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ABSTRACT 
This paper describes a novel network security appliance -- the Tactical 

Smart Network Interface Card (TSNIC) – that leverages state-of-the-art Field 

Programmable Gate Array (FPGA) technologies to continuously maintain the 

integrity of tactical missions. The Smart NIC appears as an all-hardware “bump-

in-the-wire” along any network segment or attached to an industry standard bus 

interface providing infrastructure defense for ground vehicles. It can be custom 

configured to provide encryption, protocol and file format validation, and/or 

protocol encapsulation. These capabilities are achieved by several innovations: 

high-level synthesis (HLS) for rapid circuit development, automated parser 

generation to adapt to mission requirements, and a hardware nano-marshal to 

dynamically adapt defensive posture in the face of changing threat profiles.  
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1. INTRODUCTION 
Many organizations handle sensitive data 

and files relating to military missions, trade 

secrets, intellectual property, private personal 

data, and/or classified projects [1]. 

Traditionally, these organizations have been 

well advised to implement an “airgap” that 

physically disconnects computers containing 

sensitive information from any connection to 

the Internet, to protect against theft. 

Unfortunately, airgaps come with substantial 

cost in productivity and assume that the 

relevant staff, with the expertise to handle 

sensitive information, is co-located. Airgaps 

are increasingly impractical given the need to 

connect critical systems, such as industrial 

plant, to cloud-based analytic platforms (e.g., 

Google Analytics) or support condition-

based maintenance of DoD vehicles [2,3,4]. 

Ground vehicles increasingly rely upon 

standard networking technologies to link 

embedded control systems with sensors, 

actuators, and human machine interfaces 

through industry standard buses -- CAN, 

J1939, MIL-STD-1553, USB -- and other 

communications interfaces – PCIe, Gigabit 

Ethernet (GigE), and OpenVPX. In many 
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instances, vehicles are periodically inter-

connected with military installations to 

provide mission parameters, or to effect 

maintenance and upgrades. Network 

connected personal devices – phones, tablets, 

and laptops – are increasingly being used to 

manage and interact with these systems. 

Though network boundary protections 

generally separate installations from the 

Internet, there are many threat vectors that 

circumvent such protections: for example, 

unintended connections, insiders, zero-day 

exploits, supply chain interdiction, and 

persistent implants [5].  
This paper explores the capabilities of the 

Tactical Smart Network Interface Card 
(TSNIC) -- a network appliance technology 
under development in the DARPA AMP 
program. In a previous GVSETS article [6], 
we explored its use for ground vehicle patch 
analysis. This paper explores its more general 
cyber security capabilities in support 
infrastructure defense and condition-based 
maintenance. In this application, the TSNIC 
provides a hardware barrier between 
network segments that continuously validates 
mission traffic. Consequently, it acts to 
constrain the attack surface behind 
conventional boundary defenses, such as 
firewalls and intrusion detection systems, 
hardening the attached systems against cyber 
threats.  

 

2. DESIGN PHILOSOPHY 
The Smart NIC is shown in Figure 1. It 

consists, by design, of a single FPGA chip 
interfacing directly to GigE and PCIe 
interfaces on the left and bottom, and industry 
standard buses via daughter cards attached to 
the ribbon connector on the right. OpenVPX 
is accommodated via a simple PCIe adaptor 
or a variant of the board with an alternate 
connector. In consequence, the appliance 
forms a “bump-in the-wire” between any pair 
of the available connections, with the FPGA 
forming a bridge for all communication. 
Consequently, the FPGA can monitor and 
interact with all systems attached to its 

interfaces and can act to store and forward 
traffic between them. 

 
Figure 1. Tactical Smart NIC 

As an all-hardware appliance, the Smart 
NIC offers several key security advantages: 
All sensitive data -- encryption keys, buses, 
and algorithmic functionality -- is strictly 
hidden within the security perimeter afforded 
by the FPGA chip-boundary [7,8,9,10,11], 
mitigating reverse engineering in the event 
that a TSNIC is lost or captured in the field; 
No software is present in the device, thereby 
mitigating malicious implants and zero-day 
attacks; Either the PCIe or one of the GigE 
connections can be used as an out-of-band 
channel to adapt the device to alternate 
mission profiles, augment its internal 
functions, or upgrade the device; Extensive 
anti-tamper and circuit destruction techniques 
have been developed to enhance its resilience. 

For versatility, all circuits resident in the 
Smart NIC are developed using a rapid 
prototyping technology termed High Level 
Synthesis (HLS). This process allows 
algorithm specifications to be designed and 
tested in C, C++, or System-C. The working 
code is then automatically transformed into a 
standalone, reusable, hardware block. These 
reusable circuit plugins can be directly 
integrated into a static circuit design in the 
FPGA. Alternatively, the block can be treated 
as a container. Using a technique known as 
partial reconfiguration, the FPGA can then 
be partitioned into segments and containers 
can be dynamically loaded into a partition 
then linked into the overall function of the 
device on-the-fly. To manage this process, we 
have developed a thin, hypervisor-like 
hardware layer termed a Nanomarshal [12]. 
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3. CRYPO ACCELLERATION PLUGIN 
In its most primitive form, the Smart NIC 

can be used purely as a crypto accelerator by 

placing encryption and decryption blocks 

between two of its interfaces. By default, the 

appliance provides encryption/decryption 

blocks implementing the Advanced 

Encryption Standard (AES-256). These 

plugin blocks have been certified under the 

NIST Cryptographic Algorithm Validation 

Program (CAVP).  

Our initial rendering of AES into HLS, a 

straightforward transliteration of the standard 

algorithm, was discouraging, performing at 

only 5Mb/sec [13]. Subsequently, we 

standardized on a 16-byte wide AXI-stream 

implementation that forms our current 

baseline, and explored a variety of 

optimizations and algorithmic alternatives, 

based on the FIPS standard. The 

optimizations did not involve low-level HDL 

circuit design; instead, they were achieved 

automatically using pragmas available 

within the HLS process.  

The results are summarized in Table 1 

which defines the trade-space that can be 

applied, based on application performance 

requirements. This trade-space allows circuit 

performance -- bandwidth (BW), maximum 

clock frequency (Fmax), and latency (LAT) 

in clock cycles/128bit block – to be traded for 

FPGA resources -- Block RAM (BR), Flip-

flops (FF), and Lookup-Tables (LUT). 
 

TABLE I. Implementation Trade-Space 

TABLE I highlights 5 primary 

optimization techniques: Loop Unrolling 

parallelizes loops that do not contain data 

dependencies between each iteration of the 

loop. Array Partitioning removes the 

serialization bottlenecks caused by parallel 

data accesses that must queue for BRAM 

interfaces. This optimization is achieved by 

partitioning C-arrays into register sets that 

can be accessed concurrently. Function In-

lining yields the hardware equivalent of 

inline C-functions in which function bodies 

are directly replicated at each call site. Cyclic 

Partitioning optimizes the logic depth used to 

achieve a single round of the AES algorithm 

and thereby increases Fmax. Pipelining is a 

standard technique in which data dependency 

analysis is used to allow overlapping of 

operations. 

These studies led to the discovery of a 

“sweet spot” in the trade-space: Without 

Cyclic Partitioning and Pipelining (last 2 

rows) – the implementation achieves close to 

Gigabit line speed -- 0.82 G/sec -- with only 

~2.5% LUT utilization on the Artix 200T 

FPGA device used by default on the TSNIC. 

Adding Cyclic Partitioning increases 

performance to 1.1Gb/sec – exceeding line 

speed -- but at heavy cost in LUT recourses 

(~20% of the Artix 200T FPGA), while 

pipelining again doubles LUT use. 

Unfortunately, the AES “Cyclic Block 

Chaining” (CBC) mode of operation has a 

data dependency that limits pipelining. 

However, “Counter” mode relieves this 

dependency and yields a 9-fold speedup. 

Note that generally two instances of the 

encryption block are required: one for 

encryption and one for concurrent decryption 

(with similar resource requirements). A wide 

variety of FPGAs with differing resources are 

available for use on the TSNIC. The baseline 

unit uses the Artix-7 -- the smallest family 

that supports partial reconfiguration. 

Method BW 

Mb/

s 

Fmax 

MHz 
LAT 

cy/blk 
BR FF LUT 

Baseline 

 

12 174 1880 4 611 1707 

Loop 
Unrolling 

68 131 246 16 809 1740 

Array 

Partitioning 

723 147 26 0 539 45036 

Function 

In-lining 

822 167 26 0 658 3437 

Cyclic 

Partitioning 

1103 224 26 0 542 23065 

Pipelining 

 

9216 144 2 0 557 44945 
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4. PARSER PLUGINS 

The TSNIC is concerned with monitoring 

the flow of traffic across its interfaces and 

validating both that messages adhere to an 

industry standard protocol and that message 

content is valid in the context of a tactical 

mission. Generally, its action on detecting a 

valid message is to allow it to pass; 

conversely, its action on detecting invalid 

data is to drop the message -- mitigating 

potential exploitation -- and/or generate an 

alert. To achieve message validation, the 

TSNIC uses custom parsing engines that lay 

across its communication paths.  

Parsing is the general process of taking an 

input stream of symbols and understanding 

their format (syntax) and meaning 

(semantics). For example, compilers such as 

GCC use a parser to validate that a computer 

program, written in some programming 

language such as C/C++/Java/Fortran is 

written correctly (i.e. is syntactically valid), 

and to understand its structure (i.e. its 

semantics) for the purpose of machine code 

generation and optimization.  

Parsers are tools that apply a collection of 

formal grammar rules, defining some input 

language, to determine if the input adheres to 

the rules. For example, the following 3-rule 

grammar G defines a language in which a 

stream of symbols is valid only if it begins 

with the character ‘a’, ends with ‘c’, and 

contains one or more intervening ‘b’ 

characters: 

G : ‘a’ Bs ‘c’ ;     

Bs: ‘b’ | Bs ‘b’ ; 
 

The “or” symbol | designates an alternative 

definition for the rule defining “Bs”. This 

grammar accepts as valid the input streams 

abc, abbc and abbbc etc, but rejects any other 

stream, e.g. a, ac, aaa, ccc, adx, abbbx, etc. 

Individual characters such as ‘a’ are terminal 

symbols that must be present in the input 

stream; all other symbols are non-terminals 

representing intermediate structural 

elements. For binary grammars, hexadecimal 

terminal values can also be used (e.g. ‘\xFF’ 

represents a single byte value corresponding 

to 255 in decimal). 

Parser generators are tools that take a 

grammar as input and automatically generate 

a program that implements the associated 

parser. The most mature and widely used 

generator is Bison which accepts two primary 

classes of grammar: Generalized Look-

Ahead (GLR) and the more restrictive Left-

to-Right Look Ahead (LALR). Both classes 

of grammar are expressed in Backus-Naur 

Form (BNF), used above to define the 

grammar G. Under the DARPA SafeDocs 

program, new tools are being developed 

based formal methods. One of the most 

mature is the Hammer combinator library 

which provides a collection of well-defined 

base parsers and methods to combine them to 

build more complex parsers. The resulting 

parsers are provably correct by construction. 

The Hammer library provides a collection of 

backends that allow different classes of 

grammar to be implemented, including GLR 

and LALR. 

Though GLR grammars are more general, 

LALR grammars are sufficient for validating 

a wide variety of protocol and file formats 

and can be realized with a push-down 

automaton – a finite state machine employing 

a single stack to store symbols while parsing 

the input stream. The state machine relies on 

two core operations shift – involving saving a 

symbol from the input onto the stack and 

reduce – involving the application of a 

grammar rule to detect a structure in the input 

and reduce the symbols on the stack. The 

state-machine is generic and common to all 

grammars, however, the order in which shift 

and reduce operations are applied to the input 

is based on a collection of parsing tables 

derived from the grammar (usually referred 

to as action/goto tables [14]). These tables 

map the current state of the automaton, to a 

next state based on the symbol read from the 

input stream. 
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The TSNIC can employ any LALR 

grammar written in either Bison or Hammer. 

This is achieved through a fully automated 

compilation process outlined in Figure 2. 

Using Bison, the input grammar -- defined in 

BNF -- is fed directly into the standard Bison 

parser generator (leftmost brown path). For 

Hammer, an equivalent parser is defined 

using pre-existing combinators in C and 

linked to the Hammer library (blue path). 

These tools can both produce a set of parsing 

tables expressed in a common machine-

readable XML format. A conversion tool – 

xml2h – is used to convert the xml parsing 

tables into a C-header file (pda.h) containing 

a two-dimensional C-array.  Rows in the 

array correspond to states in the automaton, 

while columns designate terminal and non-

terminal symbols encountered when reading 

the input stream. Entries in the array 

designate shift or reduce actions applied in 

each state. Consequently, the C-array 

provides a complete definition of how the 

push-down automaton should operate to 

validate any particular grammar. 

 

 
Figure 2. Parser Automation Process 

The C-array is combined with generic 

LALR automaton (pda.c) [14] and testbench 

code (main.c) to produce a runnable C-

program implementing the parser. This 

parser is validated using a set of 

representative test vectors files (purple) to 

ensure that the parser operates correctly. 

Since the parser is a well-structure C-

program it can then be fed directly into High-

Level Synthesis (HLS) to produce a 

hardware implementation of the parser that 

can be loaded onto the TSNIC as a plugin. 

The hardware parser-plugin is validated 

using hardware-software co-simulation 

employing the same test-vectors and 

testbench code used to validate the software 

version of the parser.  

Unfortunately, though the conventional C-

array is a convenient conceptual framework 

to consider, it is impractical since it contains 

many states that cannot in practice be 

reached. Consequently, a highly optimized 

alternative representation is used that 

removes much of the sparse structure. These 

optimizations use similar techniques to those 

employed internally by Bison and are 

described in detail in [15]. To illustrate how 

these concepts map in practice, Table 2 

characterizes the size of a variety parsers 

taken from the Open-Source Parser 

Experimentation Repository [16] in terms of 

their rule and state set size. The Size column 

shows the size of the unoptimized parser-

plugin in Kilobytes using conventional 

parsing tables which would typically be 

mapped to BRAM resources in the FPGA; 

The Opt column shows the optimized size in 

Kilobytes. The Result (Res) column shows 

the improvement; typically, a compaction 

more than 75% is achieved. For the Artix 

200T, with 1.46Mbytes of BRAM, a full 

JSON parser would consume ~2% of the 

BRAM resources. 
 

TABLE 2. Parser BRAM resources 
Parser Rules States Size Opt Res 

json 191 229 74 13.3 82% 

com 880 854 481 69.5 85% 

resp 271 279 151 6.3 96% 

json w/ 

unicode 

325 689 407 30.3 92% 

 

5. ENCAPSULATION PLUGIN 
The previous sections have described 

plugin circuit blocks that operate on Ethernet 

packets and provide AES Encrypt/Decrypt or 
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validation. The TSNIC also employs a 

generic parse-encrypt-encapsulate pipeline to 

reformulate a packet to hide its content within 

a standard IPSec Encapsulating Security 

Payload (ESP) frame. Figure 3 illustrates 

how this process operates between any two 

communication ports IN and OUT.  

Incoming Ethernet frames follow the 

green path through the TSNIC with their 

payloads temporarily stored in a data buffer 

accessible to multiple plugins. An internal 

random number generator is used to prepend 

an 8-byte random value to the frame to add 

entropy into short messages; A 2-byte length 

field is also appended to the frame. The new 

resulting frame forms an enhanced payload. 

The enhanced payload and the associated 

Ethernet/IP/Protocol header from the original 

frame are treated separately. The enhanced 

payload is concurrently encrypted and/or 

parsed using the associated plugins (c.f. 

Sections III and IV). The encryption plugin 

simply encrypts the entire enhanced payload. 

If the parser validates the packet, a signal 

(OK) causes the encrypted enhanced payload 

to be assembled into an IPSec ESP packet 

using the header information from the 

original packet. If the resulting payload is 

larger than a single frame, the payload is sent 

in two IPSec ESP packets, using the ESP 

sequence numbering to label the packets for 

decoding at the receiver.  

 

Figure 3. TSNIC Datapath 

At the receiver, only incoming IPSec ESP 

packets are accepted by the TSNIC via the 

blue path in Figure 3. The encrypted 

enhanced payload is stripped out of the ESP 

packet and the header information is also 

separated out. The encrypted payload is 

decrypted using the AES plugin. If parsing of 

the resulting payload succeeds, the header 

information and decrypted payload are used 

to re-construct the original source ethernet 

frame which is then passed to the receiver. 

Any parsing algorithm specific to a 

particular tactical mission can be used in the 

encapsulation process. The parse-encrypt-

encapsulate pipeline can be instantiated 

across any communication path within the 

TSNIC between two interfaces: PCIe to 

GigE, GigE to GigE, and GigE or PCIe to 

CAN/J1939/1553. This is made possible 

because all communication paths within the 

device are rendered into the standard AXI-

stream representation, which can be 

consistently buffered with FIFO’s and passed 

between plugins at will.  

 

6. PROTOCOL HANDLING OPTIONS 
All the plugins described thus far operate 

seamlessly on UDP traffic: Since there is no 

coordination between sender and receiver, 

simply dropping packets if they fail to 

decrypt or parse is a highly effective control 

mechanism.  

For TCP and high-level protocols, simply 

dropping packets offers several challenges 

and options. TCP attempts to reliably deliver 

an entire message, broken into multiple 

packets, within a single session. To parse 

large files and message transfers, it is 

therefore necessary for parsing engines to 

keep track of the beginning and end of each 

message, using information contained in the 

packet headers, and continue to parse across 

breaks in the transfer that result in multiple 

Ethernet frames. To parse large files, it is 

possible to either parse the stream on the fly, 

and close the session if parsing fails, or store 
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and forward messages in their entirety.  

Recall that the TSNIC provides a large on-

board RAM, outside the FPGA chip 

boundary, to facilitate store and forward 

options. This RAM can be viewed as an 

extension of the FPGA trust-boundary 

provided that all information contained 

within it is encrypted and decrypted within 

the trust boundary. 

TCP is extremely belligerent, as one 

would expect, in attempting to deliver a 

message. If any single packet in a large 

transfer is dropped, TCP will continually 

timeout and resend that packet in futile, 

continually intercepted and dropped, 

reattempts to deliver the entire message.  

Only after exhaustive attempts, will the 

connection eventually timeout and close. 

Unfortunately, this has several implications: 

the session can remain open for several 

minutes, causing any service receiving 

packets to waste resources while the client 

engages in repeated attempts at 

retransmission, consuming bandwidth.  To 

avoid these delays and overheads, when 

dropping a packet, it is possible to generate, 

in hardware, a TCP RST message to the 

receiver informing it to close the connection, 

thereby allowing it to free resources and 

proceed immediately. This technique is 

commonly used by firewalls to close 

problematic connections.  

There are two options on how to handle 

the sender: either to generate an “alert” 

message -- assuming that the client is 

legitimate with its channel intermittently 

compromised -- or keep quiet deliberately 

forcing the client to waste resources. The 

former is most appropriate to embedded 

situations where the client is being tampered 

with through some pre-installed implant; the 

latter is valuable in a case where there is 

Internet connectivity, and it is desirable not 

to disclose detection information to the client. 

To ensure that an RST message cannot be 

abused as a malicious attack, there are harsh 

constraints on its use: it must carry a 

legitimate sequence number within an 

existing session and therefore lie within an 

existing sequence. There are multiple ways to 

achieve this. For example, to repurpose the 

existing packet (i.e., the packet being 

dropped) as the RST message or, to generate 

a completely new RST message in hardware, 

copying only the needed information fields to 

cause the RST to operate correctly from the 

existing message. To use the first technique, 

the TCP payload associated with the packet 

being dropped is truncated and removed, its 

Ethernet- and IP-header remains unchanged, 

IP and TCP checksums are regenerated, and 

the FCS is regenerated – all in hardware. This 

has the benefit that IP-header options may 

exist and remain intact, while TCP-options 

are rendered safe. This option therefore 

allows IP-security options to be used, if they 

are desired, however, it presents an 

opportunity to inject malformed options.  The 

alternative is to construct a completely new 

TCP RST packet in hardware, taking only the 

necessary fields to affect the reset operation 

from the packet being dropped. This higher-

level of assurance is more secure and 

eliminates IP and TCP options to render them 

safe. Obviously, there are a host of 

intermediate alternatives between these 

extremes.  

One further option that we have employed 

is to completely avoid TCP and only allow 

UDP traffic. Obviously, this has the 

disadvantage that in general there is no 

assurance of delivery for the sender and large 

messages must be segmented in some other 

manner; Generally, these attributes would be 

handled by the TCP SYN/ACK handshake. 

However, it is possible to arrange an 

alternative hardware signaling – that we term 

a turnstile [11] – to notify a sender that 

outgoing data and files have been received 

intact. Unlike TCP this mechanism does not 

require any communication to transition from 

the receiver to the sender. It allows the 
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TSNIC to operate as a diode or gateway, 

protecting a sensitive network or mitigating 

information leaks, but yet provide reliable 

file and data delivery. 

 

7. HARDWARE NANOMARSHAL 
In a previous paper we have described a 

software Nanomarshal technology developed 
to support cross-domain applications [13]. 
That technology operates on System-on-Chip 
devices, such as the Xilinx Zynq and 
UltraScale MPSoC, that combine multiple 
processors, with on-chip FPGA, and a diverse 
variety of peripheral interfaces. The software 
Nanomarshal provides the ability for a 
container, with a designated identifier (id), to 
be created, started, interrogated, stopped, 
and destroyed at runtime using the Open 
Containers Initiative (OCI) compliant 
management interface. 

Taking these ideas one step further, the 
TSNIC employs a hardware nano-marshal 
that allows hardware containers -- developed 
and validated in C and rendered into hardware 
through HLS -- to be instantiated and 
managed from within the FPGA as illustrated 
by the grey box in Figure 3. 

Recall that all communication interfaces 
inside the TSNIC are treated uniformly as 
AXI-streams. The Nanomarshal manages the 
FPGA as a collection of partitions. Partitions 
are set in place astride each of the input and 
output interfaces, as illustrated in Figure 3, to 
form a generic harness. Using an advanced 
technique termed partial reconfiguration, the 
Nanomarshal can dynamically insert and 
delete hardware containers into these 
partitions, tearing down live streams and 
connecting streams into the new containers 
on-the-fly. The plugins described in previous 
sections are all encapsulated as containers, 
using an automated HLS workflow, allowing 
them to be either present, or absent i.e., 
replaced by a container containing just an 
AXI-stream wire.  For example, when used 
simply for encryption acceleration, the 
parsing engine is absent; when used solely for 

data validation, the encryption and 
encapsulation engines are absent.  

A container may wrap a working hardware 
implementation of a particular algorithm with 
additional information. For example, the AES 
encryption plugin, when wrapped as a 
container, includes an AES-256 encryption 
key in a format that includes offline key-
expansion to optimize performance. Re-
keying can thus be achieved, through partial 
reconfiguration, by dynamically replacing the 
encryption container. 

Though currently the Nanomarshal 
operates with predefined containers set within 
its harness, it is possible to employ either an 
unused PCIe or GigE interface to form an out-
of-band backchannel (BCHNL) as illustrated 
in Figure 3. This channel is completely 
separated from normal traffic flow traversing 
the TSNIC and used only to manage the 
internals of the device from a separate air-
gapped network. This addition is the focus of 
our existing work and would allow the TSNIC 
to function as a High-Assurance Guard 
(HAG), able to adaptively adjust its behavior 
to perceived threat level. These ideas build 
upon a Simple Network Management 
Protocol (SNMP) backchannel already 
available on our other products. 

 

8. SHAPING THE ATTACK SURFACE 
One unfortunate aspect of modern network 

protections is that they tend to be focused on 
the boundary of an installation, as illustrated 
conceptually in Figure 5(a) as a circle around 
a protected network.  
 

 
Figure 4. Shaping the Attack Surface 
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Recall that there are many methods to 
breach boundary protections: supply chain 
interdiction, unanticipated connections, 
transient connections, trusted insiders, zero-
day exploits, and persistent implants to name 
but a few. Once behind the boundary, all 
connected systems form an attack surface that 
is directly accessible and vulnerable, 
moreover, communication is often in the clear 
without encryption. Even when link-level 
encryption is used, exploits may transition, in 
encrypted form, to unprotected software 
stacks on the other side of encryptors. 

For embedded systems on military 
vehicles, there are few locations that can serve 
as such a boundary anyway, nowhere to host 
complex intrusion detection systems, and no 
time to act upon intrusions using conventional 
CERT-like investigations: All defense must, 
of necessity, be automatic and immediate. 
Consequently, hardening the attack surface to 
make intrusions difficult to perpetrate within 
the timescales of a tactical mission, is a more 
practical alternative. 

Figure 5(b) shows how to achieve this 
conceptually by placing TSNIC appliances at 
the endpoints on selected links (black dots) 
and using them to impose validated one-way 
(green) [9] or bi-directional (gold) traffic 
flow.  This results in an attack surface shaped 
to protect high-value assets. Traffic over these 
links is continuously verified through parsing 
and a multiplicity of encryption keys can be 
imposed, on differing time-schedules, via an 
out-of-band backchannel. 

 

9. VIRTUAL ISOLATED NETWORKS 
When multiple TSNIC’s are connected in 

matched sets, they transparently form a 

hardware overlay -- shown in Figure 5 – that 

we term a Virtual Isolated Network (VIN) 

[10]. A VIN allows any group of devices, 

computers, or networks to inter-operate over 

the Internet, while being completely isolated 

from the rest of the Internet. Attached 

systems can be anywhere in the world, 

connected to any network, so long as there is 

one wired connection into each TSNIC from 

the Internet. Once connected into a VIN, each 

system can only communicate with other 

systems within the same VIN – effectively 

creating a “virtual air-gap” around the VIN 

that mitigates malicious intrusion and 

continuously validates traffic. 

 

 
Figure 5. Virtual Isolated Network (VIN) 

Since no communication from the VIN to 

other hosts on the Internet is possible, a VIN 

is the appropriate location to house valuable 

data that must be shared within it: cloud-

based databases, intellectual property, 

industrial manufacturing data, maintenance 

data, or private personal information (PPI). In 

consequence, the TSNIC provides a 

distributed alternative to accomplish the 

goals for which an air gap was conceived.  

Obviously, a collection of TSNIC devices 

forming a VIN is not as inherently secure as 

an air-gapped network: There is still a 

connection to the Internet and users rely on 

the hardware base-of-trust provided by the 

TSNIC logic for security. However, the VIN 

addresses the needs of organizations that seek 

the middle ground between a completely air-

gapped network and one that is directly 

connected to the Internet without protections 

– a middle ground that can reap the benefit of 

cloud-based services with lower risk. 

 

10. CONCLUDING REMARKS 
The TSNIC’s military utility is to harden 

any network segment with real-time 

hardware verification and protection – both 

within military vehicles and more broadly, 

military installations. In a previous paper [6], 
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we have also described how the TSNIC is 

used to directly monitor ground vehicle buses 

-- akin to a logic analyzer. In that use case, 

the device is directly attached to the J1939 

bus and monitors a patched, instrumented 

control system binary, providing high-

resolution timing and detailed analysis of 

execution traces.  

As an all-hardware device, the TSNIC 

raises the barrier to intrusion, increases 

attacker-workload, and mitigates reverse 

engineering. It is not a replacement for 

boundary defenses but rather complements 

these protections and can be used anywhere 

in the network hierarchy, shaping the attack 

surface over which an adversary must 

operate.  

Internally, the TSNIC employs reusable 

network interface and encryption 

components but employs custom parsing 

elements realized automatically though 

High-Level Synthesis. This combines the 

flexibility of software with the security and 

performance of hardware. Hardware 

Nanomarshal technology, built around partial 

reconfiguration, extends the flexibility of 

FPGA-based security allowing on-the-fly 

changes to security posture in reaction to 

perceived threats.  
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