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ABSTRACT
In the field of ground robotics, the problems of global path planning and

local obstacle avoidance are often treated separately but both are assessed in
terms of a cost related to navigating through a given environment. Traversal
cost is typically defined in terms of the required fuel [1], required travel time
[2], and imparted mechanical wear [3] to guide route selection. Prior work [4]
has shown that obstacle field complexity and navigation cost can be abstracted
into quantitative dimensionless parameters. But determining the cost parameters
and their relationship to field complexity requires running repeated path planning
simulations [4]. This work presents a method for estimating navigation cost
solely from geometric obstacle field complexity measures, namely the statistical
properties of an obstacle’s shape and the density of obstacles within an environment,
eliminating the requirement to run a path planner in a simulation environment.
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Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022.

1. INTRODUCTION
In the field of ground robotics, it is advantageous

the know the cost of navigating through a given
environment prior to committing to a mission.
Researchers have long been interested in the

relationship between obstacle field terrain and
navigation performance, leading to the development
of models such as the NATO Reference Mobility
Model (NRMM) for estimating mobility over known
terrain [5]. Previously, determining this cost and
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its relationship to obstacle field complexity required
running numerous path planning simulations [4]
or having experimental data [6]. This work
presents a method to predict the general relationship
between navigation cost and observable obstacle
field parameters so that cost can be estimated for a
given obstacle field without planning the path.

The key contributions of this paper are that
one can estimate the traversal cost for a specific
obstacle field and mission, without requiring the
computational time and resources necessary to run
path planning simulations. Additionally, because
this high-level estimate is solely based on obstacle
geometry, it can be performed prior to a path
planning algorithm being designed and without
knowing specific vehicle dynamics parameters.

The remainder of this paper is organized as
follows: Section 2 characterizes the geometric
parameters of obstacle shape and size. Section 3
determines the deflection required to navigate around
an average sized obstacle derived from geometric
parameters of obstacle shape and size. It also
determines an estimate of the number of times the
path has to deflect around an obstacle during a given
mission, based on occupancy and density parameters
of the obstacle field. In Section 4, this cost
estimate was then evaluated on numerous simulated
obstacle fields to generate data of estimated cost
versus obstacle field complexity. The results
and conclusions show the agreement between the
estimated cost versus measured cost from path
planning.

2. MAP AND PATH CHARACTERIZATION

In the remainder of this work, the term map refers
to binary maps detailing only obstacles and free
space. Obstacles in the field can be represented by
impassable convex polytopes. These polytopes may
be nearly fully tiled, forcing the planning algorithm
to route around the perimeters of the obstacles.
Or, the obstacles can be spaced apart by larger
gaps, giving the planning algorithm more freedom to
operate within as shown in figure 1.

Figure 1: An example of an obstacle field that is fully
tiled compared to a field generated from the same
obstacles, shrunk down to produce a non-zero gap
size.

Polytopes are chosen as an obstacle
representation because they are a grid-free,
memory-efficient representation, requiring that only
their vertices are stored. Additionally, when the
polytopes are convex, path planners cannot get
“stuck” by routing into obstacle local minima while
trying to minimize distance to the goal, as shown in
figure 2 [4]. Concave obstacles can be included in
this mapping convention by using a convex polytope
to enclose both the concave obstacle and the free
space forming the local minimum.
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Figure 2: An example of a path, shown in orange,
that could be made by a planner routing from (0, 0.5)
to (1, 0.5) while trying to minimize distance to
the goal. Note that the path routes into the local
minimum of a concave obstacle.

Individual obstacles can be described by their
maximum radius, R, where radii are defined as the
distance from the centroid to the vertices, as shown
in figure 3 [4].

Figure 3: A polytope showing the various radii as
orange vectors, with the maximum radius highlighted
in blue.

The standard deviation of obstacle radius, σR,
the obstacle density, ρ, and the occupancy ratio,
rA,occ, can be used to characterize the obstacle field
holistically. Note that ρ is the number of obstacles
per unit area, independent of the size of these
obstacles, while the occupancy ratio is the ratio of
occupied area to unoccupied area, independent of the
number of obstacles comprising the occupied area.

To describe the complexity of an obstacle field,
this work uses departure ratio, rD, which is the
product of average maximum radius of all polytopes
in the field and the square root of area obstacle
density as shown in equation (1) [4].

rD = R̄
√
ρ (1)

An example of how departure ratio scales with other
obstacle field parameters is shown in figure 4; this
figure shows how two fields with 20 obstacles per
unit area each can have very different departure ratios
based on obstacle size. However, the figure also
shows that a field with over double the number of
obstacles can have a similar departure ratio, if it also
has a smaller average obstacle size.

To describe the cost of a path, we can use the ratio
of the total path length required to navigate around
obstacles, LP , to the Euclidean distance from the
start to the goal, LE , defined as the length cost ratio,
rLC in equation (2) [4].

rLC =
LP

LE

(2)

Previously an empirical relationship between
length cost ratio and departure ratio was discovered
[4]. This was obtained by running path planning
simulations for each data point over obstacle field
maps and measuring the length cost of the navigated
paths. This relationship is shown in figure 5.
This work aims to discover a relationship between
obstacle field parameters and length cost without
requiring repeated runs of path planning algorithms
in simulation.
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Figure 4: An example of departure ratio as it relates to the geometric parameters of obstacle density and average
maximum radius. The field on the left has the same area obstacle density as the field in the center but because its
average maximum radius is approximately half of that of the center field, the departure ratio is also approximately
halved. Contrast this with the field on the right, which has a similar departure ratio to the field in the center,
despite having over double the area obstacle density.

Figure 5: The previously discovered empirical
relationship between obstacle field complexity and
navigation length cost. A gamma distribution fit
mean is shown with shape, k, and scale, θ, as
functions of mapped departure ratio: k = 0.4124rD+
41.91r2D and θ = 0.0048rD − 0.0016r2D. Details of
the curve fit process are beyond the scope of this
paper but can be found in a prior publication [4].

Note that the mean is not shown above a mapped
departure ratio of 0.65 because the range in length
cost ratio increases dramatically as obstacle fields
become harder to navigate at higher departure ratios
[4].

3. COST ESTIMATION ALGORITHM

This paper analyzes the entire navigation task
by decomposing it into the discrete sub-tasks of
routing around each blocking obstacle, as shown
in figure 6. Therefore, this series of encounters
that would occur within a path plan can be
estimated as repeated encounters with a single
average-sized obstacle. Thus, estimating the length
cost consists of two separate estimation methods: one
to estimate the divergence necessary to route around
the average-sized obstacle, and one to estimate the
obstacle encounter rate in a path of a given length.
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Figure 6: A path, shown in orange, from (0, 0.5)
to (1, 0.5) encountering three obstacles that force a
divergence from a straight line.

3.1. Average Obstacle Geometry Estimate
The first step is to determine the average polytope

geometry for the desired path direction. Each vertex
facing away from the travel direction on a potentially
blocking obstacle can be treated as a position where
the planner may have to make a choice of whether to
deflect left or right around the obstacle. To determine
the relevant vertices, any vertex whose interior vertex
normal does not point in the direction of travel is
discarded, as shown in figure 7.

Figure 7: An illustration of which vertices are
discarded based on travel direction. While it may
seem counter-intuitive to discard the lower-most

vertex on the blue polytope, as it appears to obstruct
travel in the indicated direction, recall from Section
2 that the obstacle map starts as a fully-tiled polytope
field so decision points at vertices on the “back”
of the blue polytope are analyzed when considering
decision points on the “front” of the adjacent, yellow
polytope.

Travel direction is accounted for rather than
considering all vertices in the obstacle field as
potential decision points because an obstacle field
could conceivably have different average geometries
for different travel directions. A physical example
to illustrate this would be a desert of barchan sand
dunes, which form a sawtooth wave pattern based on
wind direction, resulting in a field that has very steep
(and therefore potentially impassable) obstacles in
one travel direction, but shallower obstacles (that
could be considered non-blocking depending on
vehicle capability) in the opposite direction.

Additionally, vertices whose vertex normal is not
within half the vertex size, θvertex, of the travel
direction are also discarded, as this implies that,
while the vertex is facing away, the polytope is not
obstructing the path, as shown in figure 8.

Figure 8: An illustration of a vertex that opens away
from the travel direction yet would not block the
travel direction and therefore is not a decision point
for the path planner.

Once the relevant decision points are known for
each possible encounter with a polytope obstructing
the path, the navigation task can be approximated
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as the choice between the larger divergence angle,
θbig, and the smaller divergence angle, θsmall, both
of which would divert the path from the straight
line Euclidean distance from start to goal, as shown
in figure 9. Choosing to route around the smaller
deflection angle can sometimes result in a longer path
than choosing the larger deflection angle if Ssmall

is sufficiently large and Sbig is sufficiently small,
in which case this assumption breaks down. This
limitation is discussed further in Section 4.

Figure 9: A schematic of a potentially encountered
polytope showing the larger and smaller divergence
angles, θbig and θsmall, respectively, the associated
side lengths, Sbig and Ssmall, and the distances that
either choice would progress the vehicle towards the
goal, Lbig and Lsmall.

If path planning is modeled as an assumption
that the vehicle always chooses to route around the
obstacle on the side with the smaller divergence
angle, the vehicle has to travel a distance of the
side length associated with the smaller divergence,
Ssmall, to traverse towards the goal by a distance
of the cosine of the divergence angle scaled by the
associated side length. Thus knowing the divergence
angles and their associated side lengths gives an
approximate length cost ratio for this individual
obstacle encounter, rLC,i, as shown in equations
(3-5).

LP

LE

=
Ssmall

Lsmall

(3)

Lsmall = cos(θsmall) · Ssmall (4)

⇒ 1

cos(θsmall)
= rLC,i (5)

For each relevant vertex, the angle from the
interior vertex normal to the travel direction, θV N,TD,
can be used with the interior vertex angle, θvertex to
calculate the chosen, smaller divergence angle and
unchosen, larger divergence angle, θbig and θsmall per
equation (6). These quantities are visually described
in figure 10.

θbig, θsmall =
θvertex

2
± θV N,TD (6)

Figure 10: The angle from the interior vertex normal
to the travel direction, θV N,TD, which can be used
with the interior vertex angle, θvertex to calculate
the big and small divergence angle choices, θbig and
θsmall per equation (6)

Analyzing each polytope in this way yields a set
of the chosen divergence angle and associated side
length for every relevant decision that a planner could
have to make in this field, for this travel direction. A
histogram of the set of small divergence angles and
large divergence angles is shown in figure 11. From
this, the deflection around a statistically average
obstacle is known, considering the length cost of
routing around an individual obstacle as shown in
equations (3-5).
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Figure 11: Histogram of the sets of the larger and
smaller divergence angles.

3.2. Encountered Obstacle Count Estimate

Now that the average obstacle geometry is
known, the next step is to determine the obstacle
encounter rate, Nint. As mentioned before when
defining departure ratio, the obstacle encounter rate
depends on both obstacle density, ρ, and obstacle
size, R, because the obstacle encounter rate increases
with both increasing obstacle size and increasing
obstacle density. This work describes three
approaches for estimating the obstacle encounter
rate. The simplest approach is to use the square root
of area obstacle density, ρ, as an approximation of
linear obstacle density, λ, over the course of a path
of length L, but this only works well for uniform,
nearly-fully tiled obstacle fields. As obstacles in
the field shrink, despite the area obstacle density not
changing, a straight line is less likely to encounter
obstacles because the occupied space has decreased,
as illustrated by figure 12.

Figure 12: Two obstacle fields with the same
linear obstacle density,

√
10, have different obstacle

encounter rates depending on obstacle size.

This leads us to a method that can account for
obstacle size, so an approximation can be derived
in terms of linear unoccupancy ratio, rL,unocc, which
is defined in terms of unoccupied area, Aunocc, and
total area, Atot, in equation (7), distance from start to
goal, L, and average gap size Ḡ, which is described
in figure 13. This estimate is derived in equations
(8-9) [4].

Figure 13: An obstacle field showing the gap size of
an individual gap, Gi, labeled. The obstacles as they
would appear if fully tiled (i.e. when gap size is zero)
appear in red.
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Figure 14: Two obstacle fields with the same obstacle
density but different obstacle radii result in different
encountered obstacle rates, as measured by ray
casting, showing that ray casting does account for
obstacle size. The field on the left has an average
rate of 3.67obstacles

km
over the three rays shown, while

the figure on the right has an average rate of 2osbtacles
km

.

rL,unocc =

√
Aunocc

Atot

(7)

Ḡ =
rL,unocc · L

Nint

(8)

⇒ Nint =
rL,unocc · L

Ḡ
(9)

A third method, is to employ ray casting to
estimate linear obstacle density by measuring how
many polytopes are intersected by rays cast in the
direction of travel at random locations, normalizing
each count by ray length, and averaging this over the
entire field. As obstacles shrink, this value decreases,
as shown in figure 14.

Plotting all three of these encounter rate estimates
concurrently, as shown in figure 15, shows that the
estimate from occupancy ratio grows exponentially
for high departure ratios, which is expected as gap
size approaches zero. The estimate based on linear
obstacle density is constant, as expected for obstacle
fields of the same obstacle density. The estimate
from ray casting is near zero for departure ratios
of zero, as expected because obstacles are nearly
completely shrunk at this obstacle density, and then
approaches a value just above the maximum of
the estimate based on linear obstacle density. The

estimate based on ray casting is expected to be the
most accurate, however it requires the most map
knowledge and computational resources. For this
reason, the estimate from linear point density can be
useful if actual polytope locations are not available
but their density is. The estimate based on occupancy
ratio can be useful for estimating the upper-bound
of encounter rate that can occur in high departure
ratio maps. Section 4 utilizes this feature to create
an upper-bound length cost ratio estimate.

Figure 15: All three methods for estimating
obstacle encounter rate, calculated for maps of varied
departure ratios.

3.3. Length Cost Ratio Estimate
Now that the average obstacle geometry and

the estimated number of encounters, Nint, are both
known, the estimate can be developed for the
length cost required to route around Nint-obstacles
of average-size. The estimated obstacle encounter
rate, Nint, informs the predicted spacing of obstacles
along the path, assuming obstacles are evenly spaced
along the distance from the start to the goal, LE .
The estimate for deflection per obstacle, Rsmall,
is derived from the chosen side length for each
analyzed polytope vertex, Ssmall, and the smaller,
chosen divergence angle associated with that side
length, θsmall, as shown in equation (10).
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Rsmall = Ssmall · sin(θsmall) (10)

The average of the estimated deflection per obstacle
is then calculated for the entire obstacle field,
called R̄small, and used with the estimated obstacle
encounter rate to produce an estimate for total
path length, and therefore length cost, as shown in
equation (11).

rLC =
LP

LE

≈
Nint · (R̄2

small + ( LE

Nint
)2)

1
2

LE

(11)

This is visually described in figure 16.

Figure 16: The estimated obstacle encounter rate,
Nint, informs the predicted spacing of obstacles
along the path while the estimate for deflection per
obstacle, Rsmall , informs the predicted deflection
perpendicular to the path at each encountered
obstacle.

4. COMPARISON TO PATH PLANNING
SIMULATION DATA
To test the navigation cost estimation method,

simulated obstacle fields were created by forming a
Voronoi diagram about points from the Halton set,
as shown in figure 17 [4]. The Voronoi diagram
consists of line segments placed such that the two
closest points from the Halton set are equidistant [7].
The Halton set is a pseudo-random point set that
ensures more even spacing than a truly random data
set [8]. The boundaries to form convex polytopes
are then shrunk inwards, towards the Halton points
from the Voronoi boundaries, until the polytopes
have the desired radii [4]. Maps were generated
with 100 obstacles in a 1-kilometer-by-1-kilometer
square area, obstacle radii were set between 1 and
81 meters, and standard deviation of obstacle radii
was set between 0 and 0.32 meters. The cost
estimation algorithm was evaluated on each of these
maps and compared to the cost from measuring the
performance of a path planning algorithm, bounded
A* in this case [4], over maps with the same
parameters.

Figure 17: An example of a Voronoi diagram, shown
in red, formed around Halton set points, shown in
black.
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In comparing the estimated cost data to the
measured cost data, the estimate proves to be an
accurate proxy for path planning. Plotting predicted
costs over simulated cost data in figure 18 shows
that the cost with the estimated obstacle count from
occupancy ratio follows the higher standard deviation
trends from path planning, forming an upper-bound
on the estimate, while the cost estimated with the
obstacle count from ray casts follows the trends of
the gamma distribution fit mean of the path planning
data. This data is also shown against a gamma
distribution fit to the empirical data in figure 19.

Figure 18: The predicted length cost curves as
calculated with two different encountered obstacle
rate methods plotted against a scatter of length
cost data empirically observed from path planning
simulations. The same predicted length cost ratio
curves shown against a gamma distribution fit mean
are shown in figure 19.

Figure 19: The same predicted length cost ratio
curves as shown in figure 18, shown against
the gamma distribution fit data range and gamma
distribution fit mean. Note that the unusual shape
of the gamma distribution fit range after a mapped
departure ratio of 0.65 occurs because the range in
length cost ratio increases dramatically as obstacle
fields become harder to navigate at higher departure
ratios and the fit begins to fail [4].

The cost estimate also proves to be more time
efficient than path planning simulation. For a
4000-obstacle field, time profiling shows 29.4s wall
time for the estimate entire call stack, with 0.7s
self-time spent in the prediction algorithm code. Path
planning with bounded A* through an obstacle field
of the same obstacle density, average radius, and
radius standard deviation takes 203.8s wall time,
with 22.9s self-time spent in bounded A*. This
means the prediction code is 7-times faster by
wall time, and the algorithm is 33-times faster
than bounded A* by self-time. Additionally, there
are approximately 100-times as many points in the
empirical scatter as were used in each theoretical
curve. Accounting for the additional simulations
required for the path planning approach gives an
improvement of 700-times by wall time and
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3200-times by self-time. The total wall-time required
to generate path planning data for a single departure
ratio is 101, 885s (1 day, 4 hr, 18min, 5 s) while the
total wall-time required to generate navigation cost
estimate data for a single departure ratio is 147 s
(2min, 27 s). This data is summarized in Table 1.

Table 1: Table comparing the time efficiency
of running path planning simulations versus the
geometric length cost prediction algorithm. Time
profiling was performed using an 8 core, 16 thread,
3.8 GHz CPU with 48 GB of RAM.

Bounded A* Geometric
Cost
Estimation

Total wall time
per trial [s]

203.8 29.4

Self-time in
algorithm per
trial [s]

22.9 0.7

Number of
trials per
departure ratio

500 5

Total time per
departure ratio
[s]

101,885 147

As mentioned in Section 3.1, one caveat with
the cost estimation algorithm is that choosing the
smaller angle does not necessarily lead to the shortest
path. This is because the divergence angle selection
algorithm cannot look ahead like a path planning
algorithm to see when a larger divergence from the
Euclidean distance would yield a shorter path, rather,
it always selects the smallest divergence from the
Euclidean distance, even when this yields a poor
scenario later. An example of this edge case is shown
in figure 20. For this edge case to occur, Ssmall must
be sufficiently large and Sbig must be sufficiently
small. For the scope of this work, because the
Halton set was used to generate obstacle locations,
ensuring more even spacing than random points [8],

it can be assumed that obstacle aspect ratios are
relatively square and therefore Ssmall ≈ Sbig in many
cases. Future work could modify this algorithm to
take obstacle side length into account and experiment
with maps generated from less uniformly spaced
point sets.

Figure 20: An example of the edge case where
selecting the smaller divergence angle does not lead
to a shorter path. The upper path around the center
polytope, shown in red, deflects by a smaller angle
but ultimately leads to a longer path while the larger
deflection, shown in orange, would have resulted in a
shorter overall path.

Another potential issue with this cost estimation
algorithm is that it assumes there is no cumulative
error in the direction normal to the travel direction
caused by modeling path planning as always
choosing to route around obstacles on the sides
with small divergence angles. In other words,
there is an assumption that, if the vehicle always
routes around the small side of an obstacle, the
vehicle will not always a turn to one side. The
obstacle fields used in testing this algorithm started
as fully tessellated maps of polytopes. Polytope radii
were then shrunk towards their centroids to produce
gaps between obstacles. Therefore the geometry of
adjacent obstacles is related, i.e. one obstacle having
a small divergence angle on the right side of the
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Figure 21: On the left is an example an obstacle field that is not generated from a tessellation and therefore has
a bias in the relative positioning of small divergence angles with respect to the travel direction. Here, all small
divergence angles are shown to be to the left of the travel direction. On the right is an example of an obstacle field
generated from a tessellation which therefore has small divergence angles appearing to the left and right of the
travel direction.

travel direction implies the geometry of the adjacent
obstacle would have a small divergence angle on the
left side of the travel direction. If an obstacle field
was generated from a method that does not start from
a fully tiled field, as shown in figure 21, it is possible
that the planner model would accumulate a lateral
error while routing towards the goal longitudinally
in the travel direction as obstacles may consistently
have shallow angles on the same side of the travel
direction.

5. CONCLUSIONS AND FUTURE WORK
From looking solely at map geometry, without

any path planning simulation, the length cost
of navigating through the obstacle field can be
estimated, both in the most likely case and in a
theoretical worst case. While data from the path
planning simulations could be used to estimate the
length cost for maps of similar complexity, i.e. maps
at the same departure ratio, the length cost estimation

algorithm can be used to predict length cost for a
specific map, not just a geometrically similar map.
Additionally, because this cost estimation is done
without the planner in the loop, this can be obtained
prior to designing and implementing a path planner,
requiring only a map of obstacle field geometry.

There are several areas for future work to
explore. As shown above in figure 20, there is
an edge case that this algorithm is susceptible to
that leads to selecting sub-optimal paths when large
divergence leads to a shorter overall path length.
Mitigations for this could be developed such that
the model path planner’s decisions more closely
resemble the decisions of an actual path planner by
including a consideration of obstacle side length,
as well as divergence angle, in the cost estimation
algorithm. The other edge case, described in
figure 21 could also be explored by repeating this
analysis on obstacle fields that are not generated from
tessellations. Additionally, real-world environments
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could be analyzed and abstracted into the binary
convex polytope maps used in this work. The path
planner and cost prediction algorithm could then be
run on these maps and compared to the results from
using geometric, simulated maps created from the
Halton set to see if this cost estimate is relevant for
real-world maps.

6. REFERENCES
[1] J. Pentzer, K. Reichard and S. Brennan,

“Energy-based path planning for skid-steer
vehicles operating in areas with mixed surface
types,” 2016 American Control Conference
(ACC), pp. 2110-2115, 2016.
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