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ABSTRACT 
Path planning is critical for mission implementation in various robot 

platforms and autonomous combat vehicles. With the efforts of electrification, 

battery energy storage as power sources is an ideal solution for robots and 

autonomous combat vehicles to improve capability and survivability.  However, the 

battery’s limited energy and limited instantaneous power capability could become 

limiting factors for a mission. The energy and power constraints are also affected 

by the environment, battery state of health (SOH), and state of charge (SOC) 

significantly; in the worst case, a well-tested mission profile could fail in the real 

world if all aspects of the battery are not considered. This paper presents a 

framework to model the battery’s capability to support a whole mission and specific 

tasks under various environments. This real-time battery model can be built into an 

intelligent battery management system to support system-level mission planning, 

real-time task selection/ teleoperation, post-mission evaluation, and maintenance 

assistance. Furthermore, case studies are presented to show that the simple rule-

of-thumb approach would not provide an optimal solution and that a 

comprehensive battery model is necessary. Transparent to vehicle’s system control, 

this model framework provides a simplified parameter set for existing path 

planning approaches to achieve optimum battery usage, which leads to the 

improved range, duration, and reliability for a mission.  
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1. INTRODUCTION 
Mission planning and path planning play vital 

roles in ensuring that autonomous vehicles and 

mobile robots can accomplish a mission while 

meeting certain requirements, such as travel time, 

energy consumption, and risks/uncertainties 

[1,2,3]. Researchers have developed various path-

finding methods to support the navigation of 

vehicles or robots in both known and unknown 

dynamic environments under various settings and 

different priorities for initial mission scheduling 

and real-time planning [4,5].  The majority of the 

studies focused on the mission and tasks 

themselves, and the energy and power of the 

vehicle were not the priorities. 

 

When the vehicle or robot is battery operated, the 

energy and power constraint of the battery poses 

additional challenges in the mission planning 

process. Although energy consumption has been 

considered in some path-finding methods [6], 

battery energy and power limitation have not been 

fully accounted for in the mission planning of 

battery-operated vehicles. This is partially due to 

the complexity of the battery and the lack of 

mission-oriented models to describe battery 

performance in the dynamic environment. 

  

Recent advances in electric vehicles and fuel 

conservation have considered power usage [7]. 

However, those applications almost always include 

high energy reserves and a controlled environment. 

For example, on electrical vehicles, the battery 

pack environment could be tightly controlled so its 

performance could be better predicted.  

 

Electrification improves vehicles and robots’ 

capability and survivability, and battery energy 

storage is an ideal solution for those platforms. 

When battery packs are used as power sources, the 

assumptions in traditional path planning algorithms 

might not always be valid. Specifically, the battery 

pack has limited energy due to system-level 

constraints such as weight and size. Meanwhile, the 

vehicle is expected to have maximum range and 

duration. Therefore, if the path planning does not 

consider the limitation of the battery, the battery 

might not support all planned tasks.  Further, during 

the mission, the battery pack’s capability will be 

significantly affected by the environment, its state 

of charge (SOC) and state of health (SOH). For 

example, the battery might not be able to complete 

a high-power task when it is close to empty while it 

is capable of at a high state of charge due to high 

output resistance and low voltage at low SOC 

besides battery management system protections.   

 

Another example is safety. IATA shipping 

guideline requires Lithium-ion battery with low 

SOC during shipment to reduce hazards. Studies 

also show that, besides chemistry itself, a Li-ion 

battery cell’s responses to nail penetration tests 

vary concerning SOC, and, when impacted, cells 

with SOC less than 50% could be less likely to 

cause fire with other conditions equal [8,9]. 

Therefore, although the outcomes of severe abuses 

such as direct projectile penetration event might be 

the same, during path planning, it might still be 

advantageous to schedule safety-critical tasks when 

battery SOC is low if permitted.  

 

Therefore, autonomous combat vehicles 

including battery-powered robotic systems present 

an energy and power-constrained setting, which is 

not common in traditional applications.  

 

This paper presents a battery model framework. It 

provides a performance index for the battery’s real-

time power and energy capability and performance 

forecast. This index allows the system to view the 

battery box as a black box. The path planning 

algorithm can include the index in its existing 

global planning, real-time short-term task 

evaluation/teleoperation, and/or post-mission 

evaluation with low additional overhead. Further, 

weak batteries in the battery pack can be identified 

for maintenance. As a result, mission interruption 

and maintenance costs will be reduced. This model 
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is included in the battery pack’s battery 

management system as an intelligent battery tray 

(IBT).  

 

In real applications, mission planning and path 

planning have different meanings. For example, in 

a typical traveling salesman problem, the tasks have 

the same priority so the order of the tasks can be 

changed to achieve the shortest path. In other 

missions, the tasks could be highly correlated, so 

the order is not interchangeable.  The paper will 

show that the model we propose for the IBT is 

beneficial for both scenarios. For simplicity, path 

planning and mission planning will be used 

interchangeably in the paper unless otherwise 

noted.  

 

Further, the available energy might have different 

meanings at system level from battery capacity. For 

example, the system might set a reserved energy 

threshold for system level objectives such as 

battery cycle life, mission certainty, etc. In this 

case, the mission planning should plan with the 

available energy.  

 

The background is presented in Section 2. The 

model is shown in Section 3.  Case studies are 

discussed in Section 4. Section 5 shows the ongoing 

work on testing and verification. The conclusions 

are given in Section 6.  

 

2. BACKGROUND 
  Various algorithms have been developed to find 

the optimal or near-optimal mission paths, 

including graph search methods (e.g., A* family 

algorithms [10], sampling-based methods [11], and 

trajectory optimization methods [12].) In addition, 

to minimize energy consumption, some energy-

efficient path-finding algorithms have been 

developed. For example, Sun and J. Reif studied the 

problem of finding energy optimal paths on terrains 

where the energy cost depends on friction and 

gravity [13]. Niu et al. considered speeds and 

vehicle characteristics in the energy consumption 

model and proposed an algorithm to find the 

minimum energy path [14]. However, the above-

mentioned methods do not account for the battery’s 

instantaneous power capability, which depends on 

other factors such as the state of charge and 

environmental factors.  

 

On combat vehicles and robotic platforms with 

the battery as the power source, the battery pack has 

limited power, limited energy, and an 

uncontrollable environment:  

 

Limited energy: It is reasonable to assume that the 

on-vehicle battery storage is fully charged at the 

beginning of a mission. During the mission, the 

battery power will be consumed to empty for 

maximum range and endurance. Therefore, the 

mission planning should consider the energy used 

and reserved energy.  

 

Limited power: Similar to limited energy, when 

the battery’s SOC is low, it would not be able to 

conduct certain tasks which is capable of when the 

battery is full, especially the high current draw 

tasks. For example, the battery’s voltage is low at 

low SOC and is much more likely to trigger shutoff 

due to large current draws [15]. On the other hand, 

when the battery SOC is high, the regenerative 

power capability of a battery-power vehicle is 

limited because the battery charging capability is 

reduced or disabled to prevent overcharge.  During 

the lifetime of a battery, its SOH should also be 

considered during planning and post-mission 

evaluation.  

 

Uncontrolled environment: The combat vehicle 

would operate in a wide range of environments, be 

it hot or cold. If climate-control is not available on 

the vehicle platform such as a medium-size robots, 

the battery energy and power capabilities will be 

directly affected by environmental factors. For 

example, a Li-ion battery could go into protection 

when the battery is too hot, while its capability will 

severely diminish in a cold environment.  
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Fig. 1 Normalized power and energy consumption 

for the same travel distance with different speeds 

and different SOCs.  
 

Table 1: Normalized power and energy 

consumption show in Fig. 1 

SOC=100% 
Speed 

Low Medium Fast 

Current 1 2.57 5.10 

Energy usage 2.00 1.10 1.06 

 

SOC=17% 
Speed 

Low Medium Fast 

Current 0.90 2.60 4.60 

Energy usage 2.08 1.17 1 
 

Fig. 1 shows the normalized experimental results 

of average current usage vs. energy usage for a 

robot with slow, medium, and fast speed under 17% 

SOC and 100% SOC for the same distance. Table 1 

shows the normalized data. The power 

requirements are normalized to the current at 100% 

SOC and Fast speed. The energy consumptions are 

normalized to that of 17% SOC and Low speed. 

The energy consumption has an overhead portion, 

which is the idle current usage to power the 

onboard system. Under both 17% and 100% SOC, 

the overhead at low speed is high because of its 

long travel time. Furthermore, the higher motion-

only energy at low speed is also robot-specific. 

Therefore, the energy usage is lower at higher 

speeds, and the peak current is around twice the 

average current. Clearly, the Fast speed will require 

much higher currents, and the high energy usage 

might trigger battery shut-off at low SOC. For this 

task, the medium speed setting might be a better 

choice for the balance of power and energy 

consumption. In a real-world application, the 

terrain condition must be considered with different 

energy vs. power profiles with respect to mission 

tasks. The intelligent battery tray can monitor and 

predict the battery pack’s power availability and 

energy availability in real-time and during path 

planning to ensure minimum reserved capacity and, 

in the worst case, the optimal motion option to limp 

home. 

 

Besides the above power and energy 

considerations, the environmental factor should 

also be considered.  

 

 

 
 

Fig. 2 Experimental battery temperature operating 

in -20°C environment with starting battery 

temperature of 20°C  
 

Fig. 2 shows an example of battery temperature 

during a multi-task mission. The battery is charged 

full and conditioned at the temperature of 20°C. It 

is put into a -20°C environment. At the end of the 

mission, the battery temperature is cooled down to 

-10°C while the Li-ion battery’s capacity is reduced 

at lower temperatures. Also, when the task current 

is high, the battery temperature increases. As an 

intuition, an optimal path planning algorithm 

should schedule the tasks so that the battery has a 

higher temperature during the majority of the time 

to have higher available capacity.  

 

Time (Sec) 

Battery temperature (°C) 

Load current (A) 
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  Optimizing for battery temperature during 

mission planning is particularly important for 

applications such as small-size and medium-size 

robots’ battery tray, where heavy insulations are not 

available due to platform’s size and weight limits. 

Additionality, fully-sealed climate-control 

enclosures may not be possible due to other 

operations requirements: for example, some 

applications requires that battery modules can be 

easily swapped out during the mission by operator 

without needing special tools.  

 

 

3. MODEL SUPPORTING PATH PLANNING 
3.1. Model and its outputs 

The path-planning supporting battery model 

generates a battery performance index  

 

(
𝑃0 𝐸0 𝐻0 𝑡0
𝑃𝑛 𝐸𝑛 𝐻𝑛 𝑡𝑛

) = 𝑓(𝑖𝑛𝑝𝑢𝑡𝑠) 

 

Where P is power, E is energy(SOC), and its health 

index at a given time, t. The data in t0  is the real-

time information while that in tn is for performance 

prediction at a given time. Depending on the 

complexities of the implemented model, the 

prediction could be multiple time points or only one 

or two critical times such as battery low warning 

and battery temperature warning.  

 

The health index, H, is used to model the 

probability of whether the desired task can be 

completed reliably and safely, and possibly also its 

long-term effects on battery life. Instead of 

performing simple constraint checks related to 

battery power limits, a ‘score’ is given to indicate 

the impact of the task on the battery's short-term 

and long-term health.  By using a numerical value 

instead of a simple go or no-go, we can take more 

factors into account such as battery-to-battery 

variations, battery variations during its life cycle.  

By lumping all the battery constraints and operation 

impacts into one health index ‘score’, we also 

simplify the mission planning algorithms design by 

keeping the battery details in the battery model 

only.  The mission planning algorithm can be 

ported to a different battery system relatively 

easily, without having to re-write the algorithms 

solely due to a new set of battery constraints, or 

different battery characteristics.  

 

Based on its usages, the model can be tailored for 

different complexities: 

1) During global task scheduling, the model can 

be run offline. Its power and energy capability 

can be used as go/no-go criteria for tasks. The 

impact on the battery is also calculated.   

 

2) During real-time task planning /teleoperation, 

the power and energy capabilities are used to 

ensure the task can be implemented. More 

importantly, the health index will be used to 

evaluate the effects of the execution of the 

current task on following tasks. 

  

After the mission, the health index can be used 

for battery maintenance and mission planning 

update.  

 

3.2. Inputs to the Model 
The external inputs to the model are the mission 

conditions including environmental temperature, 

task profiles, and its related power profiles.  

 

The following battery characteristics are included 

in the model as identified as the key parameters that 

affect mission planning:  

1) Li-ion battery capacity modeling: The capacity 

of the battery pack is a function of design 

capacity, battery ageing, and temperatures.  

 

2) Battery discharge and charge limit modeling: 

The battery charging and discharge pulse 

current limits including high-C are functions 

of the battery SOC and temperature.  

 

For example, for a Li-ion battery, when SOC 

is close to 100%, the charging current limit is 
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reduced to zero. A pulse discharge limit is 

usually a constant number as reduced to zero 

as SOC approached 0%. The actual usable 

capacity is also affected by discharge rate. For 

high C-rate discharge, the battery is likely to 

shutdown at a higher SOC, which effectively 

means lower energy delivered.  

 

The battery cell-to-cell variations and variations 

over the lifetime also have significant effects on 

almost all the above key characteristics, thus they 

should be included in the model for an accurate 

estimate.  

 

Additionally, battery packs on the robotic 

vehicles are usually constructed by interconnecting 

hundreds or even thousands of cells. Pack-level 

statistic models are needed, which will make it 

possible for the mission planning tools to make the 

decision based on qualitative results on questions 

such as how likely a mission can be completed 

within certain SOC or power limits.  

 

The cells in the battery pack are usually managed 

by a pack battery management system, which 

performs active functions such as cell balancing 

and cell fault mitigations. Each manufacturer 

usually designs algorithms in the BMS with 

specific calibrations determining the real-time 

various energy and power thresholds that ensure 

safe battery operation. These calibrations, along 

with the physical parameters of the battery design, 

are both key inputs to the model.  

 

 

4. PATH PLANNING WITH BATTERY 
USAGE OPTIMIZATION 

 

4.1. Case study 1: Pathfinding optimizing 
battery energy usage 

 

Problem Statement: 

Assume that a robot is conducting surveillance 

operations, the robot will return to base to be 

recharged when the battery is low. Let’s assume 

that the priority is maximum surveillance time for 

each mission.  At the same time, the robot should 

be able to reach home before the battery is empty.  

 

Analysis: 

Fig. 3(a) shows an example of a simplified terrain 

map with slope information in each cell. Its related 

energy consumption for a reference vehicle was 

calculated. To simplify the case study, the terrain 

map only contains positive slopes, thus the energy 

consumption is a function of speed and slope. For 

the case study, a constant vehicle speed is assumed. 

If a terrain map with downhills is considered, the 

energy consumption model also needs to account 

for regenerative energy and is out of the scope of 

this paper. In addition, the instantaneous power 

capacity of the battery limits the maximum slope 

that the vehicle can climb at a certain state of charge 

and temperature.   

 

   At high SOC, the power capacity allows the 

vehicle to traverse any cells in the terrain map, with 

the steepest slope of 30°. The minimum energy path 

was calculated using the A* algorithm, as shown in 

Fig. 3(b).  

 

When SOC is low, some cells in the terrain map 

become unpassable because of the battery’s 

reduced power capacity. Fig 3(c) shows an example 

of a minimum energy path that avoids any slope 

greater or equal to 25°.  

 
 

 

(a) Terrain maps with slope  ( ͦ ) indicated in 

each cell 
 

 

20 20 20 20 20 20

16 18 24 26 28 18

12 16 22 30 25 16

8 14 20 22 18 14

4 18 16 20 16 12

0 6 12 22 26 18
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(b) Path with minimum energy consumption. 

The shaded cells indicate the path. The 

energy consumption is 1714. 
 

 

(c) Minimum energy path when SOC is low. The 

black cells indicate unpassable cells (i.e. 

slope >=25°). The energy consumption is 

1721.  

Fig. 3 An example of terrain map (a) and its path 

with minimum energy consumption (b)(c).  

 

 

 
Fig. 4 An example of real-time rerouting due to 

impassable cells. The robot is rerouted to the path 

shaded in yellow after the SOC is dropped. The 

energy consumption is 1934.  
 

As an input to the model, the energy consumption 

rate can be used as the input to the battery pack to 

reduce BMS’s computation overhead. 

Alternatively, the calculation can be conducted on 

BMS with the terrain data received from the 

controller.  

 

In real-time operations, the battery needs to 

continuously monitor the power and energy 

capacity. Fig. 4 shows an example of rerouting after 

power capacity drops and prevents the vehicle from 

continuing the original assigned route that includes 

steep slopes.   
 

Benefits of the IBT model: 

As in the problem statement, ideally, the robot 

should return home when the battery has the 

minimum energy left upon home. Any additional 

reserved energy means less mission time. 

 

The IBT model can be beneficial in the 

following ways:  

1) The path-finding algorithms can take the 

power and energy capabilities of the battery 

into consideration to identify a feasible path. 

 

2) If only limited or one path option is 

available, the IBT model can provide a 

go/no-go decision. For example, it will 

provide warnings if the robot is likely to get 

stuck at a steep slope when the battery is 

close to empty as shown in Fig. 4.  

  

3) The IBT model can predict the battery 

capability. Therefore, the planner might 

choose to get the robot back a lot sooner to 

get it recharged to reduce the uncertainty of 

the later sections of the mission. Though it 

would turn the mission into multiple trips, 

the operator can plan it ahead, which could 

still be valuable for certain applications.  

 

As a result, the robot can maximize the mission 

time and safely return home.  
 

 

282 282 282 282 282 282

251 267 313 0 0 267

221 251 298 0 321 251

190 236 282 298 267 236

159 267 251 282 251 221

128 174 221 298 0 267

282 282 282 282 282 282

251 267 313 328 344 267

221 251 298 359 321 251

190 236 282 298 267 236

159 267 251 282 251 221

128 174 221 298 328 267

282 282 282 282 282 282

251 267 313 0 0 267

221 251 298 0 321 251

190 236 282 298 267 236

159 267 251 282 251 221

128 174 221 298 0 267
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4.2. Case study 2: Task scheduling with 
optimized battery usage 

 

A simple traveling salesman problem (TSP) is 

presented here to demonstrate the effects of battery 

models on path planning.  The battery power limits 

were considered first. Then the effects of 

environmental temperatures are presented. The 

results show that a battery model is important for 

optimal path planning, and the traditional rule-of-

thumb approach would not provide the optimal 

solution.  

 
Fig. 5 Power and energy consumption for the nine 

tasks defined for the case study for path planning. 

The tasks are labeled with numbers 1 to 9 in the 

graph. The numbers don’t represent the task 

priority.  

 

Fig. 5 shows tasks 1-9 defined for the case study. 

The power and energy levels are chosen so that the 

case study simulates a typical real-life robotic 

mission, including both low power/energy idling 

tasks such as silent watch and simple arm 

operation, and high power and energy burst tasks 

such as high speed with a heavy load, fast rotation, 

movement on rough terrain, etc.  To simplify the 

analysis, it is assumed that the energy usage 

between the tasks is negligible.  

 

4.2.1 Task scheduling considering power limits 

  As shown in Fig. 6, given a 10 by 10 grid network, 

nine tasks are expected to be completed with the 

same priorities. The starting node is 0. In this 

section, it is assumed that the nine tasks have the 

same priority so their order can be interchanged.  

 

  Of those, three tasks (1, 3, and 8 in Fig. 5) require 

high instantaneous power; therefore, it might be 

preferred to be conducted when SOC is high.  

 

The other six tasks (2, 4, 5, 6, 7, and 9) have low 

power consumption so they can be implemented at 

low SOC. The example tasks include surveillance, 

simple arm operation, and camera operation. 

 

 
Fig. 6 Path selection without considering battery 

power limits at low SOC (TT=33.2) 

 

 
 

Fig. 7 Path selection with high power task 

scheduled first (TT=50.7) 
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If the power limit at different SOCs is not 

considered, the mission planning problem is solved 

as a typical TSP. The total travel distance is 33.2, 

as shown in Fig. 6. However, when reaching the 

location of Task 8, the SOC will drop to 33% and 

the robot is at high risk of entering a power-limiting 

state while completing Task 8.  

 

If power limit at different SOCs is considered, one 

simple strategy is to implement the high-power 

tasks first, as shown in Fig. 7.  The robot will 

perform tasks 8, 3, then 1. After that, the robot will 

perform the remaining tasks, which require less 

power and energy, before returning to the base, 0. 

As a result, the total travel distance is 21.9 (high 

power tasks) + 22.4 (low power tasks) + 6.4 (return 

to 0) = 50.7.  

 

4.2.2 Task scheduling’s effects on battery 

thermal performance 

As shown in Fig. 6 and Fig. 7, the previous section 

assumes that the order of the tasks can be changed, 

which is not always true. The tasks in a mission can 

have strong dependencies, and the order changing 

will have a much-limited number of choices.  

 

When the order of the tasks cannot be changed, 

this IBT model can help planning algorithms to 

evaluate uncertainty and to provide go/no-go 

decisions based on power and energy similar to the 

previous section.  

 

Further, our battery model also shows the task 

sequence’s impacts on the temperature profile of 

the Li-ion battery when climate-control is not 

available on the vehicle platform.  

 

Keeping the Li-ion battery cell temperature within 

the optimum range is especially important in 

extreme cold or hot weather operations since 

temperature impacts the battery capacity, operation 

safety, and life. The Li-ion battery will shut off 

when the temperature is too high, while its energy 

and power capacity will be significantly reduced 

below a certain low temperature.  

 

As a case study, we compare the temperature 

profiles predicted by the battery model under 

various task scheduling strategies for a cold-

weather operation scenario.  

 

Fig. 8 shows simulated battery temperature when 

the tasks were run with the power consumption 

from high to low corresponding to the strategy in 

Fig. 7.  Similar to Fig. 2, it is assumed that the 

battery is conditioned at 20°C and is put into 

operation in a -20°C environment. It shows that the 

battery temperature falls quickly at the later part of 

the operation to below -15°C. Though it is safe to 

conduct the low SOC task, its power reserve is 

reduced due to low temperature so real-time task 

rescheduling is difficult. 

 

Fig. 9 shows simulated battery temperature in the 

reverse sequence of Fig. 6, where the high-power 

tasks are performed at the end. Contrary to rule-of-

thumb, the battery is kept warm, especially at the 

end of the operation because of the high-power 

tasks, which implies higher available energy and 

power when a new mission arises during operation. 

However, as described in section 4.1, it is 

undesirable to carry out these tasks at the end of the 

mission due to low battery SOC.  
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Fig. 8 Temperature profile operating in -20°C 

environment with an initial battery temperature of 

20°C with the strategy of scheduling the high-power 

tasks with highest priorities.  

 

 
Fig. 9 Temperature profile operating in -20°C 

environments with an initial battery temperature of 

20°C with scheduling high power tasks at the 

lowest priority 

 

 
Fig. 10 Temperature profile operating in -20°C 

environments with an initial battery temperature of 

20°C with scheduling high power tasks at medium 

priority  

 

With our model, Fig. 10 shows simulated battery 

temperature when the high-power tasks are 

assigned with medium priority. The sequence 

ensures that the high-power tasks 1, 3, 8 are still 

performed at good battery SOCs, while they are 

also mixed with ‘idle’ tasks so that the battery 

temperature never drops too low during those idle 

tasks. The battery temperature is kept above -15C 

for the whole operation. With the model, the 

vehicle could operate with a balanced performance 

with high power and energy reserve for new tasks.  
 

 

5. MODEL VERIFICATION 
As part of ongoing development, the proposed 

models will be verified at the IBT level and also at 

the robotic vehicle system level for path planning. 

 

The IBT model will output real-time power and 

energy capacity and health index and predict future 

performance. With pre-defined mission profiles, 

the model outputs and experimental results will be 

compared. The initial set of model parameters is 

derived from manufacture data and module-level 

battery lab testing data and will be further validated 

and calibrated to match the test data from IBT when 

more data is available.  

 

At the path planning level, we are developing a 

generic path planning model so the IBT model can 

be adopted in wide range of robotic and 

autonomous combat vehicle platforms. The 

interaction and efficiency will be evaluated. Both 

optimizations with task sequence and go/no-go for 

fixed task sequence will be studied.  

 

6. CONCLUSIONS 
This paper presented a battery model framework 

to support path planning. By presenting mission 

planning case studies, we showed that including the 

battery model is important in predicting mission 

feasibility. The case studies also show that different 

mission planning strategy impacts battery’s health 

and life greatly. Thus, a model that predicts 

battery’s power, energy, and health index should be 

provided to autonomous combat vehicles and 

robots to improve mission execution.  
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