect terrain slope
data with ground truth position data. The robot,
shown in Fig. 1, is a model RMP400 system
produced by Segway Robotics. The robot is
controlled remotely using a standard 2.4 gigahertz
RC controller. On-board the robot, the Robot
Operating System (ROS) is used to implement sensor
drivers, orchestrate the overall software stack, and
log data [6]. The attitude of the robot is measured

using an Xsens MTi-G attitude and heading reference
system (AHRS) with outputs of yaw, pitch, and roll
at a rate of 100 hertz with a dynamic accuracy of
1 degree RMS and a resolution of 0.05 degrees. A
Hemisphere A325 GPS antenna/receiver operating in
Real-Time Kinematic (RTK) mode is mounted on the
vehicle to provide location measurements at 20 hertz
with an accuracy of 0.01 meters RMS.

Figure 1: Image of RMP400 robot equipped with
sensors required for terrain data collection.

Terrain data was collected on a large, grass
covered slope near the author’s research office. An
overlay of the position trajectory of the robot during
data collection is shown in Fig. 2. The robot was
manually driven parallel to the long dimension of
the test area with approximately 5 meter spacing
between trajectories. This trajectory was chosen
to provide good coverage of the area that could be
sub-sampled in later stages of this research to model
the terrain slope. In Fig. 2, and all figures showing
position in this paper, the North and East position
in meters is relative to a local datum chosen to
be convenient for displaying the results within this
operational area.
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Figure 2: Trajectory of RMP400 during data
collection overlaid on satellite image of operational
area.

The key terrain property utilized for localization
in this work is the total slope of the terrain at a
given location. The total slope is a convenient
metric because the vehicle will measure the same
total slope at a single location regardless of the
heading of the vehicle. The MTi-G unit on the robot
produces an Euler angle attitude estimate consisting
of roll, pitch, and yaw angles. In this work, the
robot body frame is defined such that it aligns
with a North-East-Down frame centered at the robot
position when the attitude is zero. The first step of
converting the Euler roll and pitch angles to total
slope is creating a quaternion using the following
equations where qBN is the quaternion representing the
rotation from the North-East plane to the body X-Y
plane and (ϕNB, θNB) are the roll and pitch angles
representing the same rotation [7]. The quaternion
conversion equations have been simplified using the
assumption that heading is zero. The qBN0 component
is a function only of the rotation magnitude, and
the qBN1-q

B
N3 components are functions of the rotation

magnitude and axis of rotation.
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The rotation vector can now be computed from
the quaternion components using

ρNB =
2arccos(qNB0)√

1− qNB0
2
qB
N1:3 (5)

where ρNB is the rotation vector and qB
N1:3 is a 3x1

vector formed by components one through three of
the quaternion. The total slope in radians is then the
magnitude of the rotation vector,

γ = |ρNB|. (6)

While conversions directly from Euler angles to
rotation vectors exist, they are complicated and
prone to programming errors, so the intermediate
quaternion conversion is used. Calculating the total
slope for the trajectory data gathered using the test
robot results in Fig. 3. The test terrain has three major
slope features that cross the terrain perpendicular to
the data collection paths. As will be discussed in
the localization section, the flat areas between terrain
features present challenges for localization.
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Figure 3: Total terrain slope measured during
RMP400 data collection run.
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3. TERRAIN MODELING
Gaussian processes [8] (GPs) are a

non-parametric learning technique that have been
shown to produce accurate continuous domain
representations of terrain data [5]. These
representations are well suited for use with particle
filter estimators. At each particle location, the
GP terrain map may be interrogated to provide
terrain feature information. The GP representation
of the terrain also incorporates uncertainty in a
statistically sound way based on the data used
to train the GP model. Uncertainty of the GP
representation will be higher in areas that lack data
points in the training set. This uncertainty is key
in properly weighting particle estimates, and may
also be used to plan traversal paths along areas with
low uncertainty. In this work, the GP model will
be trained to represent the maximum inclination
of the terrain instead of the terrain elevation itself.
Vehicle inclination, which is highly correlated
with terrain inclination for slow-moving vehicles,
may be estimated using MEMs accelerometers and
gyroscopes. The following subsections will provide
an overview of GP regression and then a discussion
of selecting a covariance function and setting its
characteristic parameters.

3.1 Gaussian Process Regression
A GP is a collection of random variables,

any finite number of which have a joint Gaussian
distribution, and is completely specified by a mean
function and a covariance function. A process f(x)
is defined by the mean m(x) and covariance k(x, x′)
as

m(x) = E[f(x)], (7)
k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (8)

and can be written as

f(x) ∼ GP(m(x), k(x, x′)). (9)

The random variables represent the value of the
function f(x) at a location x. In this work, x is the

location of the robot in the operational area and the
function is the total terrain slope. The training data
used to condition the GP joint distribution consists of
the set of locations, X , and the total slope measured
at each location, f . The joint distribution of the
observation data and the desired test outputs, f∗, is[

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(10)

where K is a covariance matrix to be defined and
X∗ are the test locations. The measurements of slope
from the Xsens attitude reference system will include
noise such that

y = f(x) + ϵ (11)

where y is the measured slope, f(x) is the true
slope, and ϵ is Gaussian noise independent with each
sample and with variance σ2

n. The joint distribution
is modified to account for the noisy function values
at the test locations, and the result is[
y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(12)

where I is an identity matrix of the appropriate size.
From [8] the predictive equations for GP regression,
derived from the conditional distribution, are

f∗|X,y,X∗ ∼ N (f̄∗, cov(f∗)) (13)

where

f̄∗ = K(X∗,X)[K(X,X) + σ2
nI]

−1y,
(14)

cov(f∗) = K(X∗,X∗)− (15)
K(X∗,X)[K(X,X) + σ2

nI]
−1K(X,X∗).

If there is a single test point x∗, the GP regression
can be written as

f̄∗ = k⊤
∗ [K + σ2

nI]
−1y, (16)

V[f∗] = k(x∗, x∗)− k⊤
∗ (K + σ2

nI)
−1k∗ (17)
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where the substitutions K = K(X,X) and k∗ =
K(X, x∗) have been made to simplify the notation.
To completely define the regression, the covariance
function K must be selected. This is the topic of the
next subsection.

3.2. Covariance Function Selection
The selection of the covariance function and

associated model parameters is an important step
when creating a Gaussian process regression or
classification system. Even for a single covariance
function, there is a large variety of model parameters
that may be adjusted. In addition, covariance
functions of the same or different types may be
combined to improve the model fit. With such
a large number of free variables, a systematic
approach to model selection is beneficial. In this
work, the Bayesian approach of computing the
probability of a model given the data is utilized to
select hyperparameters for three different covariance
functions [8]. This is not the only method of model
section in the literature, and this is an important area
of future work to improve terrain modeling.

The most widely used covariance function within
machine learning is likely to be the squared
exponential function, which is defined as

kSE(r) = e

(
− r2

2l2

)
(18)

where r is a measure of the distance between
points for which a covariance is being found,
and l is a parameter called the characteristic
length-scale. The characteristic length-scale is tuned
based on knowledge of the underlying data the
GP is modeling. In this work, the characteristic
length-scale represents how quickly the terrain
slope is changing over spatial distances. The
adjustable parameters within covariance functions
are commonly referred to as hyperparameters. An
example of a function with a two dimensional input
drawn from a squared exponential Gaussian process
with a characteristic length of 0.5 is shown in Fig. 4

and with a characteristic length of 1.5 in Fig. 5. As
expected, the smaller characteristic length produces
a function with significantly more variation than the
larger characteristic length.
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Figure 4: Function with two dimensional input drawn
from squared exponential Gaussian process with
characteristic length of 0.5.

-2

5

0

O
ut
pu

t 2

5

Y
0

X
0

-5 -5

Figure 5: Function with two dimensional input drawn
from squared exponential Gaussian process with
characteristic length of 1.5.

The position of the robot within the operational
area is expressed with a two-dimensional vector of
East-North position in a local frame, (E,N), which
results in a distance calculation between two points i
and j of

rij =
√

(Ei − Ej)2 + (Ni −Nj)2. (19)

In addition to the squared exponential covariance
function, two additional covariance functions were
evaluated for use in this work. The first is one of
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the Matérn class of functions. Setting one of the
hyperparameters within this class of functions to ν =
3/2 yields

kM(r) =

(
1 +

√
3r

l

)
e

(
−

√
3r
l

)
. (20)

The second additional function evaluated is the
rational quadratic covariance function, defined as

kRQ(r) =

(
1 +

r2

2αl2

)2

. (21)

The squared exponential and Matérn functions have
one hyperparameter, l, and the rational quadratic
function has two, l and α. In actuality, additional
hyperparameters can be included in these covariance
function definitions, but they have been removed
in this preliminary work to simplify the task of
hyperparameter selection. The hyperparameter
values are selected by adjusting them to maximize
the log marginal likelihood function as discussed in
the next subsection.

3.3. Selecting Hyperparameters
The hyperparameters were selected by following

the process outlined in [8], which requires
maximizing the log marginal likelihood (LML)
function. The LML is defined to be

log p(y|X,θ) = −1

2
y⊤K−1y−1

2
log |K|−n

2
log 2π

(22)
where θ is the set of hyperparameters. Within
the LML, the first term −1

2
y⊤K−1y represents the

quality of fit. Small length scales are able to fit
the training data very closely at the expense of large
variations and uncertainty in fit between training
points. The second term, −1

2
log |K|, represents the

complexity. Small length scales are more complex
and cause this term to be smaller, therefore adding
less to the LML. The final term is a normalization
constant. Maximizing the LML balances the quality

of fit to the training data with the complexity of the
model.

The first step in selecting the hyperparameters is
generating the input training data set. Fig. 3 shows
the slope data generated by the robot sensors at a
high rate of 100 Hz. This data was sampled such
that slope measurements approximately four meters
from one another were used as the training set. Fig. 6
shows the position of each slope data point used in
training the GP models.
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Figure 6: Training point data collection positions
within the operational area.

With the training set chosen, the simplex search
method was used to maximize the LML of each
candidate covariance function by adjusting the
hyperparameter(s). The results are summarized in
Table 1 and show that the Matérn and rational
quadratic functions produce LML values much
higher than the squared exponential. The Matérn
covariance function was chosen for modeling the
terrain for localization because it produced the
highest overall LML.

Table 1: Results of selecting hyperparameters by
maximizing the log marginal likelihood.

Covariance Function Hyperparameters LML

Squared Exponential l=11 98
Matern l=27 140

Rational Quadratic l=16 α=0.02 136
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Fig. 7 shows the result of modeling the terrain
slope data using the Matérn covariance function with
a characteristic length of 27 meters. The surface in
the plot is created by using a 4x4 meter grid of test
points, and the color of the surface is the standard
deviation of the model fit at that position. The results
show that the standard deviation is low within the
region that was mapped by the robot and increases
in regions away from the training points. This is
a significant benefit of modeling the terrain with a
GP. The standard deviation of the fit is automatically
adjusted based on the distance from the nearest
training data. This provides proper weighting of the
terrain data for localization. With the GP model of
the terrain slope complete, the next phase is using
the model for localization of the robot.
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Figure 7: Mean of GP function modeling terrain with
Matérn covariance function. Red markers indicate
training data position and slopes. The surface is
created by using a 4x4 meter grid of test points
covering operational area. The color of the surface
represents the standard deviation of the model fit at
that position.

4. LOCALIZATION
The localization algorithm used in this research

is a particle filter [9]. Particle filters are fairly
standard within the robotics community, so the
discussion in this paper will focus on features of
the filter developed specifically for this research:
the skid-steer motion model and GP measurement

update. The localization algorithm begins with
initialization where the particle filter is initialized
with 750 particles spread evenly throughout the
operational area. The next phase of the algorithm
proceeds to loop through the stages of motion update,
measurement and particle weighting, and particle
resampling.

4.1. Motion Update
The robot used for localization experimentation

is the same wheeled skid-steer robot used for map
data collection. The instantaneous center of rotation
(ICR) kinematic model of skid-steer motion is used
to calculate vehicle velocity based on measurements
of left and right side wheel speeds [10]. The velocity
of a skid-steer vehicle is described by

vx =
V r
x yICRl

− V l
xyICRr

y
ICRl

− y
ICRr

(23)

vy =
(V l

x − V r
x )xICRv

y
ICRl

− y
ICRr

(24)

wz = − V l
x − V r

x

y
ICRl

− y
ICRr

(25)

where vx is the longitudinal velocity, vy is the lateral
velocity, wz is the angular velocity, V l

x is the left track
velocity, V r

x is the right track velocity, y
ICRr

is the
right ICR lateral position, y

ICRl
is the left ICR lateral

position, and x
ICRv

is the longitudinal position of
both the left and right ICRs. If the ICR locations are
known, the velocity of the vehicle can be calculated
from the track speeds. Prior work with this robot has
shown that the ICR positions are y

ICRr
= 0.6 meters,

y
ICRl

= 0.6 meters, and x
ICRv

= 0.0 meters when
operating on grassy terrains.

The vehicle velocity and angular rate are inputs
to the velocity motion model provided in [9]. This
motion model predicts the particle state forward
in time and includes randomness in the velocity
magnitude and direction to provide particle diversity.
Wheel velocity updates are used to run the motion
update at 100 hertz.
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4.2. Measurement Update and Resampling
The measurement update phase is triggered every

four seconds while the robot is moving. The Xsens
inertial sensor on the robot provides an attitude
estimate that is converted to total slope, yk. Next,
the set of robot locations stored in the particle set
is used as the test input array X∗ and (14) and (15)
are used to find the GP model mean and covariance
for each input. Note that the inverse term in (14)
and (15) depends only on training data, and in this
work it is precomputed and stored as part of the
GP terrain model. This reduces the computational
requirements to run the filter significantly. Given the
slope measurement yk, the GP model mean for the
ith particle, f̄∗i, and the GP model variance for the
ith particle, σ2

∗i, the weight of particle i is calculated
using

wi = e
− 1

2

(yk−f̄∗i)
2

σ2
∗i . (26)

The particle weights are then normalized with the
sum of all the particle weights. The low variance
resampling method is used to resample the weighted
particle set [9]. The estimated position of the vehicle
is the mean of the particle positions. After the
update and resampling have finished, the motion
update function is called until it is time for a new
measurement update.

4.3. Localization Results
While the time evolution of a particle filter is

best viewed in a video, a series of plots at key times
in the localization test are shown here to provide
insight into the behavior of the filter. Fig. 8 shows
the particle positions overlaid on a contour plot of
the terrain slope four seconds into the localization
test. The true position of the robot at this step is
shown by a black star, and the estimated position
from the filter is shown by the green star. At this
time in the test, only a single measurement update
has been input to the filter, so the particles are mostly
spread uniformly across the operational area. It can
be seen that particles have been removed from areas

of large slope because the measurement of slope at
the current position is small.
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Figure 8: Particle set 4 seconds into the localization
run. Only a single measurement has been used to
update the filter.

Fig. 9 shows the particle positions 64 seconds
into the localization test run. At this point, the robot
has traveled over enough unique features to cluster
the particle estimates, but the overall particle position
average is still far from the true location.
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Figure 9: Particle set 64 seconds into the localization
run.

Fig. 10 shows the particle positions 100 seconds
into the localization run and after the robot has
traversed the large slope feature that runs diagonally
across the operational area. At this point the particle
set is clustered around the true position. It can
be seen in the particle distribution that there is
more uncertainty in the position estimate parallel
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to the slope feature. Because the feature runs
across the operational area, the particle filter cannot
discriminate between positions on a line parallel to
the slope feature.
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Figure 10: Particle set 100 seconds into the
localization run.

Fig. 11 provides a plot of the error between the
particle filter position estimate and the true vehicle
position versus time during a localization run. As
expected for this type of localization algorithm, the
accuracy of the estimate depends almost entirely on
the variety of features in the environment. Near the
beginning of the run, the robot is driving over areas
of with significant terrain slope change, resulting in
low position estimate error. In the latter half of the
test run, the robot is driving primarily on flat areas
of the map and the error is much larger. The filter
algorithm tracks the average particle weight from
recent updates and compares it with the long-term
average particle weights. When the average recent
particle weight is much lower than the long-term
average weight, none of the particles are at positions
that match current measurements and the particle set
is reinitialized uniformly across the operational area.
An instance of this occurring is labeled in Fig. 11.
Overall, the results show that the GP localization
filter provides an accurate estimate of position when
there is sufficient terrain variability.
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Figure 11: Error between particle filter position
estimate and true vehicle position during 800 second
localization run.

5. CONCLUSIONS
This paper has presented an algorithm for

modeling terrain slope variations using Gaussian
processes. When coupled with a particle filter and
an accurate model of robot motion, the GP model of
terrain slope can be used in the measurement update
function to provide accurate position estimates in
GPS denied environments. The performance of
the particle filter over time is very dependent
on the variability of the terrain traversed by the
robot. During testing, the particle filter algorithm
provided sub-10 meter accuracy when the robot
traversed major slope features in the operational
area. Ultimately, this localization approach should
be coupled with other sources of information that
complement one another. For example, a visual
odometry algorithm could be used to estimate motion
over time, and when the robot traverses terrain
features, this localization system could update that
visual odometry estimate to remove drift.

This research provides the groundwork for many
areas of future exploration. The relationship between
the density of points in the training data and the
accuracy of the localization estimate should be
explored. If lower density training data can be
used, this reduces the memory required to store
and process the GP terrain model. In addition, the
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candidate covariance functions evaluated in this work
can be expanded with additional hyperparameters
to better model terrain data. Covariance functions
can also be combined, the sum and product being
examples, to improve model fit. An example of
this could be two squared exponential functions
with different characteristic lengths. This model
selection would perform better over terrain with
short, bumpy variations on top of large scale changes
in elevation. Overall, this preliminary work has
shown that GP models of terrain slope are a viable
method of implementing the measurement update
phase of a localization particle filter, but additional
work is needed to fully develop the terrain model
and compare localization performance with other
feature-based algorithms.
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