
2022 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
CYBERSECURITY OF GROUND SYSTEMS TECHNICAL SESSION

AUGUST 16-18, 2022 - NOVI, MICHIGAN

DEFENDING CONTROLLER AREA NETWORK (CAN) BUSES

Dr. Kenneth Tindell1

1CTO, Canis Automotive Labs, UK

ABSTRACT

Modern ground vehicles rely on Controller Area Network (CAN) bus for
communication between Electronic Control Units (ECUs) as a vital component to
connect sensors and actuators together in a mission-critical distributed real-time
vehicle control system. CAN is well-suited to this task and over the more than three
decades since its inception it has become a proven and ubiquitous technology. But
its age means that it was not designed for modern security threats of local and
remote attacks and special techniques must be deployed to protect CAN. This paper
provides a simple taxonomy of attacks on CAN, including how an attack accesses
a CAN bus, and discusses four techniques used to defend against these attacks.

Citation: K Tindell, “Defending In-vehicle CAN Buses From Attacks,” In Proceedings of the Ground Vehicle Systems
Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022.

1. INTRODUCTION
CAN bus was created in the mid-1980s to

provide a robust atomic broadcast system to
connect ECUs in passenger cars to replace
individual signaling wires. Since its inception
it has become a proven technology in
vehicles as diverse as yachts and spacecraft
and is ubiquitous in system ground vehicles
because of the wide availability of off-the-
shelf components (from standard
microcontroller silicon to ECUs). CAN was
never designed with security in mind – in the
mid-1980s there was no notion of any
embedded systems being connected to the
internet let alone vehicles. The next section
will give a simple taxonomy of the attacks on
CAN. Then different ways to defend CAN
will be presented, including a novel
hardware-based approach.

2. TAXONOMY OF ATTACKS
 The ‘CIA’ triad of security is a useful

model for security: Confidentiality, Integrity,
Availability. In a vehicle control system,
confidentiality is the least important because
it is mostly sensor data and actuator
commands (although there can be some
information that is sensitive, such as
firmware being downloaded to re-program
ECUs). Integrity, on the other hand, is a vital
property: when an ECU connected to an
actuator receives a command to move then it
must be that the command is genuine. In
CAN a broadcast message (called a frame)
contains an identifier that indicates the
contents and priority of the frame. ECUs use
the identifier to determine how to (or whether
to) act on the frame’s contents. There is no
inherent protection preventing a device

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Defending Controller Area Networking (CAN) Buses, Dr. Kenneth Tindell

Page 2 of 9

connected to CAN bus from deliberately
sending a CAN frame an identifier normally
used by another ECU. Such a frame is usually
called a spoof and protection against spoofing
is the primary requirement when defending
CAN.

Availability is the second key requirement
for a secure system: the system must be able
to defend against attacks that prevent
legitimate communication. For a mission-
critical distributed real-time control system,
disrupting communications will cause it to
fail. CAN includes some protections to
prevent a failing device from disrupting the
bus (for example, error confinement rules
leading to a ‘bus off’ state where the failing
device is disconnected from the bus). But
these protections are designed for component
failure and can be trivially avoided by a
denial-of-service attack.

 There are two ways to mount an attack on
a CAN bus. The simplest is a frame attack: to
use existing CAN hardware – the CAN
controller – to send frames on the bus. For
example, to send a spoof frame. Or to send
frames at such a rate that legitimate frames
are slowed or prevented: a flood attack (in a
real-time system, a message arriving late is a
failure of the system). The other way to
mount an attack is to by-pass the CAN
hardware and drive carefully crafted signals
directly on to the bus: a CAN protocol attack.

A CAN protocol attack uses software to
drive signals that exploit low-level features
of the CAN protocol itself. For example, the
bus-off attack uses the CAN error
confinement rules to disconnect a targeted
ECU from the bus. A CAN protocol attack
uses direct access to the standard component
that all ECUs contain: the CAN transceiver.
The transceiver is a chip that converts
between the digital TX and RX I/O from the
CAN controller and the analog voltages of
CAN H and CAN L on the twisted pair CAN
wire. Normally the TX and RX pins are
driven by a CAN controller but in most ECU

electronics this controller is integrated inside
a single microcontroller chip alongside the
CPU, RAM, etc. But software can disable the
CAN controller and take control of the I/O
pins directly (using the pin mux that is present
in some form on all microcontrollers).

Figure 1: CAN controller, transceiver and pin mux

With carefully written software it is
possible to drive the TX pin quickly enough
to emulate parts of the CAN protocol and
mount protocol attacks.

An attacker must gain access to the CAN
bus to attack it. This can be done in two broad
ways: a wired attack where the attacker
directly attaches their own hardware to the
CAN bus, and a hijack attack where the
attacker takes over existing hardware
connected to a CAN bus. A hijack is typically
carried out by exploiting a remote code
execution (RCE) vulnerability, such as a
buffer overrun, in a device connected to
CAN. There are many vectors for a hijack
attack, from exploiting protocol defects in
long-range wireless systems [1] to short-
range wireless like tire pressure monitoring
systems (TPMS) [2].

From the above, we can define a three-axis
taxonomy for attacks on a CAN bus.

Figure 2: Categories of CAN attack

CAN
transceiver

Microcontroller

CAN
controller

Pin
mux

I/O

TX

RX CAN H

CAN L

Fr
am

e

Wi
red

Availability

Hij
ac
k

Pr
ot
oc

ol

Integrity

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Defending Controller Area Networking (CAN) Buses, Dr. Kenneth Tindell

Page 3 of 9

To illustrate the taxonomy, we will use the
Bus-off Attack. This attack was first
described by Cho and Shin [3] and operates
by software ‘bit banging’: the RX pin from
the CAN transceiver is sampled until the ID
field of a CAN frame is detected. If it matches
the ID of a frame used by the victim ECU
then the software drives the TX pin low for
six CAN bit times. This triggers the CAN
error handling mechanism, and each time this
is done, a counter in the victim ECU’s CAN
controller is incremented. Eventually the
counter reaches a threshold where error
confinement rules of the CAN protocol cause
the CAN controller to go into ‘bus off’ mode:
the controller refuses to transmit any more
frames until it is reset (the process to recover
and bring it back online takes quite some
time).

The Bus-off Attack can be categorized as
follows: it is an Availability attack (denying
communication to a victim ECU), and it is a
Protocol attack (that exploits the low-level
error handling behavior of the CAN protocol)
and it works for either wired or hijack access
to the CAN bus.

There are several other known CAN
protocol attacks [4], including:
• Double Receive attack (where a victim is

forced to retransmit its frame one or more
times)

• Bus Freeze attack (where exploiting a
legacy feature of the CAN protocol causes
the controllers to be held stuck in a
protocol loop for an arbitrary time)

• Error Passive attack (where a victim’s
frame can be overwritten by a spoofed
payload)

• Janus attack (where a single frame can be
transmitted but received with different
payloads at different controllers)

These attacks can be combined (along with
knowledge of how a targeted system
behaves) to achieve higher-level attacks.

3. SIMPLE CAN BUS DEFENSES
This section discusses some basic

techniques to defend against attacks.
Although no single mechanism is sufficient,
together they can provide some protection.

The first technique is to protect against
CAN protocol attacks where the attacker is
accessing the CAN bus via a hijacked ECU.
The approach is very simple: design the ECU
circuit board to use an external CAN
controller rather than an on-chip controller.
This removes direct I/O access to the CAN
transceiver pins. The CAN bus could still be
disrupted by the software setting the CAN
controller to use the wrong baud rate, but
sophisticated timing attacks like Janus are not
possible. A related defense is to lock the pin
mux during a secure boot process: an RCE
triggered after boot cannot change the pin
mux and therefore cannot access the CAN
transceiver directly (although not all
microcontrollers support pin mux locking –
or indeed secure boot).

Another conceptually simple defense is to
use an intrusion detection system (IDS): the
traffic patterns on a CAN bus should be
known at design time because it is an
embedded system with a known behavior.
Deviation from the known patterns can
indicate an attack. Of course, an IDS does not
prevent an attack, it only detects an attack
with limited confidence. However, providing
forensic evidence of an attack and how it took
place is essential for hardening a system
against a future repeat use of an attack.

The most common technique for defending
a CAN bus is the security gateway. This is a
device like an ECU with two CAN bus
interfaces, a trusted CAN bus (containing the
mission-critical system that needs to be
protected) and an untrusted side (containing
devices that are at the highest risk of being
exploited, such as telematics devices with
wide area radio network connections). The
security gateway is conceptually simple:
forward traffic on one bus over to another bus

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Defending Controller Area Networking (CAN) Buses, Dr. Kenneth Tindell

Page 4 of 9

according to a set of rules. Because devices
on the untrusted bus have no direct access to
the trusted bus, they cannot mount CAN
protocol attacks directly, and wired attacks
that can access only the untrusted bus also
cannot in principle mount attacks on ECUs
connected to the trusted bus.

While security gateways do provide some
defense against attacks, they also have
weaknesses:
• Hijack attacks on ECUs on the trusted bus

are still possible by otherwise legitimate
traffic containing malware (for example,
diagnostic messages designed to exploit
commonplace buffering vulnerabilities in
the diagnostic stack [5] in a victim ECU).

• Real-time attacks using legitimate
messages (of which the flood attack is the
simplest) can cause traffic on the trusted
side to arrive late and induce a timing
fault.

• Implementation problems with the
security gateway. For example, buffering
problems leading to dropped frames or
priority inversion [6].

A security gateway must also be
implemented to the highest security levels
with no RCE vulnerabilities and there must
be a secure mechanism for re-programming
its rules.

4. CRYPTOGRAPY ON CAN BUS
A common approach to addressing the

‘CIA’ triad is to use cryptography: a message
is encrypted (keeping its contents
Confidential) and a cryptographic message

authentication code (MAC) is used to provide
message Integrity. Cryptographic techniques
do not assure Availability.

There are specific problems with using
cryptographic techniques on CAN:

• CAN frames contain at most 8 bytes of
payload, and this is not large enough to
hold both a message and a MAC.

• CAN control systems use a 1:n or the
publish/subscribe broadcast model that
does not fit well with cryptographic
systems designed for 1:1 messaging.

• Fast restart. In powertrain systems it is
particularly important that if an ECU goes
through a watchdog reset it can recover
and return to normal operation very
quickly, otherwise an engine could stall.

The CryptoCAN scheme of Canis Labs is
designed to fit within the AUTOSAR
framework, using AES for encryption and
authentication with the SHE standard [7] for
hardware security modules (HSMs), and to
address these issues. It uses a pair of 8-byte
CAN frames to contain the encrypted and
authenticated message.

At the transmitter, a 60-bit MAC is obtained
from the plaintext message using the AES-
CMAC algorithm: a 128-bit block containing
the plaintext payload (0-8 bytes), the length
of the payload (4 bits) and a 60-bit MAC,
computed over the CAN ID, length, plaintext,
and a 30-bit ‘freshness’ value, using the
standard AES-CMAC algorithm (Figure 3).

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Defending Controller Area Networking (CAN) Buses, Dr. Kenneth Tindell

Page 5 of 9

Figure 3: CryptoCAN encryption, decryption, and authentication

The ciphertext is obtained using the cipher

feedback (CFB) mode of the standard AES-
128 algorithm. The pair of CAN frames are
assigned adjacent CAN IDs so that the first of
the pair has the higher priority and will be
transmitted first. A receiver decrypts and
verifies the two-frame message using the
reverse process. CFB mode supports random
read access so a newly powered ECU can
read subscribed messages quickly after
power up or reset.

There remain two major problems –
common to any symmetric cryptographic

scheme. The first is replay attacks. With a
distributed embedded real-time system, it is
straightforward to determine what each CAN
message does, even when the contents of the
message are kept confidential. It is then
straightforward to capture messages that have
a known purpose and to re-send them on the
CAN bus later when needed. The MAC for
such a message will pass verification because
of course it was created by the genuine
sender. Replay attacks are normally resolved
by using sequence numbers or timestamps.
While this is straightforward in a 1:1

DLC=4“Freshness” 00 00 00 0eID=18f004e6
30 bits 29 + 1 4 8 8 8 8

00

DLC=4 00 00 00 0eID=18f004e6

00 00 00
8 8 8 8

AES-CMAC

128

60841a7fce166562b93aa9860d435243
128

60
DLC=4 00 00 00 0e60841a7fce16656 00 00 00 00

128 AES CFB encrypt

128

e7 5c 38 e4 c4 14 84 61

ID=18f004e6

ID=1cf004e6

64
646d 4e 85 79 32 09 95 6b

698767ea0f984676054a5c7190fe52e9

Previous ciphertext

68

6d4e85793209956be75c38e4c4148461

AES CFB decrypt

6d4e85793209956be75c38e4c4148461

64 64

128
128698767ea0f984676054a5c7190fe52e9

Previous ciphertext

68

60841a7fce16656

0000000e00000000e3c0139900000000

128

60841a7fce1665640000000e0c62afdd

128

Encryption key128

Authentication key128

Encryption key128

=

60841a7fce1665640000000e0c62afdd

128

60

Valid Y/N

60

DLC=4“Freshness” 00 00 00 0eID=18f004e6 00 00 00 00

128

AES-CMAC

60841a7fce166562b93aa9860d435243
128

0000000e00000000e3c0139900000000

128

Authentication key128

60
60841a7fce16656

60

Ciphertext CAN frames

Plaintext CAN frame

CryptoCAN plaintext authenticated message

CryptoCAN plaintext authenticated message

Plaintext CAN frame

Authentication verified

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Defending Controller Area Networking (CAN) Buses, Dr. Kenneth Tindell

Page 6 of 9

messaging system it is more difficult in a 1:n
broadcast system, requiring the transmission
of a timestamp to keep ECUs in sync even
after an ECU is reset. But that timestamp
message itself could be replayed as part of an
attack. Resolving this problem is quite
difficult and requires a non-cryptographic
message authentication technique specific to
CAN. This is discussed later.

The second major problem concerns key
management. Aside from the normal
problems of key management (where unique
keys must be reliably and securely
programmed into different devices and also
stored securely in a central database) there is
the specific key problem of 1:n broadcast
systems.

A MAC guarantees that the transmitter of a
message knew the secret key that is shared
with the receiver. But in a 1:n broadcast
system this is a problem: each receiver must
know the MAC key to authenticate it. But if
one of those receivers were hijacked
(exploiting an RCE vulnerability) then it
could forge a valid MAC using the key and
then transmit a spoof as if sent by the
transmitter. This completely undermines the
purpose of using cryptography in the first
place.

There is a mitigation for the key problem:
an SHE HSM stores keys in a secure area of
non-volatile memory that the CPU cannot
access. It undertakes cryptographic
operations requested by the CPU, but the key
is kept secret. With the SHE+ extension to the
SHE specification, a key can be marked with
a flag for verify-only and the HSM will reject
requests to create a MAC, and only the
genuine sender of a message has the key flag
set to allow MAC creation. There remains a
problem: the HSM must store enough keys so
that every sending ECU gets its own key.
Unfortunately, the SHE standard defined at
most 16 keys (and several of these are
reserved for purposes such as secure boot).

In short, encryption defends against
spoofing attacks but does not prevent denial-
of-service attacks. But without careful
implementation it cannot prevent relay
spoofing attacks or hijacked ECU spoofing
attacks.

5. SIMPLE HARDWARE DEFENSES
Recall from earlier the problem of the

message sending a ‘freshness’ value to be
used to prevent replay attacks: this can itself
be replayed. A way to solve this problem is
to, in effect, mount a bus-off CAN protocol
attack on any attempt to spoof the freshness
message. The basic idea is simple. The sender
ECU listens to the CAN bus (by sampling the
RX pin from the CAN transceiver) and looks
for a frame with an ID that matches the
freshness message. If the ID is seen and did
not come from the sender’s own CAN
controller, then it must be a spoof. Driving
the TX pin dominant for six CAN bit times
triggers the CAN error mechanism and in
effect destroys this spoof frame (and no other
ECU will see it). The spoofing ECU’s CAN
controller will very likely try to re-send it but
eventually it will be driven into the bus-off
state. Only the genuine freshness message
can be sent and therefore replay attacks can
be prevented.

This approach can be made more general: it
can apply to all the frames sent from an ECU.
There are difficulties in implementing this
efficiently in software (it requires interrupts
to be serviced with very short latencies and
leads to a high worst-case CPU load). But it
can be implemented in hardware: it monitors
the TX and RX signals and is programmed
with a list of IDs of frames that are expected
to be transmitted. Any frame ID on the list
that was received rather than transmitted is
destroyed as a spoof. Further, any frame
transmitted with an ID not on the list is an
attempt to spoof some other ECU and is also
destroyed. The TJA115x devices from NXP
implement this.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Defending Controller Area Networking (CAN) Buses, Dr. Kenneth Tindell

Page 7 of 9

This approach is in effect providing
authentication directly in hardware using the
atomic multicast feature of the CAN protocol
and can in most cases avoid the need for
cryptographic solutions.

There are some issues with the hardware
approach just described: the ID lists
programmed into the hardware must be re-
programmable (because the IDs used may
change over time with software updates) via
a robust and secure mechanism. Furthermore,
it does not prevent denial-of-service attacks
(the TJA115x devices include a basic anti-
flood defense but this does not prevent timed
attacks that cause real-time latency problems
for targeted messages). But the most
important issue is the mixing of security
mechanism with security policy: policy is in
general application-specific and needs to be
able to activate or deactivate mechanisms.
For example, an ECU may need to send
firmware updates over CAN but only when in
a specific mode (which might be only at a
known location, with the vehicle stopped,
perhaps with a physical switch or key in
place). In general, security policy should be
in software.

6. HARDWARE DEFENSES: CAN-HG
CAN-HG is a new hardware augmentation

of the CAN protocol, developed by Canis
Labs to provide hardware security without
the drawbacks of the simple list-based
approach described above. It works by
adding high-speed out-of-band data into an
outgoing CAN frame. Figure 3 shows a
timeline of three CAN bits (1, 0, 1).

Figure 4: Out-of-band data in CAN

The possible sample points are illustrated.
For a given CAN bus system there will be a
notional point where each CAN controller
samples the transceiver’s RX pin (for SAE
J1939 the sample point is specified as 87.5%
of a bit, and a bus speed of 250kbit/sec).
Because there is synchronization jitter and
clock drift, there will typically be a window
in which controllers will sample the
transceiver’s RX pin. The CAN-HG
augmentation works by adding extra bits in
between the sample point windows (shown as
dotted line in Figure 4). This extra data is
invisible to CAN controllers, but it can be
decoded by CAN-HG hardware.

Each ECU to be protected contains a bus
guardian device as illustrated in Figure 5.

Figure 5: CAN-HG Bus Guardian

The CAN-HG bus guardian augments the
outgoing CAN signal on the TX pin from the
microcontroller by adding in the source
address of the device (this is pre-
programmed into the Bus Guardian chip and
it cannot be changed by software) in out-of-
band data and sending the resulting signal on
to the CAN transceiver. This ‘tag’ indicates
where the CAN frame physically came from.

The Bus Guardian also contains a protocol
attack detector (PAD) that detects deviations
from the CAN protocol (such as the Janus
attack signals). If a protocol attack is detected
by the PAD then it disconnects the
microcontroller from the CAN bus (by no
longer passing the TX signal through).

Sample
points

End of
CAN bit

Time

Sample
points

Sample
points

Microcontroller

CAN
controller

PAD
HG

engine CAN
transceiver

TX

RX

CAN H

CAN L

Bus
Guardian

TX

RX

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Defending Controller Area Networking (CAN) Buses, Dr. Kenneth Tindell

Page 8 of 9

Figure 6: Centralized CAN-HG IDPS

A centralized intrusion detection and
prevention system (IDPS) detects a spoof: for
any given CAN ID there is a corresponding
CAN-HG address for where it should come
from and if there is a mismatch then the frame
can be destroyed using the CAN error
mechanism (as discussed earlier). But
because the IDPS is a combination of
software on a host microcontroller and
hardware, the definition of what is a spoof
can change with the operation of a system.
For example, if there is no diagnostics tester
connected then diagnostic frames can be
defined as illegal and destroyed. If a tester is
connected and the vehicle is stationary, then
the frames could be made legal.

Being able to destroy illegal frames is only
one part of the CIA triad: ensuring
availability of the CAN bus by prevent a
device from disrupting it is also essential.

The IDPS can detect crude denial-of-
service attacks (like a flood attack) but also
subtle timing attacks on specific frames by
observing the timestamps of frames on the
bus. The IDPS can directly command Bus

Guardian chips to disconnect their ECU host
from the CAN bus and so a denial-of-service
attack detected by the IDPS can be shut
down.

This centralized IDPS approach allows
sophisticated security policies to be
implemented in software and adapted with
experience. For example, some failures might
not be due to actual attacks but software
failures, so a policy that recognized the
possibility of failures and did not
immediately treat a failure as an attack could
be developed (under the Fleming principle
“Once is happenstance. Twice is coincidence.
Three times is enemy action.”).

7. CONCLUSIONS
A taxonomy of attacks on CAN bus has

been given and various defenses against these
attacks described. The new CAN-HG
augmentation hardware offers protection
mechanisms against spoofing and denial-of-
service attacks and allows for sophisticated
security policies to be implemented in
software using these mechanisms [8].

The CryptoCAN and CAN-HG
technologies are currently being evaluated by
the United States Army Combat Capabilities
Development Command (DEVCOM)
Ground Vehicle Systems Center (GVCS) in
the cooperative research and development
project “Cyber Security for Military Ground
Vehicles Architectures”.
8. REFERENCES
[1] S. Checkoway et al, “Comprehensive

experimental analyses of automotive
attack surfaces.” Proceedings of the 20th
USENIX Conference on Security,
SEC’11, 2011

[2] I. Rouf et al, “Security and Privacy
Vulnerabilities of In-Car Wireless
Networks: A Tire Pressure Monitoring
System Case Study”, USENIX Security
2010, August 2010

[3] K.-T Cho and K. G. Shin, “Error
handling of in-vehicle networks makes

IDPS
hardware

CAN bus

Bus Guardian

Bus Guardian

Bus Guardian

IDPS
software

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Defending Controller Area Networking (CAN) Buses, Dr. Kenneth Tindell

Page 9 of 9

them vulnerable”, Proceedings of the
2016 ACM SIGSAC Conference on
Computer and Communications
Security, Vienna, Austria, 24–28
October 2016

[4] K. Tindell, “Demonstration of attacks on
the CAN protocol,”
Automotive Security Research
Group seminar 23 September
2021

[5] G. Litichever and G. Bandel, “Securing
SAE J1939 Heavy-Duty Vehicles In-
Vehicle Networks,” Automotive

Security Research Group seminar 14
January 2021

[6] K. Tindell, “CAN priority inversion,”
https://kentindell.github.io/2020/06/29/c
an-priority-inversion/ June 2020

[7] Herstellerinitiative Software (HIS)
Security Working Group. SHE – Secure
Hardware Extension Version 1.1,
October 2009

[8] K. Tindell, “Defending CAN”, four-part
video series, November 2021

