2022 NDIA MICHIGAN CHAPTER

GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM

CYBERSECURITY OF GROUND SYSTEMS TECHNICAL SESSION
AUGUST 16-18, 2022 - Novi, MICHIGAN

Containerizationin Embedded Trusted Computing

Taylor Prins?!, Robert VanVossen', Tom Barnett?, Leonard Elliott?

'"DornerWorks, Grand Rapids, Ml
2CCDC-AVMC, Huntsville, AL
3CCDC-GVSC, Warren, Mi

ABSTRACT

Interest in application containerization has been on the rise in recent years
within the embedded and secure computing communities. Containerization within
embedded systems is still relatively new and thus the question of its practical use
in secure environments is still unanswered. By using proven kernels and virtual
machines, containerization can help play a key role in application development and
ease of deployment within trusted computing environments.

Containerization can bring many benefits to the development and
deployment of secure applications. These benefits range between ease of
development and deployment through use of unified environments to security
benefits of namespaces and network isolation. When combined with the sel4
microkernel and DornerWorks use of the VM Composer toolset, mixed criticality
systems incorporating containerization can be rapidly and easily developed and
deployed to embedded hardware. This paper describes the various advantages,
use-cases, and challenges associated with containerization and its use on the
mathematically proven selL4 microkernel.

Citation: T. Prins, “Containerization in Trusted Computing,” In Proceedings of the Ground Vehicle Systems
Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18,2022.

1. INTRODUCTION

Vehicle cybersecurity is essential to
national security for both military mission
assurance in multi domain operations and the
commercial movement of people, goods and
services in contested environments (in much
the same way as the Merchant Marines on the
sea). While Army ground vehicles were not
designed with cyber threats in mind, they

were built to be reliable, safe, and survivable
so there is a degree of intrinsic resilience to
cyber threats and this buys us the time to
address the fundamental challenges to
vehicle security. The cyber threat landscape
is constantly evolving and we know that
unknown vehicle vulnerabilities exist on
today’s platforms. With increasing software
complexity, electrification, autonomy and

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC #: 6377

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

connectivity, preventative and/or purely
defensive approaches will prove to be
ineffective and non-enduring. While the due
diligence of traditional cyber assurances and
penetration testing are valuable to today’s
fielded systems, the embedded world is
adopting techniques like intrusion detection
and analytics along with more sophisticated
encryption and hashes to provide better
security. While these mechanisms, borrowed
from the enterprise computing world, bring
additional “defense in depth” and awareness,
there is a need to think outside the cyber
security box and design in security at a more
foundational level.

Other challenges with more traditional
cyber security approaches involve the scope
and scale of the military vehicle fleet and
supporting infrastructure. Today there are
over a half million platforms in the Army’s
ground vehicle fleet across the globe and
there is no ubiquitous “internet connection”
across which to push patches and software
updates. Once again, these challenges call for
more inherently secure operational
technologies. To solve the ground vehicle
cyber protection and resiliency challenges,
we must fundamentally redesign our vehicle
compute architectures with provably secure
operating systems and isolation of safety
critical and mission critical functionality
from those that are more auxiliary or that are
more susceptible to cyber-attack.

In that spirit, a proven secure kernel, such
as the seL4 microkernel, deployed in
combination with software containerization
technologies, may provide ground vehicle
system developers with an optimal balance of
security and flexibility. Secure kernels can
be used to provide a robust foundation for
computing, while containerization
technologies can be layered on top to provide
additional isolation as well as dependency
management features that may help with the
logistical challenges of managing software

Containerization in Embedded Trusted Computing

lifecycle in a disconnected tactical
environment.

2. CONTAINERIZATION ON SEL4

2.1. Containerization Overview
Containerization is the packaging of

software code with just the operating system

(OS) libraries and dependencies required to

run the code to create a single lightweight

Containerized Applications

k=l L+
£] 2
Host Cperating System

I

Figure 1: Container Layout [2]

executable—called a container—that runs
consistently on any infrastructure [1].

The idea behind a container is that it
contains each dependency needed for its
application as well as any OS support
libraries. This removes the need for the host
system to maintain each library and
dependency needed for each container’s
application. This also gives flexibility to the
container to use any version of a dependency
it needs regardless of what other containers
may need. Containers run in isolated
instances from each other and the host OS,
similar to how virtual machines run on a
hypervisor.

Various toolsets exist to manage containers
and their operation. Docker (as shown in the
above image) is one such toolset that is used
synonymously with the word container. In
2013, Docker created an open-source engine
that quickly became an industry standard for
container management and packaging

Page 2 of 8

Proceedings of'the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

approach [1]. Today, there are many more
options than just Docker and each have their
own advantages and disadvantages. Some
are targeted more for web and cloud usages
allowing mass management and fault-
tolerance options whereas others are
optimized for resource-constrained
embedded systems.

Containers are built from images which are
comprised of read-only layers. Each layer
contains a certain instruction or set of
instructions used to create the container
image. When a container is deployed, the top
layer is read/write. This separation of layers
allows them to be shared across images. For
example, say there are two almost identical
container images on a system with 5 and 6
layers each respectively. The only difference
in the images is that second image has an
extra layer that runs a specific command.
Physically, there will only be 6 layers stored
on the system rather than 11. Because the
second container image uses all the same 5
layers as the first, they are reused in the
second image instead of duplicated.

2.2. Containerization Advantages

Beyond the use of shared layers, containers
have many other advantages. At their core,
they are meant to be completely portable and
generally platform independent. This
portability allows users to develop on one
machine and deploy to other hardware
platforms with ease. Container dependency
isolation gives developers greater freedom
with their applications. Being that each
container can have its own set of
dependencies and OS libraries, updates to
applications can be simpler with much less
worry on system destabilization and cross
compatibility.

There are also many security benefits. At
its core, containerization has adopted a
“secure-by-default” approach, meaning that
security should be inherent in the platform
and not a separately deployed and configured

Containerization in Embedded Trusted Computing

solution [1]. This means that the container
management engine supports all the same
isolation as the underlying OS. This also
allows security permissions to be managed
by the engine to allow or disallow
communications between containers.
Namespaces can be used to manage and limit
networking, mount points, process I1Ds, user
IDs, inter-process communication, hostname
settings, and access to any resources through
processes within a container. A subset of this
is the networking used by many container
management toolsets. Networking can be
setup to be completely isolated, shared
. T Native ' : "
Docker net=host volume —s—
12 Docker NAT volume —=—

Docker NAT AUFS —a—
KVM geow

10

1000 Transactions/sec

2 L L L 12.5
] 20 40 60 80 100

CPU utilization (%)

Figure 2: MySQL throughput (transactions/s) vs. CPU
utilization. [3].

Native
14 F Docker NAT ——
Docker net=host

KVM ——

Latency (ms)

L L s L s
0 20 40 60 80 100 120

Number of client threads

Figure 3: Average latency (in ms) of operationson
different Redis deployments. Each data pointis the
arithmetic mean obtained from 10 runs [3].

between containers, shared with the host, or a
combination of all three.

Another simple advantage is performance.
Although the use of containers comes at the

Page 3 of 8

Proceedings of'the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

cost of some overhead, application
performance has been shown to not be a
factor especially when compared to theuse of
virtual machines for the same applications.
Research shows, as seen in Figure 2, that
containers introduce negligible overhead for
CPU and memory performance (except in
extreme cases) [3].

2.3. Containerization Disadvantages

New technology does not come without
disadvantages and containers are no
different. While containers may have a
reduced overhead compared to a virtual
machine, there is still RAM overhead and
CPU stack space needed for them to run.
This may be too much overhead for a simple
application with few dependencies. Another
downfall is certain networking
implementations. As seen in Figure 3,
Docker’s NAT is slower than running
natively or even with a KVM.

Persistent data is less secure and more
complex to manage in a containerized
system. As discussed earlier, the topmost
layer of a container is read/write. When the
container shuts down, that layer is removed.
Any datathat is needed to be persistent across
container shutdowns must be held in Docker
volumes and mounted inside the container
each time. This adds the complexity of
managing and securing said volumes.

Virtual machines have been able to run on
type 1 hypervisors for decades. Containers
need a base OS and management toolset to
run and therefore are not optimized to run in
a bare metal environment. However, work is
being done to mitigate this with a more
monolithic and/or unikernal approach for
containerized system. This will be discussed
later in the paper.

Finally, containerization is currently a
fractured ecosystem. Not all containers can
be run across the various toolsets. Large and
small organizations alike are creating toolsets
customized for their needs. While the basis

Containerization in Embedded Trusted Computing

is all the same, the execution and setup can
vary [4]. The Open Container Initiative
(OCI) was established in 2015 to help unify
this fractured ecosystem. It created an open
industry standard around container formats
and runtimes [10]. Ideally, future universal
adaptation would break the fractured
ecosystem and make containers and their
images truly platform independent.

2.4. selL4 and Containerization

seL4 is a high-assurance microkernel that
was built with performance in mind. It is
unique because of its comprehensive formal
verification, without compromising
performance. It is meant to be used as a
trustworthy foundation for building safety-
and security-critical systems [5]. selL4 has a
formal proof of correctness meaning it has a
strong isolation story. The microkernel also
has a virtual machine monitor (VMM) mode
which works in tandem with a VMM user
application to provide virtualization.
DornerWorks enabled virtualization for seL4
on ARMvS platforms allowing DEVCOM-
GVSC VEA to deploy seL4 in representative
military ground vehicle environments. VMM
support allowed feature rich software stacks
to be run in isolation guaranteed by the seL4
formal proofs [7]. DornerWorks has also
proved its versatility and has been able to
demonstrate mixed criticality environments
within seL.4 with secure isolation benefits[6].

Currently, within mixed criticality systems,
containerization by itself does not provide
strong enough isolation between sub-systems
and/or applications. selL4 can be used to
separate criticality levels into separate VMs,
which can cach run various containers, to
achieve the desired level of isolation.

This results in a system that has a formally
proven/verified microkernel running
multiple virtual machines in a mixed-
criticality environment in which each VM
can run and manage containerized
applications and systems. All the benefits of

Page 4 of 8

Proceedings of'the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

containerization remain with the added
security benefits of sel.4.

3. Workflow Optimization
Containerization
Workflows in embedded systems can be a
challenge. Long build times with custom
environments can be taxing on development
cycles. Dependency and library management
for larger systems can also be very
challenging, this is especially true in a
military system where the system lifecycle

Through

Design Application

. larger
Configure Yocto -
effort

1-2+ hours
Initai Yocto Build depnding on
setup

Modify App Code

¥
additional build
Add new Yocto Layer | time added for
sach new layer

4+ min for simple
change, lenger for

Build Yocio Image

dependency
change
Build selL4 image 1-2 min
Deploy fo target
Test Application
Mo Desired

Functionality?

Finalize Package

Figure 4: Application development workflow for when

using Yocto and deploying with seL4 to target hardware

with estimated build times.

Containerization in Embedded Trusted Computing

can span multiple decades. Containerization
can help mitigate many of these issues.
Leveraging the platform independent nature
of containers significantly improves
development productivity. When combined
with a tool like DomerWork’s VM
Composer, developers can quickly spin up

Design Application

smaller
effort

Configure Container

Modify App Code

New Dependncy?
small amount of build
time added to container
build time

L

Add dependency to
container image

Generally small Build Container
build times of 1-2
min
Test Container on
host

Mo Desired app
functionality?

1-2 min

Desired behavidl Mo
on target?

Yes

Finalize Package

Figure 5: Application development workflow when
using containersand VM Composer to build with seL4
and deploy to target hardware with estimated build
times.

seL4 systems utilizing containerization on
targeted hardware.

Figure 4 shows that development cycle
times can add up quickly when dealing with
complex dependencies for applications. For
each new dependency or OS library added in

Page 5 of 8

Proceedings of'the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

a Yocto build environment, build and
management times increase. If very drastic
or complex changes are required, it may be
required that initial build be rerun thus
creating another 1-2+ hour build time. It is
also seen that deployment to target hardware
and testing must be done on each iteration.

Figure 5 shows that these long
build/integration cycle times can be
shortened by using containers for application
development and VM Composer to package
the seL4 image. Due to the platform
independence of containers, software can be
tested on host/development machines each
iteration as well as drastically reducing
overall build times. Since each container
manages its own dependencies and libraries,
the need to manage the overall OS build is
reduced. VM Composer packages a prebuilt
OS with an OCI container management
software (currently Docker) further reducing
development efforts for the base OS of the
virtual machine.

The use of VM Composer with containers
vastly reduces development cycle times and
allow the developer to focus on other areas,
such as the application development instead
of yocto/buildroot image management. The
testing process is improved by allowing
easier testing of separate applications and
allowing tests to be run off the actual target.
The outcome of these efforts can produce
faster product development cycles and more
frequent updates.

4. Army Use-Cases

As mentioned in the introduction, there is a
need to isolate safety critical and mission
critical functionality from those that are less
critical and those more exposed to cyber
threats. While physical separation may be an
option is some cases, utilization of multi-core
processors as well as SWaP constraints drive
the need for separation within the compute
architecture. Inaddition, because of the many
different vendors, hardware platforms and

Containerization in Embedded Trusted Computing

operating systems, and unique applications
and missions across the fleet, the portability
of containers and the efficiencies gained
throughout the DevSecOps lifecycle may be
industry changing.

With these advantages in mind, initial use
cases for 2.4. seL4 and containerization
would likely be for non-safety critical
applications toallow the safety community to
assess the approach followed by mixed-
criticality (mission, notsafety) environments.
Finally, the benefits gained through secure
containers are not limited to ground vehicles
but are also highly extensible other Army
platforms in the Aviation and Air & Missile
Defense communities.

5. Challenges Towards Utilization

While this approach improves DevSecOps
for trusted embedded systems there are still
several challenges to overcome. There are
only a few container management toolsets
that are targeted for embedded use and lower
overhead. The most used toolsets are Docker
and Kubernetes, which generally have larger
resource needs than what would be available
for embedded environments. Container
images are also much larger due to the tools
and libraries they package. Image layers are
not always written with resource constraints
in mind and thus can produce bloated images.
This may only be an issue if using third party
and/or ‘off the shelf” images.

As mentioned previously, the performance
of the container applications is near native,
but there are still some performance metrics
to consider. Boot time of a VM will be
negatively impacted by utilizing containers.
The container engine needs to run before any
of the containers can run. Since the container
images can be quite large, the boot time will
also be affected by the larger image load
times.

A challenge specific to Docker is that of
ramdisk usage. Currently Docker has its own
set of challenges with running in ramdisk and

Page 6 of 8

Proceedings of'the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

requires extra configuration to run correctly.
This is compounded when attempting to load
large images since many embedded systems
and platforms are not configured with much
more than 4GB of RAM. Systems that need
to run in ramdisk, like the sel4
implementations discussed, may run into
these same issues. To overcome the ramdisk
issues, the obvious approach is to utilize
external storage devices for VM filesystems.
However, seL4 currently does not have a
virtio-blk solution for the virtual machines
[8]. This means that each persistent storage
device can only be handed to a single VM.
This may not be an issue if a platform has a
few persistent storage devices and not many
VMs with docker support are needed, but a
more general approach would be useful.

While these challenges exist today, they
should not completely preclude the use of
containers on embedded, trusted systems.
Some of these can even be mitigated today by
using custom container images and
lightweight containers. Itis also worth noting
that not every VM in a system needs to have
container support. There is a range of options
for each computational piece in the system
that makes a trade-off between convenience
vs performance/resource utilization. These
options are shown in Table 1.

Approach Overhead/ | Convenience
Resource
Utilization
seL4 native app | None Very few pre-existing
(component) tools, stacks, and drivers
RTOSVM Small More tools, stacks, and
drivers
Linux VM Small- Lots oftools, stacks, and
Medium drivers
Linux VM + | Medium- Same as above +
Containers Large DevSecOps
improvements

Table 1: Convenience vs System Impact for different
application/VM methods

6. FUTURE ADVANCEMENTS

To make containerization the sought-after
solution for embedded systems development,

Containerization in Embedded Trusted Computing

a simplified approach to OS and container
management must be accomplished. The
current approach can be configured to work
for some applications but for others it could
add too much overhead/require too many
resources. The need for a VM in selL4 adds
much more overhead than would be desired
to run simple containers. A unikernel and/or
simplified virtual machine would be a much
simpler design and fit better into the selL.4
architecture.

Work is currently being done to simplify
container driven VMs as well as port
containers to unikernels. Linuxkit is one
approach and aims to take containerized
systems (built much like a docker-compose
file) and create a packaged virtual machine
that does nothing but run the containers [9].
This would reduce overhead in many
instances but would lose management
abilities. Other projects aim to take a
container and port it to a unikernel for use
with a hypervisor. A container application
within a unikernel offers a true monolithic
approach but loses some key features of
container management that may be useful to
the end user and/or developer.

Wind River has made progress introducing
containerization into the RTOS environment.
The latest versions of their VxWorks RTOS
support OCI containers and has container
management capabilities [11]. This offers an
RTOS with container support and a
simplified yet feature rich OS packaged
within a small footprint.

Each approach has its own advantages,
challenges, and downfalls but all approaches
are aimed at the same thing: a simplified
container solution for embedded systems
while still retaining most of the advantages
that come with containerization.

7. REFERENCES

[1] IBM, “Containerization,” IBM, [Online].
Available:

Page 7 of 8

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

https://www.ibm.com/cloud/learn/contain
erization.

[2] Docker, “What is a Container?,” Docker,
[Online]. Available:
https://www.docker.com/resources/what-
container.

[3] W Felter, A. Ferreira, R. Rajamony, J.
Rubio, “An Updated Performance Comparison
of Virtual Machines and Linux Containers,” IBM
Research Report, [Online]. Available:
https://dominoweb.draco.res.ibm.com/rep
orts/rc25482.pdf. [Accessed 2022]

[4] Channel Futures, “Docker Downsides:
Container Cons to Consider before
Adopting Docker,” Channel Futures,
[Online]. Available:
https://www.channelfutures.com/open-
source/docker-downsides-container-cons-
to-consider-before-ad opting-docker.

[5] seL4 Foundation, “About seL4”, seL4
Foundation, [Online]. Available:
https://sel4.systems/About/.

[6] DornerWorks, Ltd. “Run Your Mixed
Criticality Applications Together,
Without Interruption, Even When One
Crashes,” DormerWorks, Ltd. 9-22-2020.
[Online]. Available:

Containerization in Embedded Trusted Computing

https://dornerworks.com/blog/sel4-
hypervisor-software-isolation-demo/.

[7] R. VanVossen, J. Millwood, C. Guikema,
L. Elliott and J. Roach, "The selL4
Microkernel--A Robust, Resilient, and
Open-Source Foundation for Ground
Vehicle Electronics Architecture," in the
Ground Vehicle Systems Engineering and

Technology Symposium.

[8] seL4 Foundation,
“libsel4vmmplatsupport”, seL4
Foundation, [Online]. Available:

https://docs.sel4.systems/projects/virtuali
zation/libseldvmmplatsupport.html.

[9] LinuxKit, “LinuxKit”, LinuxKit,
[Online]. Available:
https://eithub.com/linuxkit/linuxkit.

[10] Open Container Initiative, “About the
Open Container Initiative”, The Linux
Foundation, 2020. [Online]. Available:
https://opencontainers.org/about/overvie
w/.

[11] M. Chabroux, “RTOS Containers for the
Intelligent Edge”, Wind River, 4-26-2021.
[Online]. Available:
https://blogs.windriver.com/wind _river b
log/2021/04/rtos-containers-for-the-
intelligent-ed ge/.

Page 8 of 8

