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ABSTRACT
Autonomous vehicles rely on path planning to guide them towards their destination.
These paths are susceptible to interruption by impassable hazards detected at the
local scale via on-board sensors, and malicious disruption. We define robustness
as an additional parameter which can be incorporated into multi-objective optimi-
zation functions for path planning. The robustness at any point is the output of
a function of the isochrone map at that point for a set travel time. The function
calculates the sum of the difference in area between the isochrone map and the
isochrone map with an impassable semi-circle hazard inserted in each of the four
cardinal directions. We calculate and compare two different Pareto paths which
use robustness as an input parameter with different weights.
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1. INTRODUCTION

Mission planning in combat scenarios begins
with the path planning phase. The quality of a
planned path is based not only on its speed, but
also on its ability to provide viable alternatives in
the event of unexpected blockages. In April 2022,
the Russian army was forced to abandon numerous
tanks due to a lack of foresight in this respect.
A planned offensive was thwarted as Ukrainian
defenders blocked off the sole path along the main
road, and vehicles diverted off-road into muddy
terrain, which proved to be impassable [1].

Autonomous vehicles, like manned vehicles,
are guided by a long-range path set during initial
planning. The path can be updated dynamically
based on actual travel and newly sensed information.
Path planning is commonly performed using graph
traversal algorithms such A* [2] or D* [3].
Edge costs are determined based on environmental
parameters, including slope, terrain, and land cover,
as well as road network data.

During the mission, on-board sensors provide a
continuous stream of high-resolution data, including
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obstacles that must be avoided and impassable
slopes. Various techniques are under development
with the goal of rapidly navigating a vehicle around
local obstacles, while keeping it focused on the
long-range path to its destination [4, 5, 6].

Existing path planning methods do not provide
or incorporate any information on the susceptibility
of the path to disruption by opposing forces, nor to
the possibility of locally impassable zones. These
obstructions could be due to newly sensed hazards
or unexpectedly uneven terrain that could not be
detected in advance with the lower resolution data
used in the path planning algorithm. Depending
on the severity of the obstruction, this could lead
to a complete disruption of the mission when no
alternative route is available.

In this paper, we define a new parameter,
robustness, which can be incorporated into the
path planning function. In general, robustness is
a measure of the potential time implications of a
reroute, should a hazard occur which prevents the
vehicle from proceeding along its planned path.
We briefly describe the relevant background for
graph theory and isochrone maps, followed by a
presentation of the novel region-based robustness
algorithm. We display our results in the form
of screenshots from a custom application, in
which we implement multi-objective optimization
to incorporate robustness into our path planning
algorithm. We conclude with a discussion of the
results and how they can be applied in mission
critical applications.

2. BACKGROUND
This paper uses properties of graph theory

specifically with the shortest path problem to
generate a new objective function used in
multiobjective optimization. The new objective
function is generated using penalty time, a property
defined in the quickest path problem (similar to the
shortest path problem) when the solution deviates
away from the optimal solution due to obstacles

blocking off the original route. In this paper, we
will refrain from distinguishing between shortest and
quickest path and instead use the word shortest for
the general case, meaning lowest cost. Using the
duality gap between the shortest path problem and
the shortest path tree (routing vs isochrones), penalty
time is measured in changes to the respective area
of the isochrones generated from the shortest path
tree when obstacles block off a traversable area of
arbitrary Euclidean size.

2.1 Graph Theory
In graph theory [7], a graph G is commonly

written as G = (V,E), where V represents the
vertices (commonly referred to as nodes) and E
represents the edges (commonly referred to as links).
A vertex is defined as a position inside of a graph.
An edge is defined as a pair of vertices. In this paper
we use directed graphs, where the edges are ordered
pairs of vertices.

Figure 1: A graph G in black and a path P from
vertex S (start) to vertex D (destination) in yellow.

A path (or a route) in a graph is a sequence of
vertices, P = (v1, v2, ..., vn) ∈ V × V × ... × V
such that (vi, vi+1) is an edge of the graph for all
i < n. A path planning optimization problem is
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a problem where we seek one or more routes and
where we prefer routes with a lower cost as defined
by an objective function. This is commonly known as
the shortest path problem [2]. The objective function
for the shortest path problem is defined as,

∑
1≤i<n

f (vi, vi+1) (1)

This objective function sums the cost of traversing
each edge in the sequence P from v1 to vn where f
gives the cost value measured as the distance between
v1 and vi+1. In general, the objective function for a
path is commonly the summed cost for all edges or
all vertices in a path.

In this paper, we will use the term shortest
path problem as a collective word for all path
planning algorithm where the objective function is
to accumulate the lowest total cost. The cost can,
however, be defined in units other than distance, such
as travel time.

2.2 Isochrone Maps

An isochrone map displays the subset of a graph
that can be reached from a certain start vertex within
some set travel time. The single-source shortest
path tree generates a tree of vertices connected to
a starting vertex given a time cost threshold. It
is comparable to the principle of path planning
algorithms.

Unlike the shortest path problem, the isochrone
algorithm creates isolines along constant values in
a unit of time. Instead of looking at a sequence,
the isoline expresses the vertices that can be reached
from a starting vertex within a time threshold. In a
graph G we denote the isochrone map that originates
at vertex v and is bounded by the threshold t by
Gv where we deliberately let t be implicit to reduce
clutter in the formulas.

Figure 2: An isochrone map originating at the red
vertex and bounded by the pink outline (graph edges
not shown).

In this paper we also make some other
assumptions, namely that:

1. each vertex has a geographical location, so
distances between them are well-defined,

2. distances in 3D space are highly correlated
with the corresponding distances in 2D space,
so one can regard the search as taking place on
a 2D plane except for bridges and tunnels,

3. the amount of ground covered from a start
vertex within a certain cost threshold can be
quantified as an area, for example in km2.

2.3 Shortest Path Problem vs Shortest Path
Tree

There is a mathematical connection between
solving a routing problem (shortest path problem)
and creating an isochrone access map (shortest
path tree). The shortest path problem results in
a path connecting two vertices with the minimal
accumulated cost. The shortest path tree results in a
subgraph that illustrates the possible vertices reached
from the start vertex within a maximum accumulated
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cost. The accumulated cost is calculated using
equation 1.

In the shortest path problem, the accumulated
cost is the objective function to the minimization
problem. In the shortest path tree, this is a
constraint to the maximization problem of generating
a subgraph. From optimization theory, this is
connection is similar to duality problems. The
shortest path tree is the duality problem of the
shortest path problem and can generate an upper
bound under a certain condition. The shortest path
tree needs to be large enough to where both vertices
exist inside the subgraph, the starting vertex, and the
destination vertex. If no such subgraph exists, one
needs to increase the constraint limit on the shortest
path tree. If no solution is found for large enough
search bounds, then no feasible solution will exist for
the shortest path problem.

Figure 3: A compact routing scenario using a mixed
network of roads and traversable terrain together
with a proposed vehicle. Traversable terrain is
painted green while non-traversable is painted red.
Roads are visualized using white lines with thickness
illustrating road type class.

Figure 4: A solution to the quickest path problem
using the scenario described in figure 3. Solution
was found using the D*-algorithm. The purple line
visualizes the route and the travel time is printed in
text along the route. The travel time is 9 minutes and
44 seconds.

The starting condition of a path planning problem
is described in Figure 3. Problem is to go from the
starting position marked with a blue arrow in the top
left corner and reach the destination in the bottom
right corner marked with a blue arrow. To define the
quickest path, a vehicle model is introduced that has
an associated vehicle speed for each type and class
of environment, such as terrain class or road class.
Blue color illustrates water, however, the vehicle in
use is said to not be amphibious. Using said vehicle,
together with the combined network as input (roads
and terrain) the quickest path problem can be solved
visualized in figure 4. This scenario will be used
to illustrate the difference between the shortest path
problem and the shortest path tree.
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Figure 5: Studying the shortest path problem using
the shortest path tree visualized using isochrones.
The conditions of this scenario is presented in figure
3. The isochrone is calculated using the top left
starting position as the reference vertex and the
solution is visualized as a red area. The red area
visualizes all the positions reachable within the
travel time constraint put on the isochrone. In this
case the travel time constraint is 3 minutes.

Figure 6: A continuation of the problem described
in figure 5. In this scenario the travel time constraint
is increased from 3 minutes to 11 minutes. The red
area visualizing the isochrone area has increased in
size consequently.

Figure 5 and figure 6 illustrates the duality gap
between the shortest path tree and the shortest path
problem. In the shortest path problem, the solution
is a path illustrated in figure 4. Figure 5 visualizes
the shortest path tree using isochrones painted in
red. The isochrones are measured using the starting
position as the reference vertex and a travel time
constraint. If the starting position and the destination
both exist within the red area, a duality gap exists
and can be used to put an upper bound on the shortest
path problem. This is depicted in figure 6, which tells
us that there exists a path to our destination and it will
take us at least 11 minutes to reach. Although, if the
destination point does not exist inside the red area,
nothing can be said about a feasible solution to the
shortest path problem. This is shown in figure 5.
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2.3.1 Penalty Time vs Shrinking Tree

In the shortest path problem, penalty time is
defined as the additional time needed when rerouting
away from the shortest path solution when finding
alternative routes. Let’s say an obstacle has appeared
blocking the shortest path solution, deeming it no
longer feasible. Instead, we need to reroute away
from where the obstacle appeared and still try to
reach the destination. The difference in travel time
compared to the case without an obstacle is known
as the penalty time.

tPenalty = tAlternative − tOptimal ≥ 0. (2)

Figure 7: Based on the scenario depicted in figure 3
the shortest path solution from figure 4 will change
if an obstacle appears along the original planned
route. An obstacle area painted in yellow has been
placed in the first traffic situation just below the
starting position. The new solution, painted in purple
dashed lines, circumvents this obstacle by going
along the shore. The new travel time is 23 minutes
and 46 seconds. Using equation 2 the penalty time is
14 minutes and 2 seconds.

What is the equivalent behavior in the shortest
path tree? If an obstacle appears inside the isochrone
area generated partly from the shortest path tree
around a vertex v, the isochrone area will shrink
in size consequently. This illustrates that one can

predetermine the potential penalty time around a
vertex v by studying how the shortest path tree
shrinks in size when obstacles appear around the
vertex.

Figure 8: Based on the solution presented in 6.
When applying the same obstacle from figure 7,
the isochrone area painted in red has decreased in
size drastically from figure 6. Using the 11-minute
travel time constraint, the starting position and the
destination is no longer contained inside the red
area. The dramatic shrinking of isochrone area is
due to the large penalty time added from applying
the obstacle, which is observed in figure 7.

This phenomenon is the key to the robustness
cost-map. The shortest path problem is context
sensitive; you need a starting vertex and a destination
vertex. This works fine when one wishes to analyze
a route for potential weakness using penalty time as
an indicating factor. This does not however, work
for region-based understanding. For a region-based
understand, studying the shrinking behavior of the
shortest path tree around each vertex results in
an equal overall understanding of the region with
regards to potential penalty times when routing.
Using this observation, we can develop a new
cost-map from a robustness objective function that
can be used in multi-objective optimization.
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3. REGION-BASED ROBUSTNESS
Our goal in defining robustness is to generate

a path that is minimally impacted by unexpected
hazards. We suggest that this can be described by
the reduction in size of accessible area from a point,
should a section be blocked off. We therefore define
region-based robustness as the sum of the difference
in area between the isochrone map and the isochrone
map with an impassable hazard inserted in each of
the four cardinal directions.

3.1 Robustness Cost-map
Let’s define a region G(E, V ) as a directed graph

as in section 2.1. Each node v ∈ V will then
be used to generate a local isochrone map Gv ⊆
G, see figure 2. In each cardinal direction (north,
south, west, east) a no-go zone is applied. The
no-go zone can be arbitrarily defined, but in this
algorithm, its defined as a half circle with a Euclidean
radius and thickness. The no-go zone will describe
the problematic accessibility towards that cardinal
direction. For each cardinal direction, we generate a
new isochrone GD

v where D ∈ {N,S,E,W} denotes
that cardinal direction.

Figure 9: The isochrone maps GN
v (obstacle north)

and GS
v (obstacle south). The node v is marked in red

and the areas A(GN
v ) and A(GS

v) are highlighted in
pink. The obstacle applied is the red half circle.

The difference in isochrone areas with and
without the obstacles can be used as a measure of the
robustness for the vertex v, but since larger values
for the difference mean worse robustness, it makes
sense to call the measure the fragility for v, which

we denote by F (v). Formally, we calculate the
area difference for each of the four obstacles and
normalize it. Finally, we sum the differences:

F (v) =
1

4A(Gv)

∑
D∈{N,S,E,W}

(
A(Gv)− A(GD

v )
)

The unit of F (v) is area loss as a percentage. We
will use the same notation also for the fragility of an
entire path P , namely F (P ), which is defined as the
sum of the fragility values for each vertex of the path.

3.2 Balancing Robustness And Speed
Now that we have two cost maps, one for

fragility and one for travel time, we can think
about how to find a path that is both robust and
fast. In other words, we want to minimize both
the fragility and the travel time of the path. This
is an example of multi-objective optimization [8],
which is difficult in general since there may be no
single solution that simultaneously optimizes each
objective. Some compromises must be made, but
there is no established way to know whether a certain
decrease of one objective is worth a certain increase
of some other objective; in other words, two different
objectives can be seen as two currencies without any
known exchange rate.

In our setting, if a path P1 has less fragility
but longer travel time than path P2, then which
path is best? If we do not want to declare an
official exchange rate, then we do not know: the two
solutions are not comparable. On the other hand, if
path P1 has both less fragility and shorter travel time
then path P2, then it is obvious that P1 is better than
P2, and we say that P1 dominates P2.

For a given path optimization problem, the paths
that are not dominated by any other path are called
Pareto optimal. Each Pareto optimal point represents
an optimal choice in the multi-dimensional space
of objective functions. Each objective function,
also known as cost, can be drawn as a dimension
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in the multi-dimensional diagram and each Pareto
point becomes a position in this space. In our case,
the problem exists on a two-dimensional space with
travel time along the horizontal axis and fragility
along the vertical axis. Each point in this diagram
represents a solution to our minimization problem.
The Pareto points can be connected by a line known
as the Pareto front. The Pareto front is a set of Pareto
optimal points, in our case closest to the axes due to
minimization. The Pareto front would go from the
upper left to the lower right of the diagram, with all
other paths above and to its right. See figure 10 for
an illustration.

Figure 10: Pareto optimal points displayed on
a two-dimensional diagram. The horizontal axis
displays travel time, and the vertical axis displays
fragility. Any point in this space represents a solution
to our minimization problem. The Pareto optimal
points lie closest to the axis and dominates all other
solutions. The Pareto front is the thick red line going
through all Pareto optimal points. The thin red lined
area showcases the region where all non-optimal
solutions exist.

One way to handle this situation is to generate all
the Pareto optimal routes, or at least a large enough
subset of them, and then present them to a human
expert who can make the final choice. This approach
is taken by Clawson et al. [9]. However, a part
of their design is to preprocess the terrain into a
graph with few vertices but many edges between
them, which we think improves the performance
of their sophisticated algorithm. And we think

their algorithm could become much slower in our
setting, where vertices correspond to a large number
of terrain raster cells that have only eight outgoing
edges to neighbors.

The purpose of this paper is not to explore
different ways of doing multi-objective optimization.
To be blunt, our main purpose is to explore whether
our formula that defines fragility makes sense at
all. A numerical definition of robustness can look
sensible in theory, but when one uses it for route
planning, one could possibly discover unexpected
quirks that are not obvious at first glance. Since
we only want to rule out the existence of confusing
or counter-intuitive quirks at this stage, we will
handle multi-objective optimization in a simple way:
scalarization [8].

Scalarization in multi-objective optimization is
the idea of defining a superposition of the set of
objective functions to approximate the behavior of
Pareto optimal points. A superposition is defined as a
linear combination of multiple functions. We simply
choose numeric weights wF and wT and declare
that we want to minimize the weighted sum of the
two objective functions, in other words we want
minimize the single objective:

wFF (P ) + wTT (P ) (3)

where P is a possible path and T (P ) is defined as
the accumulated travel time for path P . Without loss
of generality, one can assume that the weights are
normalized, wF + wT = 1.

By using superposition, the objective function is
now one dimensional with a clear ordering of cost
values for each path. This simplifies the optimization
problem: traditional one-dimensional path planning
algorithms can now solve this. Although, the choice
of values for the weights will remain a difficult task.
By setting wF = 0, the problem returns to the
quickest path problem where travel time is the only
concern. Vice versa, if we set wT = 0 the problem
now only concerns robustness. Each choice of pair
of weights will generate a Pareto optimal point.
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However, scalarization cannot find all solutions in a
Pareto front that is not convex. Such limitation is due
to the superposition of the objective function space,
which cannot reach Pareto points if they occur on a
concave Pareto front. Although, in this paper it will
be good enough to generate alternative paths when
we sweep over a set of different weight values for
wT and wF .

Figure 11: Pareto optimal points displayed on a
two-dimensional diagram of the two-dimensional
minimization problem. The horizontal axis displays
travel time and the vertical axis displays fragility. In
figure 10 the Pareto front is convex while in this figure
the Pareto front is concave. Pareto optimal points
lying inside the concave part cannot be reached using
scalarization.

From a physics perspective, an interesting
consequence of taking a superposition of objective
functions is the difference in unit of measurement. In
one objective we measure travel time of 600 seconds
while in the other we measure a difference in area of
40%. The weights wT and wF will need to account
for this in order to generate interesting results, simply
putting wT = wF = 0.5 will not yield a solution
where robustness is valued equally as high as travel
time.

4. RESULTS
We present the results in the form of screenshots

taken from a custom application that implements
the region-based robustness algorithm. We display

region-based robustness as a heatmap, and show the
output of two differently weighted paths.

4.1. The Robustness Of A Region

The region-based robustness algorithm results in
heat maps which visualize the robustness over a
region of interest. The algorithm uses both road
network as well as terrain data at a 10m resolution.
Poor robustness represents areas where a disruption
would cause a significant increase in travel time.

Figure 12: A heat map visualizing the robustness
over a region. The heat map’s coloring ranges from
blue (good robustness) to red (poor robustness).

4.2. Robust Routes

We combine the the region-based robustness
cost-map with a standard path planning algorithm
using multi-objective scalarization. We study two
routes: One which heavily values travel time, and one
which heavily values robustness.
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Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 13: Two routes visualized on a region-based
robustness heat map. The solid route values travel
time higher while the dashed route values robustness
higher. As the solid route enters red and yellow areas
(denoting poor robustness) the dashed route avoids
the areas by diverting through terrain.

5. DISCUSSION
The output robustness maps allow us to visually

interpret our results. In general, robust regions are
found in open, flat terrain, while less robust regions
occur at valley edges, and especially on roads that
may be surrounded by impassable terrain. In Figure
13, we see that when we weigh robustness heavily
in our path planning algorithm, the resulting path is
more likely to avoid roads in narrow valleys.

We now consider additional factors that may
affect the use of the robustness cost-map in an active
mission.

5.1. Impact of Size of No-Go Zones
We generated our initial robustness cost-map

over a 25km2 region, with a 10m2 pixel resolution.
We inserted a semicircle hazard, large enough to

cover the adjacent and oncoming vertices, 75m2.
Our robustness map is therefore a representation of
changes in travel time, should a small hazard occur
at that point.

The size of anticipated obstacles will vary based
on the situation. We now compare two robustness
maps, one generated with a small obstacle, and
another generated with a large obstacle. The former
could represent uneven, impassable terrain that was
not detectable at the resolution of the original input
data, while the latter may represent a boulder field or
large enemy obstruction.

Figure 14: A 75m2 and a 375m2 obstacle used to
generate two robustness maps.

Figure 15: A robustness map which was generated
with a 75m2 no-go zone. Most areas show a fairly
high robustness value, meaning they are minimally
susceptible to disruption by small obstacles.
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Figure 16: A robustness map over the same area,
which was generated with a 375m2 no-go zone. A
lower robustness value is calculated for the entire
area, yet the same general distribution can be
observed.

The results in Figure 15 and Figure 16
demonstrate how the selected size of the obstruction
affects the robustness map. Ultimately, care must
be taken in the mission planning phase to select
an appropriate size for the no-go zone, which
represents the most likely size of the hazard that
will be encountered. It is also possible to generate
multiple robustness maps in advance, and select the
appropriate one based on the situation encountered.

5.2 Real-Time Vehicle Speed vs Constant
Speed

The robustness algorithm was altered using
different types of obstacles of varies sizes to study
change in the fragility cost-map. In addition
to this, the vehicle model was altered to further
study changes in the fragility cost-map. The
two profound results were the difference between
”real-time” vehicle speed vs constant vehicle speed.
Real-time speed changed more drastically depending
on environment, speeds on roads were a lot higher
than speeds on off-road terrain. A key observation
for real-time speed is that the change in isochrone
area became more drastic with respect to changing
environment. Regular roads were seen as less robust

compared to terrain due to the sensitive change in
vehicle speed in the surroundings. If an obstacle
occurred on the road, the vehicle would maneuver
using the terrain, drastically decreasing the travel
time. Vice versa, the vehicle could maneuver around
the terrain by using the road and thereby gain vehicle
speed and lose less travel time.

Figure 17: An isochrone map generated from a
network consisting of roads and terrain for a vehicle
with real-time speed. The isochrone is generated
from the blue circle as reference point. The isochrone
is generated from a road as initial point.
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Figure 18: An isochrone map generated from a
network consisting of roads and terrain for a vehicle
with real-time speed. The isochrone is generated
from the blue circle as reference point. This figure
is similar to figure 17 yet the isochrone area is much
smaller due to the starting position being on terrain.
Terrain has a lower vehicle speed.

The real-time vehicle speed resulted in robustness
maps that illustrated areas where any change would
result in negative travel time, a more travel time
sensitive approach. An alternative to this, the more
preferred option in this paper, was the use of constant
vehicle speed. By using constant vehicle speed,
traveling on the road compared to in terrain were seen
as an equally good alternative, no travel time penalty.
By doing this, the shortest path objective function
now measures distance, as travel speed is constant,
and penalty time now becomes penalty distance.
Penalty distance can be seen as additional distance
to traverse in order to maneuver around obstacle.

Using this method, the resulting robustness
maps illustrated pure maneuverability compared to
maneuverability and vehicle speed sensitive areas.
Both maps highlight different issues. With constant
travel time the clear edge cases would be more
profound, such as narrow roads (with no access to
terrain) or bridges. Narrow roads and bridges are
more critical areas, blocking these ones clearly limits
alternatives and ability to traverse forward.

5.3. Performance
We ran the robustness map calculation on an

Intel I7-8850H processor running at 2.6Ghz, using
10 m2 resolution. A 1 km2 region took 4 minutes to
process. A 4 km2 region took 20 minutes to process.
The 25 km2 region shown in the results took 2 hours
to process. We argue that this performance time is
acceptable for use in the mission planning phase.
Robustness maps must be generated only once and
can then be reused across the region for any path
planning processes. Due to this processing time,
care must be taken to generate appropriate robustness
maps in advance for any vehicle type that will be
used.

5.4. Inverse Relationship to Exposure
One consequence of the region-based robustness

parameter is that the route will divert to more open
areas. These are deemed more robust with respect to
potential obstacles occurring within the region. For
certain mission-critical operations this is not a viable
option due to the exposure risk. Depending on the
mission, the exposure factor could be a bigger risk
than potential obstacles along the route.

One way to balance this out is to introduce
exposure as a third objective to the path planning
algorithm. Exposure is calculated using the visibility
index within a region [10]. Combining this with
the robustness factor would lead to a more suitable
balance for certain missions, especially smaller
vehicles on stealth missions.

6. CONCLUSION
Autonomous vehicles rely on path planning to

guide them towards their destination. The quality
of a planned path is based not only on its speed,
but also on its ability to provide viable alternatives
in the event of unexpected blockages. We have
defined robustness as an additional parameter for
path planning which describes the impact a potential
disruption would have on travel time at each point
in the region. By combining a calculated robustness
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map with a travel time map in multi-objective
optimization path planning, we are able to generate
a route that balances robustness with travel times.

Generating a robustness map using the algorithm
defined here cannot be done in real-time, so the
operator must decide in advance the region of
interest, the sizes of potential hazards we expect to
encounter, and the characteristics of vehicles that will
be traversing the region. Once a robustness map
has been generated, however, it can be used for near
real-time path planning.

When using a robustness map in combination
with other environmental variables to determine
the ideal path through a region, the operator must
analyze the situation to determine how much to
weigh each factor. Robustness tends to have a
positive relationship to visual exposure, which may
be unacceptable in certain scenarios. In such cases,
a lower weight should be applied to the robustness
map. The robustness map itself is not a replacement
for subject matter expertise, and the operator’s
judgement is critical in determining its application.

The robustness map is a valuable tool during the
mission planning phase, as it allows the operator
to quickly spot possible trouble spots along the
route. When used in reverse, it can also be
used to determine ideal regions along an enemy
route to target, especially when combined with
on-the-ground information from additional sources
such as UAV surveys, which may not have been
included in the path planning function.
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