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ABSTRACT

Many significant advances have been made in autonomous vehicle technology
over the recent decades. This includes platooning of heavy trucks. As such,
many institutions have created their own version of the basic platooning platform.
This includes the California PATH program [1], Japan’s "Energy ITS” project
[2], and Auburn University’sCACC Platform [3]. One thing these platforms
have in common is a strong dependence on GPS based localization solutions.
Issues arise when the platoon navigates into challenging environments, including
rural areas with foliage which might block receptions, or more populated areas
which might present urban canyon effects. Recent research focus has shifted
to handling these situations through the use of alternative sensors, including
cameras. The perception method proposed in this paper utilizes the You Only
Look Once (YOLO) real-time object detection algorithm in order to bound the
lead vehicle using both RGB and IR cameras. Range and bearing are determined

using various methods. The methods are then tested on real world data.

Citation: T. Flegel, H. Chen, D. Bevly, "RPV Determination for Heavy Truck Platooning Applications
Using IR and RGB Monocular Camera,” In Proceedings of the Ground Vehicle Systems Engineering and
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1. INTRODUCTION

Platooning can be defined as a convoy of 2
or more vehicles, in which the first is manually
driven by an operator. There are many advantages
to such a setup. This includes a reduction in the
number of drivers required to operate the platoon
while also increasing the fuel efficiency of all
vehicles in the platoon, including the lead vehicle [4].
Platooning platforms often have a strong dependence

on GPS based solutions such as Dynamic Real
Time Kinematic (DRTK) to provide localization
with centimeter level accuracy [5]. Due to this
dependence, issues arise when platoons enter areas
that do not have clear GPS signals. Platoons
also face issues with multipath errors, which occur
when GPS signals are reflected off of surfaces and
cause invalid GPS solutions. Real Time Kinematic
(RTK) based solutions are especially vulnerable
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to multipath errors [6]. Additionally, RTK-based
solutions fail when even one truck in the platoon
loses GPS reception. These limitations with GPS
have shifted research focus to solutions which do
not rely on a GPS solution for platoons to function
properly. Sensors including Lidar, Radar as well as
monocular and stereoscopic cameras can be used as
alternatives to GPS. Lidar is effective at generating
point clouds which can be used for identifying
and determining range to a lead vehicle; however,
Lidar is more expensive than the other options.
Radar is commonly used for Adaptive Cruise Control
in both commercial and privately owned vehicles.
However, the methods employed simply detect range
to the vehicle ahead, and do not contextualize the
points. This would be required for sophisticated path
following, such as for a lane change. Traditionally,
for vision problems requiring range, stereo cameras
are the sensor of choice. However, stereo cameras
have some drawbacks. In general, they are more
expensive than monocular cameras. Additionally,
stereo cameras require the use of an algorithm, which
solves the correspondence problem, to generate
depth maps. When tracking objects that are far away,
relative to the distance between the two cameras, the
method can fail [7]. The algorithm can also fail when
dealing with objects and environments that don’t
have enough detectable features. Monocular cameras
are inexpensive, and readily available. RGB cameras
are the most popular Monocular camera, and capture
visible light. IR monocular cameras record infrared
light instead of visible light. This makes it possible
for them to function at night. They are also more
resilient to dust and weather effects than their RGB
counterparts.The purpose of this paper is to evaluate
methods for estimating the Relative Position Vector
(RPV) to a leader vehicle in platoon through the use
of a monocular camera (IR and RGB) on real world
data.

2. BACKGROUND
2.1. Platooning Overview

The basic control structure followed by most
platooning platforms can be seen in figure 1. The
lateral controller manipulates the steering angle of
the follower vehicle. The longitudinal controller
controls the acceleration of the following vehicle
to track a desired following distance from the lead
vehicle. Auburn University’s longitudinal controller
accepts range and range rate as inputs. These
measurements are estimated by a range estimator
which uses a RPV provided by DRTK, and range
and range rate from Radar. The lateral controller
utilizes a “bread-crumb” following approach which
considers range and bearing angle in time to place
GPS waypoints.

Longitudinal
Controller

Lateral
Controller

Figure 1: Controllers Used in Traditional
Platooning Platform - Lateral Controller: controls
steering angle and accepts an estimated path taken
by lead vehicle as input. Longitudinal Controller:
controls acceleration and accepts input as range and
range rate, provided by GPS, Radar, Lidar, and
stereoscopic and monocular cameras

2.2. Object Detection and Tracking

In computer vision, object detection and tracking
is considered to be a class of problem focused on
recognizing and annotating instances of objects over
consecutive image frames. There are two primary
options for convolutional neural networks (CNN)

RPV Determination for Heavy Truck Platooning Applications Using IR and RGB Monocular Camera, Flegel, et al.

Page 2 of 13



Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

which perform object detection and tracking: You
Only Look Once (YOLO) [8] and the Region-Based
CNN (RCNN) [9].  Using YOLO has many
advantages, including how fast the algorithm can
run. Additionally, because YOLO analyzes the input
image in its entirety, the algorithm can leverage
contextual information in its class prediction [8].
These advantages have made YOLO one of the most
popular options for object and tracking applications.
The working principles of the YOLO algorithm
can be seen in figure 2. Each bounding box is
accompanied by 5 states: width of bounding box,
height of bounding box, x-coordinate in the image
frame, y-coordinate in the image frame, and class
label. Some updates have been provided to YOLO in
2018 with the release of YOLOvV3 [10], which is used
in this paper. Tiny Yolo is also utilized, which has a
smaller network architecture allowing the algorithm
to run faster. The tradeoff between accuracy and
algorithm speed is considered later in this paper.

e T |
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ar I TR
i Bounding boxes + confidence

Class probability map

Figure 2: YOLO Algorithm [8] - Division of image
into SxS grid, Hypothesis bounding boxes generated
while simultaneous grid probability determined for
each cell, Using the hypothesis bounding boxes and
probabilities output final detections are generated.

3. RELATED WORK
3.1. Scale Platooning Platforms

Due to the costs and logistics associated with
having and maintaining a full scale platooning
platform, much of the research on platooning
has been done with scale platooning platforms.
This extends to platooning with monocular camera.
Rezgui et al. [11] developed a platform that used
Tiny YOLO to bound the lead vehicle, and determine
range from ultrasonic sensors. The robot’s wheel
speed commands were determined based on the lead
vehicle’s x-coordinate in the image frame [11]. A
similar scale platooning platform was developed in
[12], that instead used a DNN to bound the lead
vehicle. The size of the bounding box was used
to control the speed of the follower vehicle. The
steering angle was determined in a similar fashion
to [11]. Another example is [13] which used a
classical HSV (Hue Saturation Value) filter to bound
the lead vehicle. The range was determined using a
derived function from the area of this bounding box.
The inter—vehicular angle was determined using the
lateral offset and range. Theinert et al.[14] used
a similar method, except mounted an illuminated
sphere to the rear of the lead vehicle which was
detected using classical methods. Additionally, the
pinhole camera model was used to get range .
Mitchell et al. [15] detected a mock license plate
using a Pixy Camera to get range. Another clever
use for the YOLO framework was in [16], which not
only detected the lead vehicle, but used an LED light
matrix to communicate specific vehicle states to the
follower.

3.2. Full-Scale Platooning Platforms

While most of the work on monocular based
platooning has been on scale platforms, it has been
extended to full-scale platforms. Kim et al. [17]
used YOLO to detect the lead vehicle, as well as
other vehicles on the road way. In the methodology,
RADAR was used to get range, and this range was
used to generate a platooning specific lane following
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algorithm. [18] used YOLOV3 in tandem with a
dedicated keypoint localization network to estimate
lead vehicle states.

Some work has been done on Infrared
Platooning. Woeber et al.[19] evaluated the accuracy
of the AdaBoost detection algorithm on thermal
imagery of heavy trucks, but did not determine range
or bearing to the vehicle.

Another popular approach to the monocular
platooning problem involves using a predefined 3D
model or template of the lead vehicle, defining
features on the model, and then finding these
features in real time to determine pose using classical
computer vision [20][21][22][23].

3.3. Other YOLO Ranging Applications

Outside platooning applications, YOLO has been
used to get monocular range. A collision warning
system which used YOLO outputs as the input to
a secondary neural network to determined range to
pedestrians and street vehicles for locomotives. A
secondary neural network was trained to determine
the range to the detected entities [24]. YOLO has
also been utilized to detect street signs [25]. The
range to the signs were determined using the size of
the bounding box.

3.4. Monocular Ranging

Monocular cameras have been utilized for
Adaptive Cruise Control , getting range and range
rate [26]. As well as for a forward collision warning
system [27]. The method doesn’t utilize the pinhole
camera model, instead estimating a virtual horizon
line. This work was extended in [28], which
leveraged lane detection to estimage parameters.

3.5. Contributions

This work serves to evaluate monocular
platooning on a full-sized platooning platform,
through various road conditions. To get range,
the classical pinhole model is evaluated as well as

the virtual horizon model from [27]. Bearing is
also determined through methods previously only
evaluated on scale platooning models to the best of
our knowledge. Additionally, the YOLO network is
tested for robustness.

4. METHODOLOGY
4.1. YOLO Implementations

Four implementations of YOLOvV3 were trained
using the Darknet Framework [29]. The networks
were trained on road training data collected on
various road conditions. These implementations
include YOLOV3 and Tiny YOLOvV3. Two versions
of each exist, one for RGB data, and one for IR
data. 400 RGB images, and 400 IR images were
used for training. These images came from the
first two laps of the data collection run. The
default YOLO parameters were mostly retained,
with the exception of those associated with the
number of classes[30].The trained weights were
then incorporated into Robotic Operating System
(ROS) nodes to handle time syncing with truth
data. Additionally, the aspect ratio of the bounding
box was considered to reject objects that exceed a
threshold as seen below in Equation 1.

W,
0.8 < -2 1.2 1
<H < (1)

Figure 3: Example of Bounding Box Provided by
YOLO
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In order to evaluate the robustness of the YOLO
implementations, a dataset of approximately 15,000
images of vehicles and roadways was procured. Only
the RGB implementations were able to be tested, due
to the lack of a dataset of IR images of vehicles.
None of the images in the dataset contained the
truck which the YOLO implementations were trained
on. The goal of the testing was to determine
the likelihood of trained networks detecting false
positives on images of vehicles that are not the
trained vehicle. It should be noted that the dataset
consists of images of vehicles in various poses, and
might not represent a true driving scenario, which
would consist of mainly rear views of vehicles. The
results of this analysis can be found in the results
section of this paper.

4.2. Pinhole Model

A modified pinhole model was considered as one
of the methods for range determination Equation
2. Range is defined as r, with F, being the focal
length of the camera. y is the actual height of the
truck in meters, and y’ is the height of the truck in
the image plane. [ has the units of pixels/meters
and is a pixel conversion parameter that handles
the conversion of pixels to meters. Similarly c,
is a parameter that handles the translation between
the image plane, and the real world. These two
parameters must be estimated in order to provide
an accurate measurement of range. An erroneous
estimate of / or ¢, disproportionately effects the
measurement when the two platooning vehicles at
larger ranges, and has less of an effect on closer
ranges, this is because of the nonlinear nature of the
pinhole camera model.

Image
Plane

Pinhole
Plane

Optical Axis

Figure 4:
Represented

Pinhole Camera Model Graphically

r= Fcl;j, +¢ )

4.3. Virtual Horizon Model

Park et al.[27] proposed a method for
determining monocular range to a vehicle. The
proposed method involved computing a virtual
horizon, and computing the difference between
the bottom of a vehicle and the virtual horizon.
According to the source, the method is capable
of providing robust range estimation, even when
the road inclination varies continuously [27]. The
method can be seen represented in the figure below.

image plane

et |

Figure 5: Virtual Horizon Model from [27]
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Mathematically, this is represented as:

F.H.
r= (3)
Yo — Yn
Where F. is the focal length of the camera, H. is
the height of the camera, ¥, is the y-coordinate of
the bottom of the bounding box, and vy, is the virtual
horizon line’s y-coordinate. y;, is estimated by:

Yn =yp — He 4

Here, w, is the width of the vehicle in the image
plane, and W, is the actual width of the vehicle in
units of length. It should be noted that this work
has been improved upon to estimate parameters such
as the camera height through the use of lane line
detection [28]. This method is not explored here
because the width of the lead vehicle is known in this
situation, and also it is desired to measure range on
roads with and without lane lines. For both ranging
methods, range measurements were filtered using a
moving average filter which considered the previous
3 measurements.

4.4. Bearing Determination

Using the range to the lead vehicle it is possible
to determine the bearing the lead vehicle. First the
lateral error between the heading of the follower
vehicle, and the lead vehicle is caluclated. This can
be done utilizing the range measurement as well as
the pinhole camera model. L. is the lateral error
expressed in real world units, L is the lateral error
in the image plane which is in pixels. r is the
range calculated either through the pinhole model, or
through the virtual horizon method. k is a parameter
to handle the real world units to pixel transformation
F.. is the focal length of the camera.

Yo_l_o

L.= == 5
o &)

Once the lateral error has been determined, the
angular component of the RPV can be determined
by taking the inverse tangent of the lateral error and
range.

o = arctan(l;e) (6)

5. DATA COLLECTION

Two Peterbilt 579 commercial trucks were
manually driven on road near Auburn University’s
NCAT facility. These trucks contained GPS
receivers (Novatel Propack V3) and radar (Delphi
Electronically Scanning Radar - ESR) among other
sensors. Camera data was collected through the use
of an RGB camera (AXIS P1214-E NET-WORK
CAMERA), collected at 1280x720 @ 30 FPS. The
IR data was collected using a FLIR Boson Infrared
Camera which recorded at 640x480 @ 30 FPS.The
ground truth range is provided by the range estimator
on Auburn’s platform [31], which provides the RPV
between the two vehicles. The route traversed can
be seen in figure 7, along with images depicting
the road conditions for each section. Multiple laps
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were completed as part of the data collection process.
Images from the first two laps were used to train the
YOLO models.

EO L
Sectlon 1: AB Sectlon 2: BC

Figure 7: Route taken during testing [Top], and
example of various route conditions [Bottom].

6. RESULTS
6.1. YOLO Robustness Evaluation

The YOLO and Tiny YOLO implementations,
which were trained on RGB images, were given the
vehicle dataset as input to test the false positive rate
as outlined in the method section. The vehicle dataset
was procured online, which contained over fifteen
thousand images of random vehicles in order to gain
some understanding of the robustness of the mehtod.
The YOLO implementation had a false positive rate
of 0.459% and the Tiny YOLO implementation had
a false positive rate of 1.21%.

Figure 8: One of the False Positives (70 images out
of 15255 for YOLO)

6.2. Range and Bearing Performance

In order to test the algorithms and parameter
tuning, image data from the data collection run
were used for evaluation. This data came from a
modified route which was longer, and was run in the
opposite direction in order to evaluate performance
on data different than the training data. The range
measurements from section 3 of the data collection
run can be seen in figure 9, along with the DRTK
provided measurements which are considered truth.
Additionally, the bearing estimates from the same
route can be seen in figure 10.

Section 3 Ranges

100 DRTK Range
Yolo Range
90T Yolo IR Range
Tiny Yolo Range
80 r = Tiny Yolo IR Range

70
E
= 60
2
@ 50
£
40 +
30
20 ¢
10 | | | | | |
100 150 200 250 300 350 400
Time [s]

Figure 9: Range Results Using Pinhole Model for
Section 3 of on Road Data
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Section 3 Bearing Angles
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Figure 10: Bearing Results Using Pinhole Model for
Section 3 of on Road Data

The two range models applied to Tiny Yolo
output data were also compared on a portion of
section 1 data. This can be seen in figure 11.
Additionally, the errors for each model can be seen
in figure 12 for the same portion of the run.

Range Model Comparison

80 T T
| DRTK RANGE

70 Pinhole Model 1
I Virtual Horizon ] .'I'lj MI .
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Figure 11: Range from Pinhole Model and Virtual
Horizon Method for Section 1 of on Road Data

Range Model Errors
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Figure 12: Errors associated with the two range
models. It can be seen that the largest errors
correspond with large ranges seen in Figure 11

To evaluate the performance of the methods,
a 2 minute portion of each run was chosen to
analyze. The portions were chosen for regions
where the DRTK functioned properly, and also where
the lead truck remained within 75 meters of the
following truck while also remaining in the image
frame. An assumption is being made that this
would be reasonable to expect for an autonomous
platoon which is being controlled around a desired
range of less than 75 meters. This dataset was
collected using two manually driven trucks, which
occasionally exceeded this limit. Additionally, in
the event of loss of line of sight, the platoon could
continue operation until line of sight to the lead
vehicle could be re-established by following lane
lines or road edge. The results of this analysis can
be seen below in Table 1.
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Table I: Error for Each Method on Each Section

Section 1 (Dirt Road)
. Virtual Horizon .
Mean;std Pinhole Range (m) Range (m) Bearing Angle (deg)
Yolo -2.88 5.08 -2.18 4.83 0.46 1.31
Tiny Yolo -3.20 3.09 -3.28 3.87 0.48 aLehl
Yolo IR 0.53 3.10 0.03 3.14 0.16 3.51
Tiny Yolo IR -1.66 3.87 -0.41 4.07 0.04 2.26
Section 2 (Rural Paved)
Pinhole Range (m) virtual Horeon Bearing Angle (deg)
Mean,Std Range (m)
Yolo -3.00 4.09 -0.87 4.12 0.18 0.38
Tiny Yolo -3.76 3507 =1L/ 2.80 0.20 0.49
Yolo IR 1.82 4.22 -0.10 3.69 -0.17 0.76
Tiny Yolo IR =1:1'5 4.22 -0.44 3.50 -0.25 0.96
Section 3 (Highway 280)
. Virtual Horizon .
Riean,Stl Pinhole Range (m) Rafie (] Bearing Angle (deg)
Yolo -3.23 3.87 2122, 3.98 0.34 0.65
Tiny Yolo -3.88 3.70 1293 4.00 0.36 0.77
Yolo IR 1.52 4.36 0.37 3.88 -0.11 1.78
Tiny Yolo IR 0.33 4.29 0.44 3.69 -0.26 1.01
Section 4 (Rural Paved)
Pinhole Range (m) bt Parnzan Bearing Angle (deg)
Mean,Std Range (m)
Yolo -1.62 2.27 -0.12 2.35 0.52 1222
Tiny Yolo -1.50 3.05 -0.90 3.15 0.27 2.09
Yolo IR 1.94 1.99 1:51 1.71 -0.08 1.78
Tiny Yolo IR <heiil 1.65 2.7 2.36 0.21 1.45

Table 1: Errors for each network on each section.
Each ordered pair represents the mean and standard
deviation respectively

7. DISCUSSION

It can be seen that the methods utilized in this
paper closely track the truth range and bearing from
DRTK. The average mean and standard deviation
for each of the methods can be seen in Table
2. The performance difference, with regards to
accuracy, between YOLO and Tiny YOLO seems
to be marginal when considering all of the runs
were with the same camera. However, Tiny YOLO
provides measurments at a much faster rate. The
range models also seem to perform similarly, with
the exception of the virtual horizon model having
less mean error while having comparable standard

deviation to the pinhole model. The IR camera
improvement over RGB for the dirt road can be
described as marginally better. Depending on the
application, a user would need to decide if this
improvement would be worth the additional cost
associated with the IR camera.

From figurell and figure 12 it can be seen that the
range error appears to correspond to the magnitude
of the range. This is likely because both the pinhole
model and virtual horizon model are nonlinear
equations which can be approximated as linear for
a limited range window. Another cause could be that
the lead truck becomes indistinguishable from other
elements of the image as range increases. This is
especially true for IR data which has less features
than RGB, including color. This can be seen in figure
13, where the lead truck is clearly defined in the
first image, and disappears into the background in the
second.
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Figure 13: Two images from the data collection run.
Note that in the second image, the truck is barely
visible at long ranges.

Table II: Performance Summary

All Sections

Pihole Rarige fm) Virtual Horizon
Mean,Std Range (m)
Yolo -2.68 3.83 -1.35 3.82
Tiny Yolo -3.09 3.25 -1.87 3.46
Yolo IR 1.45 3.42 0.45 311
Tiny Yolo IR 0.21 351 0.44 3.40

: Other Metrics

Meanstd Bearing Angle (deg) — =
Yolo 0.37 0.89 7 0.459
Tiny Yolo 0.33 1.31 30 1Bl
Yolo IR -0.05 1.96 7 -
Tiny Yolo IR -0.06 1.42 18 -

Table 2: Summary of Results. Each ordered
pair represents the mean and standard deviation
respectively. FPS is the rate at which the algorithm
was capable of running, and RP represents the
Robustness Percentage from the robustness testing.

8. CONCLUSION

The work presented here proves the feasibility of
monocular vision based platooning on a real world
system. The tests were performed on a variety
of road conditions, and compares IR and RGB
data. Additionally, differing ranging algorithms were
explored. The work could be further improved by
integrating with other sensors to generate an all
encompassing solution that could perform without
the need for a GPS solution. These sensors could
include Lidar, Radar, or Ultra Wideband Radios
(UWBs). Other computer vision algorithms could
also benefit the solution, i.e. a lane following
solution for a lateral control with an occasional range
update from the methods in this paper. Further
investigation also needs to be done to evaluate
the performance of the algorithms in night-time
conditions.
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