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ABSTRACT
Accurate terrain mapping is of paramount importance for motion planning

and safe navigation in unstructured terrain. LIDAR sensors provide a modality,
in the form of a 3D point cloud, that can be used to estimate the elevation map
of the surrounding environment. But, working with the 3D point cloud data
turns out to be challenging. This is primarily due to the unstructured nature of
the point clouds, relative sparsity of the data points, occlusions due to negative
slopes and obstacles, and the high computational burden of traditional point
cloud algorithms. We tackle these problems with the help of a learning-based,
efficient data processing approach for vehicle-centric terrain reconstruction using
a 3D LIDAR. The 3D LIDAR point cloud is projected on the ground plane, which
is processed by a generative adversarial network (GAN) architecture in the form
of an image to fill in the missing parts of the terrain heightmap. We train the GAN
model on artificially generated datasets and show the method’s effectiveness by
means of the reconstructed terrains.
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1. INTRODUCTION

There has been significant progress in
autonomous navigation due to advancements in
sensing, planning, and control. Mobile robots
that navigate within structured environments such
as urban areas are well established, and the
scenario-specific plans such as lane changing and
path following are well researched [1, 2, 3]. Many
of these successes can be attributed to well-defined
environments; however, this does not apply to
offroad terrain navigation [4]. The offroad navigation
problem has many unorthodox structures, such as the
degree of traversability, irregular obstacles, secluded
obstacles, etc., which makes the problem difficult.

One of the key aspects for successful navigation
in unstructured terrains is the ability to sense and
model the terrain height. [5] has shown that given
solely elevation information from an external sensor,
a grid map based on elevation data is sufficient
to guide an autonomous system to navigate across
unstructured terrain. 3D LIDARs are typically used
to obtain accurate spatial data, called point cloud.
The 3D LIDAR sweeps a LASER beam across the
environment, registering the spatial coordinates of
the environment based off the angle and duration the
light took to reflect back into the LIDAR. Though
the LIDARs provides a full robot centric view of the
environment, working with 3D LIDARs in off-road
navigation has its own set of challenges.

The LIDAR data generated in unstructured
environments is non-uniform in nature. Moreover,
LIDARs have a fixed resolution making the point
cloud sparser as the distance increases. Terrain
construction from sporadic point cloud is an area of
active research [6, 7]. Furthermore, there may be not
only large gaps due to resolution issues, but gaps in
data points due to negative spaces. These gaps cannot
be arbitrarily reconstructed due to the highly diverse
obstacle structures within off-road environments [8].
Such issues make it difficult to use 3D LIDARs for
off-road navigation.

In this work, inspired by the recent advancements

in neural networks, we train a generative adversarial
network (GAN) to generate appropriate elevation
data for the LIDAR map in the unobserved part of
the terrain. We show that the GAN model is able of
efficiently process the point cloud data and construct
reasonably accurate elevation maps.

2. PROPOSED APPROACH
Perception performance turns out to the

bottleneck for many off-road autonomous systems
[9]. Advanced driver-assistance systems (ADAS)
[10] and automated driving (AD) systems [11] have
been the focus of significant research efforts in recent
years. The advances in the ADAS/AD technologies,
especially the ones related to perception, are
accelerated by the advances in the artificial neural
network (ANN) based technologies. However,
these efforts are skewed towards structured and
well-mapped environments. The perception
algorithms exploit the structured nature of the
problem along with the similarities in the operating
environments to achieve good performance. But, this
performance does not carry over to the unknown
off-road settings due to various factors including
lack of appropriate training datasets, lack of testing
scenarios that can be generalized to a large number
of cases, degree of uncertainty in the operating
conditions, etc. In [12], the authors advocated for the
use of synthetic data as one of the means to bridge
the performance gap. This is of-course predicated on
the high fidelity of the synthetic data, to maintain
acceptable performance after sim-to-real transfer.
The approach we used in this article follows the
aforementioned philosophy, as this gives us more
control over the data quality and ensures that the data
is in the required format for further processing.

We synthesized the required data from a
simulation environment using the following process:
i) generate a realistic heightmap with desired
characteristics, ii) create a terrain in the simulation
environment using the heightmap, generate the
LIDAR scan in the simulation environment, process
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the scan into a ground projected image, iii) use
the ground projected image as the input and the
original heightmap as the output for training the
artificial neural network. There are some key
advantages of the proposed ANN based image
processing method for terrain reconstruction. The
LIDAR data processing pipeline (for individual
scans) can be compressed to a single forward pass
of the ANN. Therefore, it is possible to run the
terrain reconstruction in real time. Additionally, by
adjusting the complexity of the neural network it
can be implemented on devices with low memory
and low compute power to run with low latency.
The output of this procedure can be used as a
starting point for other (computationally expensive)
techniques to speed up the terrain reconstruction
process. Or, it can also be used as a backup that
requires only limited resources. Since, the LIDAR
scan is represented in the form of an image, therefore
well established methods from image processing can
be used to improve the performance.

3 DATA GENERATION
The proposed approach uses heightmap images

of unstructured terrain as the ground truth data.
These heightmaps are used to train a neural network
to produce terrain heightmaps when fed with sparse
LIDAR data images. Since we are proposing a
novel method for terrain estimation using heightmaps
and ANN, finding labeled LIDAR data as per our
requisites was a challenge. We required sufficient
data from off-road heightmaps and LIDAR data as
3D point clouds. As a result, there was a need to
generate the data set. We used Perlin noise python
library, CoppeliaSim simulator, and Matlab software
to do the same. A step-by-step layout of the data
generation process is provided next.

3.1 Heightmap Generation
The first step in acquiring the data in the required

format was to generate the 2.5D heightmap images.
To do the same, we utilized the Perlin noise python

library. Perlin noise [13] is a gradient noise used for
procedurally generating realistic terrains. We utilized
it to generate a realistic heightmap representation
of rough terrain as given in Fig. 1. The used
Perlin noise library implements a parameter called
’octaves’. Each octave represents a particular terrain
type, such as mountains, boulders, rocks, etc., and
adds a layer of detail to the surface. Increasing
the number of octaves increases the variation in the
terrain heightmap.

Figure 1: Heightmaps generated using Perlin Noise
library for various octave values.

3.2 LIDAR Data generation

Figure 2: CoppeliaSim simulator is used to construct
3D terrain from the generated heightmap. LIDAR
block is implemented to obtain 3D point cloud data.

We used CoppeliaSim software for generating 3D
LIDAR point cloud data. CoppeliaSim, previously
known as V-REP, is a simulator used in industry,
education, and research. We imported the heightmap
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generated in the previous step to the simulation
environment of CoppeliaSim to construct a 3D
representation (Fig. 2) of the terrain. Then using
a LIDAR block available in the CoppeliaSim, we
generate the required LIDAR point cloud in the
simulation. This point cloud data is used to generate
the LIDAR images.

3.3 Generation of 2D LIDAR images
The 3D point cloud data obtained from the

CoppeliaSim simulator cannot be directly used for
the training of neural network. This is because
of the fact that there is no reference orientation
for point cloud data. Different terrain surfaces
will generate different point cloud data and without
proper representation of the point cloud data, the
data can not be utilized to train the neural network.
Therefore some data pre-processing is required. For
this purpose, we project the LIDAR data on a 2D
plane to get an image of the LIDAR data. This is
done with the help of MATLAB software.

3.4 Data Preprocessing and augmentation
After the generation of LIDAR images, we

perform standard augmentation techniques such as
rotating the image frames, flipping, etc., to increase
the number of images in the dataset. We also
add some noise to the LIDAR images to simulate
the effect of sensor noise. This step helps restrict
over-fitting and improve generalization. A sample
image set of the LIDAR images can be seen in Fig. 3

Figure 3: Ground projected images of a LIDAR scan
with and without noise.

4 GENERATIVE ADVERSARIAL NETWORK
ARCHITECTURE

A generative adversarial network (GAN)
synthesizes images that are expected to look
like real images. GANs consist of two main
elements, a generator and a discriminator. The
generator constructs a synthetic image from a latent
noise vector and/or on some external input. The
discriminator is tasked to distinguish the fake images,
which the generator model generates, from the real
images, which are the ground truth. Training the
GAN is equivalent to solving for a solution of a two
player adversarial game. In this game the generator
tries to fool the discriminator by constructing an
accurate looking synthetic image. The discriminator
is trained to identify the fake images. To assist with
the convergence of the game to some equilibrium
the generator parameters are kept constant while the
discriminator is training and vice versa.

Pix2Pix [14] is a conditional GAN (cGAN)
architecture designed for image-to-image translation,
where the generation target image is conditioned
on the input. The synthetic output image can
be compared with the source image to calculate
the loss and update the weights of the GAN
using gradient descent. Pix2Pix provides a general
solution to various image synthesis tasks such as
image inpainting, image colorization, edge to image
reconstruction, etc. The generator is trained with the
adversarial loss function and an additional term, i.e.,
L1 loss function, which captures the loss between
the generated image and the ground truth. The
discriminator uses the PatchGAN structure, which
allows for processing of the input image at various
scales, i.e., from whole image to patches in the
image as small as a pixel. The discriminator learns
to distinguish between the patches that are part of
a real image from those coming from a synthetic
image. This approach also helps reduce the number
of parameters and can be applied to high-resolution
images. The Pix2Pix GAN uses pairwise image data
(input image and the lable/ground truth image) for
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training. We use the data obtained from the data
generation pipeline described in the previous section
to train the Pix2Pix architecture. The trained model
takes an image that contains partial information of
the terrain obtained through the LIDAR scan and
provides an estimate on the geometry of the terrain
not observed in the scan.

4.1 GAN loss function
We consider the conditional GAN loss function

from [14]. LGAN is the generative adversarial
network cost. The cost function represents a min-max
game between the generator G and the discriminator
D. While training the discriminator, the generator
training parameters are kept fixed and we have

LD
GAN(x) = y log(D(x))

+ (1− y) log(1−D(G(u))). (1)

The input u to the generator is generally a
combination of random noise and some additional
features. We use the ground projected LIDAR image
as our feature. x is the input to the discriminator.
The label associated with x is y = 1 for the real
images and y = 0 for the fake images fed to
the discriminator. When training the generator, the
discriminator training parameters kept fixed, and we
have

LG
GAN = log(D(G(u))) + λ L1, (2)

which accounts for the generator being able to fool
the discriminator. The L1 loss term is also called the
reconstruction loss function.

Around 1000 ground truth and LIDAR images
were included in our training datasets. We used
data augmentation techniques to expand the dataset
for more robustness. The set of hyperparameters
used is shown in Table 1. The learning rate for the
discriminator and generator was kept constant. The
generator in Pix2Pix follows the U-Net architecture.
We designed the U-Net structure according to our
dataset requirement, to handle the input images of
size 121× 121× 1 (i.e., single channel or gray scale

images). The kernel size and number of filters in
the encoder and decoder are shown in Table 2. We
trained a network for 60 epochs per experiment using
the NVIDIA GeForce RTX 2070 SUPER graphics
card. The average time for each training session was
approximately two hours.

Table 1: Hyperparameters for the experiment.
Hyperparameter Value
Epochs 60
Batch size 1
Learning rate of discriminator 2e−4

Learning rate of generator 2e−4

Adam β1 0.5
Lambda (λ) 100

Table 2: Generator U-net architecture
Stage Filters Size Stride Padding

Encoder
(Convolution
2D)

64 3 2 valid
128 4 2 same
256 4 2 valid
512 4 2 same
512 4 2 same
512 4 2 same
512 4 2 same

Decoder
(Transpose
Convolution
2D)

512 4 2 same
512 4 2 same
512 4 1 valid
512 4 2 same
256 4 2 valid
128 4 2 same

5 RESULTS
We conducted several experiments on our dataset

to test the reliability of the approach. We used octave
3 and octave 5 data along with 5% and 10% noise
to make the dataset more realistic. In Figure 4,
the variation in GAN losses against the epochs is
depicted. There are three loss terms represented: loss
of the discriminator, loss of the generator, and the L1

loss. The trend of the losses suggests convergence
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towards a saddle point. Discriminator loss shows
the capability of the discriminator to predict real vs.
fake images. L1 loss is the error in the target and
generated image. Among all presented cases, as
shown in Figure 4, the network generates synthetic
images efficiently for the octave 5 dataset since
the loss is lesser compared to the other cases. A
smaller value of L1 loss indicates a higher degree of
similarity between ground truth and generated image.

Figure 4: GAN losses.

In Figure 5, we used an octave 3 dataset with 10%
noise to reconstruct the terrain. It can be seen that
even with 10% noise, reconstructed terrain looks
similar to that of ground truth terrain. We can observe
from Figure 6, that the predicted image matches very
well with the ground truth image from the octave 3
dataset with 10% noise.

We further applied the proposed method for
estimating the obstacle shapes only using sparse
LIDAR scans. For training we used flat terrain
with cylindrical obstacles. Figure 7 shows the
obstacle estimation of the GAN on a test example
from obstacle only setup. We can observe that
the neural network provides a good estimation of
obstacle positions and shapes, except for the cases
where an obstacle is in the cover shadow of another
obstacle (which is expected).

Figure 5: Original and reconstructed terrains.

Figure 6: GAN prediction on test example.

Figure 7: Obstacle prediction on a flat surface.

Figure 8 shows the performance of the proposed
approach for the case of slight terrain variation
and negative obstacles (representing holes or ditches
in the terrain). Negative obstacle prediction is
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in general more challenging and we can see here
that the generator is struggling with the obstacle
reconstruction. The accuracy in the estimation is
partly affected by both the sparsity of the LIDAR
data, as can be seen from in Figure 8, and partly due
to the fact that the negative obstacle do not allow the
LASER beams to return to the LIDAR, eliminating
very important pieces of information.

Figure 8: Negative obstacle prediction.

6 CONCLUSION AND FUTURE WORK
The problem of terrain heightmap reconstruction

from the LIDAR data is addressed with the help
of a deep convolutional neural network approach.
The approach of the paper is novel and intuitive.
The results obtained using Pix2Pix conditional GAN
architecture are promising and indicate that this
is a good avenue for further exploration. The
reconstructed terrains look similar to the original
terrains, but some unwanted artifacts could be
observed in the prediction. There could be
multiple ways to improve the predictions, including
high-frequency noise filters, additional prediction
masks, etc. The datasets used were synthetic ones

due to the unavailability of the suitably labeled
dataset. This work could be naturally extended by
creating and training on real datasets.

7. REFERENCES
References
[1] C. Fernández, M. Gavilán, D. F. Llorca,

I. Parra, R. Quintero, A. G. Lorente, L. Vlacic,
and M. Sotelo, “Free space and speed
humps detection using lidar and vision for
urban autonomous navigation,” in 2012 IEEE
Intelligent Vehicles Symposium. IEEE, 2012,
pp. 698–703.

[2] A. C. Murtra, E. Trulls, O. Sandoval,
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