
2022 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
DIGITAL ENGINEERING / SYSTEMS ENGINEERING TECHNICAL SESSION

AUGUST 16-18, 2022 - NOVI, MICHIGAN

MODEL BASED APPROACHES FOR SYSTEMS IMPLEMENTING
MODULAR OPEN SYSTEM APPROACH (MOSA)

Robert Peters1, Brooke McDonald1, Robin Mikola1, Macam Dattathreya, PhD2

1System Strategy, Inc., Troy, MI

2U.S. Army DEVCOM, MI

ABSTRACT
In the continued endeavor to abstract higher levels of implementation and generalize core
features, the government is requiring the use of a Modular Open System Approach (MOSA)
[1] to architectures that have a common set of services while conforming to portable
interfaces. This paper discusses how to model such restrictions in SysML, including the
why, how, and downstream effects.

Citation: R. Peters, B. McDonald, R. Mikola, M. Dattathreya, “Model Based Approaches to Systems Implementing
Modular Open System Approach (MOSA),” In Proceedings of the Ground Vehicle Systems Engineering and
Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022.

1. BACKGROUND
Modular Open System Approach (MOSA)

is “a technical and business strategy for
designing an affordable and adaptable
system” [1]. Because of its variety of
solutions to acquisition issues, MOSA is now
required for new platforms [1]. “The
objective in implementing this approach is to
ensure systems are designed, where possible,
with highly cohesive, loosely coupled, and
severable modules that can be competed
separately and acquired from independent
vendors” [2]. MOSA effectively enables a
system to integrate severable and modular
components that can be replaced or upgraded
without modifying the whole system

architecture. In systems implementing
MOSA the modules must have certain
boundaries with open standards-based
interfaces appropriate for separating out the
important aspects of each feature, so that the
vendors create whole modules that serve their
functions in their entirety.

Using Model-Based Systems Engineering
(MBSE) for acquisition is the current trend,
and its top challenge is to model systems to
demonstrate MOSA principles. This paper
describes at a high level the considerations
and approaches that can be followed to
effectively model a system applying MOSA,
using the System Modeling Language
(SysML). Instead of developing a system
architecture, the approach described in this
paper uses a concept of “MOSA Objective
Architecture” to model the rules and
constraints to be followed by the system

DISTRIBUTION A. Approved for public
release; distribution unlimited. OPSEC
#5224: approved for release.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Based Approaches to Systems Implementing Modular Open System Approach (MOSA), Peters, et al.

Page 2 of 11

implementers to achieve MOSA principles in
their designs. The Objective Architecture
includes the minimum required attributes and
capabilities of a family of systems at a high
level. The goal of the Objective Architecture
is to define the minimum of implementation
specific constraints on the vendor system.
The specifics of this system will eventually
be developed and modeled in a system
architecture that implements the high-level
specifications from the Objective
Architecture.

The MOSA Objective Architecture, based
on open standards, is the first step in building
portability and modularity while promoting
interoperability. In an open system,
portability means that a component can run
on multiple different platforms. The aim is to
minimize the human efforts in redesign and
redeployment of each new component to a
platform. Interoperability means the
components can regularly interact and
exchange information with one another
through a standardized and well-documented
interface. Component-specific interfaces do
not need to be adapted for each system.

The Objective Architecture also defines
common capabilities and services that must
be part of any compatible platform. The
intent is to allow the architects to make some
capabilities available on all platforms and
encourage or enforce usage from the platform
specific modular components. It should be
noted that the Objective Architecture may
vary how much of any interface is pre-
defined vs how much of the interface would
need to be defined by the implementor.

The Objective Architecture defined herein
ensures that any vendor-derived system
architectures are portable, modular, and
interoperable with all other systems by
requiring the compliance to the following
definitions. Common services that are
defined without specific definition of their
implementation allow the vendor to control
the specificity within their component.

Common services and messages are defined
allowing for the reuse and interoperability of
the components. Finally, the physical
interfaces and software interfaces are
constrained to allow for portability of
components. These definitions within the
Objective Architecture ensure that complete,
portable, modular, and interoperable
components can be effectively designed by a
vendor.

2. MODELING CONSIDERATIONS
One aspect of modeling a MOSA Objective

Architecture that requires extra consideration
is the nature of the architecture being a set of
rules for a vendor system architecture more
than a system architecture itself. Since the
driving factor was a MOSA, it would be
perceived as “too prescriptive” for the
Objective Architecture to fully define how
the vendors need to design their system. For
this reason, the Objective Architecture is
extendable for implementation and
integration into the target platform.

2.1. DIFFICULTIES MODELING AN

OBJECTIVE ARCHITECTURE
MOSA Objective Architectures, by

definition, are under-prescribed. Modeling an
under-prescribed system has its challenges.
The lack of description of functionality and
attributes causes models to be incomplete.
Activity diagrams need to have a significant
amount of information for them to be
understandable, and Objective Architectures
cannot provide the usual amount, or any
context to derive it. Activities cannot connect
between the defined common services and
platform specific components because the
platform requirements are not described. The
interfaces fully describe the inputs and
outputs abstractly per Entity. However,
modeling connections and interactions from
an example client would mean having to
assume why and what one entity may need to
communicate with another. The fact that this

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Based Approaches to Systems Implementing Modular Open System Approach (MOSA), Peters, et al.

Page 3 of 11

modeling difficulty exists means that there is
low coupling between entities in the model.

Getting cohesiveness and coherence in a
model of something that is not meant to be
complete is done using weak relationships
between elements to show connections that
are implicitly defined. Specifically, allocate
relationships are used extensively to show
how specifications relate to other model
elements and how model elements relate to
one another between layers of the Objective
Architecture model.

A final challenge with modeling is that the
specifications may be organized by subject
areas as opposed to logical model elements.
More on this challenging aspect and a
solution to it is described in section 3.1.

3. MODEL STRUCTURE AND
RELATIONS

For the approach described in this paper, an
Objective Architecture model is organized
into three main categories: Specification
Structure, Functional Architecture, and
Logical Architecture. This allows for
splitting up the model into the requirements
views, functional views and logical views.
This supports minimal descriptions and
modularity as shown in the following
sections. Figure 1 shows the three packages
in an example structure. Figure 2 shows how
the three levels relate to each other.

Figure 1: Containment Structure Example

Figure 2 shows how the three levels relate
to each other.

Figure 2: Relationship Diagram Between Specification,
Logical and Functional Example

3.1. SPECIFICATIONS

The specifications for an Objective
Architecture may be organized by subject
area/topic (e.g., specific services, general
services, general hardware, cybersecurity,
etc.) as opposed to element (a.k.a.
Component or Entity). There can be a main
specification that can reference other
specifications and in turn those may
reference other specifications. In order to
model a MOSA Objective Architecture, each
specification has its own Package with sub-
Packages for referenced specifications.
Classes are added within the package holding
each specification table. The specification
classes are loosely mapped (allocate
relationship) to the elements in the model that
are necessary to satisfy the requirements in
each specification within the Functional
Architecture and the Logical Architecture

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Based Approaches to Systems Implementing Modular Open System Approach (MOSA), Peters, et al.

Page 4 of 11

sections of the model. The intent is for the
Objective Architecture to only contain the
minimum required elements. As such, the
Functional Architecture and the Logical
Architecture are only made up of the model
elements that the specification classes are
mapped to. This mapping connects the
structure of the specifications to the rest of
the model. If this isn’t done, the relationship
between the two would not be clear.

Note: An alternative that was considered
and rejected was having the rest of the model
structure match that of the specification
structure, but it made the relationship of
elements within the Logical and Functional
Architectures nearly impossible to describe
effectively.

For greater requirements tracing, there are
two ways that specifications are directly tied
into the Functional and Logical
Architectures:
1) The requirements are used as constraints

on model elements where other modeling
is unclear or not possible.

2) The requirements link to model elements
with satisfy relationships which also
show where the requirements have been
satisfied – a useful tool for model
viewers.

The general structure of the Specification
Structure start with the Top-level MOSA
specification, then continues with the
references Specifications. Hierarchy outline
of Specification Structure for ‘Current’
Specification:
1) {Parent} : Package [1]

a) {Current} : Package [1]
i) {Child} : Package [0..*]
ii) 00 Introduction - {Current} : content [1]
iii) {Current} - Allocations : BDD [1]
iv) {Current} : Requirement Table [1]
v) ??? : Requirement [1..*]
vi) {Current} : Class [1]

(1) {Current} : Constraint [1]

Figure 3 shows a sample of what a
Specification Structure could look like if it
has 3 levels of description.

Figure 3: Specification Structure Example

Figure 4 shows a sample of a Specification
allocations and associations.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Based Approaches to Systems Implementing Modular Open System Approach (MOSA), Peters, et al.

Page 5 of 11

Figure 4: Specification Allocations Example

3.2. FUNCTIONAL ARCHITECTURE

The Functional Architecture is a set of
features, capabilities and behaviors contained
within Entities using a special stereotype
called “Activity Feature Set.” An Entity is a
functional Element that contains a set of
behaviors described in the requirements and
represents an endpoint of communication
between data, messages and/or information.
The “Activity Feature Set” stereotype, which
extends the use of an activity, differentiates
the blocks in the Logical Architecture from
those in the Functional Architecture. This
approach allows the difference between
logical ports and purely functional ports to be
more obvious, but still have roughly the same
model representation. Logical ports show a
more physical type of interface, as where
functional ports are used to show the
interfaces for the information sent between
Entities. The use of a Block is specifically
avoided to clarify to a viewer of the model

that these are not logical structural elements
of the system. An Activity Feature Set
stereotype is composed of behavioral
elements not directly allocated to any
structural logical element.

The important part of the Functional
Architecture is to show the how the Signals
are used between defined Entities of the
system. Behavior diagrams are used to
capture how Signals move and are handled
within each Entity. Using Send and Accept
Event Actions circumvents the need to know
who sends data and who receives it since all
they say are what port the data is received or
sent on. It can be assumed, using Send and
Accept Event Actions, that any other activity
could be sending or receiving the data, which
exemplifies the openness of a MOSA
Objective Architecture. When the interface is
an open standard anything in the system can
use it.

The Entities match the description of a
component, service, etc. from within the
requirements that perform an action based on
passing information between Entities. The
Entities are modeled as Activity Feature Sets
and contain the owned interface blocks and
behaviors. The Signals described here are not
meant to represent a message; they represent
a set of information being passed between
Entities. These Signals are mapped to one or
more messages within the Logical
Architecture either within the Objective
Architecture if required or left open to be
mapped by the vendor implementation.

The structure of a Functional Architecture
generally follows the hierarchy of the Entity
generalizations with some additional
grouping as makes sense by the modelers. It
starts with the Top-level Activity Feature Set,
then continues with the owned Entities
(Activity Feature Sets). Hierarchy outline of
Functional Architecture for {Current}
Activity Feature Set:
1) {Parent} : Package [1]

a) {Current} : Package [1]

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Based Approaches to Systems Implementing Modular Open System Approach (MOSA), Peters, et al.

Page 6 of 11

i) {Child} : Package [*]
ii) 00 Introduction - {Current} [1]
iii) {Current} - Parts : BDD [0..1]
iv) {Current} - Generalizations : BDD [0..1]
v) {Current} - Signals : BDD [0..1]
vi) {Current} IF : Interface Block [0..*]

(1) {Current} Message : Signal [*]
(2) {Current} Parameter : Data Type [*]

vii) {Current} : Activity Feature Set [1]
(1) Do {Current} : Behavior [*]
(2) +port : Interface Block [0..*]

Figure 5 shows a sample layout of 3 levels
of features. This includes the chosen
containment structure of related Elements for
each Activity Feature Set.

Figure 5: Functional Structure Example

Figure 6 shows a sample Activity Diagram
using Accept/Send with Signals that are part
of the Interface Blocks on a specific Port. It
also shows the parameters moving through
the Activity Diagram.

Figure 6: Activity Diagram Example

3.3. LOGICAL ARCHITECTURE

The definition of “Logical Architecture” in
this context is a level of abstraction that
defines components of the system that
perform the functionality in the Functional
Architecture. It describes the logical
properties of each component characterized
by the Objective Architecture specifications.
There is a direct allocation from the elements
within the Specifications and Functional
Architecture to those in the Logical
Architecture which allows viewers to
understand the connection of the two
architectures. All Logical Components have
an allocate relation from the Functional
Architecture and may have an allocate
directly from the Specifications. But, the set
of Components may be small, if there are
only a few required logical elements.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Based Approaches to Systems Implementing Modular Open System Approach (MOSA), Peters, et al.

Page 7 of 11

The connections between logical elements
are modeled on interfaces that are logical or
physical, and this is the main difference
between the Functional Architecture and the
Logical Architecture. The Logical
Architecture is a way of showing vendors the
minimum components and interfaces needed
within their system whereas written
specifications may veil this information.

Hierarchy outline of Logical Architecture
for {Current} Block
1) {Parent} : Package [1]

a) {Current} : Package [1]
i) {Child} : Package [*]
ii) 00 Introduction - {Current} [1]
iii) {Current} - Parts : BDD [0..1]
iv) {Current} - Generalizations : BDD [0..1]
v) {Current} - Signals : BDD [0..1]
vi) {Current}: Block [1]

(1) Message : Signal : Parameter Set [*]
(2) Parameter : Data Type [*]
(3) Defined Block : Abstract Block [*]
(4) +part : Typed by Block [*]
(5) +port : Interface Block [*]

Figure 7 shows a sample layout of 3 levels
of logical Blocks. This includes the chosen
containment structure of related Elements for
each Block.

Figure 7: Logical Structure Example

3.4. DOCUMENTATION AND

NAVIGATION
To support understanding the model

structure, it is important to create
documentation that supports navigating
through the related elements of the model.
For each major element of the model (Class
from Specifications, Activity Feature Set and
Blocks) there is a content diagram with a
relatively common layout that puts links to
related element Diagrams, such as:
1) Parent content diagram
2) Related requirements
3) Owned Elements’ content diagrams
4) Element relation diagrams (IBD, BDD)
5) Related Elements (as determined by the

modeler)
6) Behavior diagrams
7) Allocations between levels

Figure 8 shows an example Content

diagram with related documentation and
links. (Modified to fit the paper format. It

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Based Approaches to Systems Implementing Modular Open System Approach (MOSA), Peters, et al.

Page 8 of 11

should be better spaced for visibility.)

Figure 8: Content Diagram Example – Activity Feature
Set

Each diagram should also contain a link to
its related content diagram to allow full
linkage throughout most of the model’s
diagrams. (Tables, Decomposition maps, etc.
will not support linking back to the content
diagram.)

4. MODEL COHESIVENESS CHECKS
Many measures need to be taken to ensure

cohesiveness within the model. Beyond the
normal model check, there are at least two
specific checks for this Objective
Architecture. First, check that every Activity
Feature Set has activities or state machines
located within them. Second, make sure that
all requirement-specified functionality and
communication on interfaces is in the model
activity diagrams and, when both Entities are
described, shown on internal block diagrams
for the Functional Architecture. To determine
whether the interfaces are all accounted for
and if all communication is displayed,
modelers double check the requirements and
their satisfy relationships. For this reason, it
is imperative to have as many satisfy
relationships to each requirement as is
justifiable. Doing this allows the modeler to
more quickly view how the requirement is
satisfied without the need to always look in
other parts of the model. Another aspect to
check is to make sure that Send and Accept
Event Actions in activity diagrams have an
opposite of the same or generalized type in
another activity diagram when both are
specified. Checking for matching Accept
Event Actions to Send Event Actions is one
way of ensuring cohesiveness and continuity
in the model.

An important model aspect to check is that
all model elements are appropriately
allocated from Functional Architecture to the
Logical Architecture and that all model
elements generalized all necessary parents.
The generalizations would show the inherited
properties the element needs according to the
specification structure. Along with
allocations, this allows vendors to know
which elements they need to implement to
create each part of and be compliant with the
Objective Architecture.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Based Approaches to Systems Implementing Modular Open System Approach (MOSA), Peters, et al.

Page 9 of 11

5. INTENDED USAGE
The behavior modeled within the

Functional Architecture will be used by the
vendors to show compliance to the MOSA
Objective Architecture. Vendors will take the
current behaviors (activity diagrams and state
machines), Activity Feature Sets and Blocks,
and add the specifics/complexity of their
system while still using the ports and signals
in the diagrams. Any extra functionality that
the vendor adds outside of what was already
in the Objective Architecture would have to
use a similar approach to cohesively show
communication between functional elements.
This allows the Program Manager to be able
to easily identify whether the model
component(s) are still ultimately doing what
they are specified to do. This also provides
the capability of tailoring components
specific to the program or platform specific
objectives consistently.

How to do this is outside the scope of this
document but is discussed in the Future
Investigation section.

A desired usage for this MOSA Objective
Architecture is to give industry the minimum
number of rules to create a design without
describing the exact details, thus leaving
them open to creative solutions.

Having the model and requirements setup in
a solution independent manner makes it
easier for vendors to look at an element and
all its related parts in the model. And if a
vendor is unable or unwilling to implement
the entire Objective Architecture, they can
tailor it to what suits their needs. The chosen
functionality and the allocations from the
Functional Architecture to the Logical
Architecture gives them a complete picture of
what they are expected to implement for their
tailored design to still be compliant and
cohesive.

6. INTENDED APPLICATION
 The Objective Architecture at the highest
level is structured to cover all specifications

and standards applicable to the compliance of
a MOSA. With the decomposition of the
specification to the functional and logical
architecture definition verification steps can
be created to ensure compliance to the
common definition of these parts.

Implementation of the Objective
Architecture by a vendor extends the
definition from the Logical and Functional
Architectures with complete traceability to
the specifications and standards driving the
MOSA system. This ensures that each
component of the platform system complies
with the Objective Architecture model and by
extension will be portable and interoperable
within all MOSA enabled platforms derived
from this Objective Architecture.

7. FUTURE INVESTIGATION

Future investigations include integration
with other models within the acquisition,
design and implementation process. This
includes considering the impacts of using a
‘Conceptual Architecture’ instead of the
Functional Architecture and mapping to a
‘Logical Architecture’. This would be helpful
throughout the platform lifecycle including
the definition, acquisition and verification
phases.

This proposal would more broadly define an
Objective Architecture to be applied to any
incomplete set of requirements and allow
maximum flexibility and links to a completed
system. It can be used as the basis of a
common interoperable platform (as in this
case). It can also be used to describe the
customer’s requirements of any component
that is part of a single system design. This
flexibility and linkage can be useful
throughout MBSE acquisition and
integration lifecycle.

Other improvements in methodology
include automated of checking of structure,
linkage and rules, and changing how the
Specifications are created and related to the
rest of the model. For example, the trace

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Based Approaches to Systems Implementing Modular Open System Approach (MOSA), Peters, et al.

Page 10 of 11

relation may be more appropriate for relating
Specifications to Functional and Logical
Architectures.

8. SUMMARY

Future system acquisition within the
government will increase its MOSA usage to
obtain modular and open systems. Using
MBSE for request for proposals and vendor
responses will make this process easier and
more standardized, but it will be an ongoing
effort to model Objective Architectures
effectively. This paper introduced some
solutions to model MOSA related problems
and offered suggestions for best practices for
modeling approaches to the objective
architecture structure.

9. REFERENCES
[1] “DSP :: MOSA,” www.dsp.dla.mil.
https://www.dsp.dla.mil/Programs/MOSA/

[2] National Defense Industrial
Association Systems Engineering
Architecture Committee, “Modular Open
Systems Approach: Considerations
Impacting Both Acquirer and Supplier
Adoption,” INCOSE, Jul. 2020.

[3] “Model-based systems
engineering,” Wikipedia, May 23, 2022.
https://en.wikipedia.org/wiki/Model-
based_systems_engineering (accessed Jun.
09, 2022).

[4] Wikipedia Contributors, “Systems
Modeling Language,” Wikipedia, Jan. 15,
2020.
https://en.wikipedia.org/wiki/Systems_Mode
ling_Language (accessed Feb. 02, 2020).

10. GLOSSARY

Name Definition
BDD A Block Definition Diagram is a

static structural diagram that
shows system components, their

contents (Properties, Behaviors,
Constraints), Interfaces, and
relationships.

Component A logical representation of an
Entity. A Component can
communicate to other
Components via logical
Interfaces.

Conceptual
Architecture

The very high-level structural
representation of the system,
independent of design choices,
allowing for exploration and
comparison of multiple Logical
architectures.

Data
Architecture

A Data Architecture defines the
rules of construction for
required data models and is
focused on the representation of
data exchanges in software.

Element A single selectable item of the
model.

Entity A functional Element that
contains a set of behaviors
described in the requirements
and represents an endpoint of
communication between data,
messages and/or information.
Related to Component.

Functional
Architecture

The functional representation,
independent of
design/implementation, of a
system, including the exchange
of information that happens as
part of performing those
functions

IBD An Internal Block Diagram is a
static structural diagram owned
by a particular Block that shows
its encapsulated structural
contents: Parts, Properties,
Connectors, Ports, and
Interfaces.

Interoperability Components can regularly
interact and exchange
information with one another
through a standardized and
well-documented interface.

Logical
Architecture

The basic structural
representation of a system that
includes high level design
choices but is independent of
specific design choices.

MBSE Model-based systems
engineering (MBSE), according

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Based Approaches to Systems Implementing Modular Open System Approach (MOSA), Peters, et al.

Page 11 of 11

to INCOSE, is the formalized
application of modeling to
support system requirements,
design, analysis, verification
and validation activities
beginning in the conceptual
design phase and continuing
throughout development and
later life cycle phases.[3]

MOSA A Modular Open Systems
Approach (MOSA), formerly
known as Open Systems
Architecture or Open Systems
Approach, can be defined as a
technical and business strategy
for designing an affordable and
adaptable system. [1]

MOSA
Objective
Architecture

An Objective Architecture to
meet MOSA’s goals of
adaptability.

Objective
Architecture

The minimum MBSE
representation of the
requirements of a system, as
described by customer looking
for vendors to implement. It
allows for the maximum
implementation freedom that
meets the needs of the customer.

Physical
Architecture

The detailed structural and
functional representation of the
system, includes specific design
choices and sufficient detail with
which to describe the “design
to” condition of the system.

Platform The top-level system that MOSA
is applied to. The typical context
is a vehicle, but can refer to
other types of systems as well.

Portability Components are HW and/or SW
Elements that can integrate with
multiple different platforms
without recompiling or
modifying the HW.

SysML Systems Modeling Language. A
general-purpose modeling
language for systems
engineering applications. It
supports the specification,
analysis, design, verification
and validation of a broad range
of systems and systems-of-
systems. [4]

System
Architecture

A model that defines the
structure, behavior and views of
a complete system.

	1. BACKGROUND
	2. MODELING CONSIDERATIONS
	2.1. DIFFICULTIES MODELING AN OBJECTIVE ARCHITECTURE

	3. MODEL STRUCTURE AND RELATIONS
	3.1. SPECIFICATIONS
	3.2. FUNCTIONAL ARCHITECTURE
	3.3. LOGICAL ARCHITECTURE
	3.4. DOCUMENTATION AND NAVIGATION

	4. MODEL COHESIVENESS CHECKS
	5. INTENDED USAGE
	6. INTENDED APPLICATION
	7. FUTURE INVESTIGATION
	8. SUMMARY
	9. REFERENCES
	10. GLOSSARY

