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ABSTRACT
System and software requirements provide a definition of what the system

implementation is required to do, and are a necessary component to independent
requirement based testing for safety critical systems. However as vital as these
requirements are, the requirements often are not analyzed until a safety assessment
is performed, or the system fails during testing. Automating the system analysis
and testing can be used to help to shift left the software life cycle, particularly
when the automation augments, rather than replaces, human test developers. This
paper presents a method to convert textual requirements into a logical model of
the system. This logical model can be used for various automated system analysis
procedures, as well as automated test generation. We show this automation can
provide significant insight into possible issues in the system, as well as significantly
accelerating the time required for test development.
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1. INTRODUCTION

The use of software is ever expanding, and
continuously evolving. In the past, changing
the behavior of equipment and vehicles would
require physical servicing to replace physical
components and hardware. The use of software to
control behavior means mission parameters can be

completely redefined in the field in seconds, making
software invaluable in an ever changing environment.

However the benefits of software are not without
cost. Poor software quality has been estimated to cost
the US around $2.84 trillion dollars [1] in 2018 alone,
with losses due to software failures exceeding a third
of this cost. Costs due to bugs can climb upwards
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of billions of dollars as evidenced in the Soviet Gas
Pipeline Explosion in 1982, reach to the hundreds of
billions in cost to repair the Y2K bug [2], or impact
the safety and lives of numerous people, as in the
Boeing MCAS software failure that lead to the loss
of two Boeing 737 MAX aircraft, and 346 lives [3].

Conversely, as technology advances, the cost, and
complexity, of software systems continues to grow
[4]. These costs are made worse with safety critical
systems, where the system must be proven to perform
the expected, and only the expected, functionality.
This has led to concerns related to not just the
increase of cost, but questions of are costs sustainable
at the current rate of growth in safety critical systems
[5]. The growth of costs is further enhanced by the
level of detail required for higher levels of system
criticality [6].

For decades the solution for safety critical
systems was the waterfall method [7]. This
method primarily exists to satisfy independent
Requirements Based Tests (RBT) [8], where
tests are developed purely from the requirements,
independent of software, to try to ensure the software
implementation performs all desired operations as
specified by the requirements, and only these
operations. Agile methods are one approach intended
to attempt to shift left [9] the software development,
or perform testing earlier in the software life
cycle, when changes cost less. This approach
leads to other difficulties, however [10]. When
the system as a whole is not defined prior to
implementation, unexpected interactions can occur
between components of the system.

While the use of agile has produced successful
results in shifting the software life cycle to the left,
projects with longer life cycles may not be able
to shift left as effectively [11]. Aviation software
projects have a very long life cycle, with significant
updates being performed decades into the life of the
project. These latter updates have to be carefully
identified and integrated into a very large existing
system, at very high cost.

In addition to the cost of failing to discover
software bugs, or discovering software bugs later
in the software life cycle, the cost of sufficient
testing to identify software bugs can be very high.
Development of a single test case by hand can take
one or more hours for simple behavior, and can
easily be in the tens of hours for more complex
behavior. In systems with thousands of requirements,
manual test development often reaches into engineer
years. Any use of automation can provide significant
cost benefits, along with the consistency provided by
automating the process.

Any method which can be used to analyze or test
the system earlier in order to shift left the software
life cycle can provide a significant reduction of the
costs describe above, and thus is of great interest
to the field of software development. In this paper,
automated methods to model a system, based on
requirement text, are explored. The paper then looks
into how this model can be used to analyze and test
the system as it is being developed. Additionally, the
paper looks at how automation of test generation can
accelerate the testing of a safety critical system.

2. BACKGROUND
System analysis is an often overlooked part of the

software development life cycle. Many projects, at
worse, either simply implement the system design
and move onto testing, or at best, perform a
safety assessment on the system after the system is
completed. Gaps in the system, dead code or masked
signals, may not be identified until the testing of the
software. In addition, software testing or a safety
assessment can often overlook gaps in the system as
requirements may not be fully exercised in isolation,
but conflict with each other, so unit testing will miss
bugs that integration testing is needed to identify.

Take for example the following requirements:

Requirement 1:
FMU_software shall set OVERSPEED_FAULT
to True if the following logic
evaluates to True:
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(
(BRAKE_SENSOR_STATUS is equal to
BRAKES_APPLIED)
AND
(BRAKE_SENSOR_STATUS_VALID is equal
to True)
AND
(
(RECORDED_SPEED is greater than
IN_FLIGHT_TH) AND
(RECORDED_SPEED_VALID is True)\n

) is equal to True unchanged for
greater than OVERSPEED_FAULT_DELAY

AND
(FAULT_DETECT_ENABLED is equal to
True)
AND
(ON_GROUND is equal to True)
AND
(ON_GROUND_VALID is equal to True)

)

Otherwise, set OVERSPEED_FAULT to
False.

Requirement 2:
FMU_software shall set the
FAULT_DETECT_ENABLED to True if the
following logic evaluates to True:
(
(
(PBIT_STATUS is equal to True)
AND
(PBIT_STATUS_VALID is equal to
True)

)
AND
(
(RECORDED_SPEED is greater than
IN_FLIGHT_TH)
AND
(RECORDED_SPEED_VALID is equal
to True)

) is True for greater than
STABLE_FLIGHT_DELAY

AND
(
(ON_GROUND is equal to False)
AND
(ON_GROUND_VALID is equal to
True)

)
)

Otherwise, set FAULT_DETECT_ENABLED
to False.

Taken separately these requirements are perfectly
valid and unit tests will pass just fine. Providing
100% unit test coverage of the code. However full
integration tests will identify that Requirement 1
needs ON GROUND set to True, while Requirement
2, which is an input to Requirement 1, needs
ON GROUND set to False. The methods section 3.4,
will show how to identify these types of logic errors
in requirements earlier in the software life cycle,
though automated analysis of the logic defined by the
requirements.

Next, consider the impact of changes to the
system. In most legacy projects the change impact
analysis will look at requirement redlines, like the
following example.

FMU_software shall set the
FUEL_LEVEL_VALID to True and set
FUEL_LEVEL to the value of
IN_FUEL_LEVEL if the following logic
evaluates to True:

(
( IN_FUEL_LEVEL_ACTIVE is equal to

True)
AND
(
( IN_FUEL_LEVEL is greater than

or equal to
IN_FUEL_LEVEL_ICD_MIN)

OR
( IN_FUEL_LEVEL is less than or
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equal to IN_FUEL_LEVEL_ICD_MAX)
)

)

Otherwise, set the FUEL_LEVEL_VALID to
False and set FUEL_LEVEL to
IN_FUEL_LEVEL_ICD_MIN.

The provided change is relatively simple, a single
condition is added. This condition is must be added
to the implementation, and be added to the existing
tests. Additionally the change will result in a new
logic path from the inputs to define the behavior
of IN FUEL LEVEL ACTIVE, and all requirements
this requirement traces to will be impacted. The
cost of this change can be estimated based on the
average cost to update a requirement, but this is a
fairly coarse estimate. Since this is a fairly simple
example, the impacts are rather easy to estimate. In
an active, mature project, the changes may involve
hundreds of modified requirements, with interrelated
impacts to the logic. The cost to estimate, and update
the system continues to grow exponentially with the
number of requirements changed. The end of the
methods section 3.2 will look at how automation can
significantly save on costs to identify and estimate
impact, and an accurate model of the system can
more precisely model the impact of changes.

Lastly, consider the impact of requirements on
testing. Looking at the previous redline requirement
as a whole new requirement, there are is a logical
AND as well as an OR, which according to the rule
of tests cases being equal to the number of MCDC
logic gates + 1, there will be three test cases. A
test developer will need to create a test procedure
outline for each of the three tests cases, define input
conditions and expected output conditions. While
this is a relatively trivial example, some tests may
have many more cases to implement, each case with
a very similar structure to create, as well as the
software engineer having to determine the MCDC
conditions. If we consider only the redline change,
a single test case will have to be added. Engineers

typically copy/paste a previous test case to save
on time, which can be error prone, particularly
when done with dozens, or hundreds, of changed
requirements. In the methods section 3.2 we will
look at how automation can eliminate the tedious,
repetitive, creation of test sections, and save time on
determining what the MCDC cases are.

3. METHODS
3.1. Building the Model of a Single

Requirement
This algorithm builds a logical model of

the system by identifying the inputs, conditions,
and outputs of blocks of logic. Inputs are
signals, or variables, with defined types and
ranges, or constants. Conditions are broken down
into mathematical operators, comparisons, logical
operators and timers. Outputs are signals, that are set
to input signals, or constants, and may be set using a
combination of mathematical operations.

To help visualize how a logic graph is
constructed, an example is provided of a generic
customer requirement, with a simplified data
dictionary. The data dictionary exists to define
the types, and ranges, of each variable, allowing
the algorithm to determine a key set of values for
system analysis. For example, Boolean variables
are fully exercised just by being set to both True
and False. Alternately, numerical values may have a
nominal, minimum and maximum value that define
the boundary of the equivalence classes, values
necessary to properly exercise comparisons, and may
be tested for data type minimum and maximum for
robustness.

Requirement:
(condition1) The software shall set

OUTPUT to True and set OUTPUT_VALID
to True if the following is True:

(
(INPUT is greater than COMPARISON)
AND
(INPUT_VALID is equal to True)
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)

(condition2) otherwise, set OUTPUT
to False and OUTPUT_VALID to True
if the following logic evaluates
to True:

(
(INPUT is less than or equal to
COMPARISON) AND
(INPUT_VALID is equal to True)

)

(condition3) otherwise, set maintain
the current value of OUTPUT and
set OUTPUT_VALID to False.

Data Dictionary:
INPUT {"Type": "Integer",

"Range": "0..10"}
INPUT_VALID {"Type": "Boolean"}
OUTPUT {"Type": "Boolean"}
OUTPUT_VALID {"Type": "Boolean"}
COMPARISON {"Type": "Constant",

"Value": "5"}
Boolean {"Range": "True, False"}

The red text in the requirement are labels added
to identify each output condition of the requirement,
and will be referenced below.

First, each condition is identified and isolated.
In the requirement above, there are three conditions,
each with corresponding outputs. Two of the
three conditions have input logic associated with
the conditions, while the third condition is always
true if reached. These conditions can be visually
represented as shown in figure 1, where condition1 is
is the priority condition, and if a condition evaluates
to false the logic will fall through to the next
condition, until the always true condition3 is reached.

Figure 1: Visualization of requirement conditions.

Next the logical conditions for each condition are
added to the graph, as shown in figure 2. Note the
otherwise condition has an input condition of true,
this indicates the case will always be true if the other
conditions all fall through.

Figure 2: Visualization of requirement logical conditions.

Last the output values are added to the
visualization. All three conditions output the same
signals, but set different values. So the connection
indicates both the signal being output, and the value
being set, as shown in figure 3.

Figure 3: Visualization of full requirement.
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This method of converting requirement text to a
model is done via two methods. The first method,
used when the requirements are very structured, is
using a set of regular expressions can be used to
parse the requirement text and produce the model
logic graph. This method proved extremely viable,
albeit restrictive, while developing the prototype of
this tool. The second method, being developed with
the assistance of Dr Rafiq [12] at Grand Valley State
University’s (GVSU) Applied Computing Institute
(ACI), is the use of knowledge graphs and machine
learning to provided a layered approach to read
vague and generically written textual requirements,
and produce very structured requirements. These
structured requirements can be read by both the
regular expressions and NLP to provide a higher
confidence result. This approach is outlined in figure
4, where the text of a requirement is converted
into a knowledge graph with relationships identified,
then the relationships are parsed by an NLP engine
to produce a postfix equation, and ultimately a
logical graph of the system. Throughout the process,
a human in the loop is used to check that the
automation is correctly parsing the requirement.
This allows the tool to be used in a DO-178B/C
environment without having to qualify the tool, as
there is independent human oversight.

Figure 4: Machine Learning Example Pipeline.

3.2. Analysis of a Single Requirement

System analysis provided by this algorithm for a
single requirement falls into three categories. First
is identifying MCDC coverage for test automation.
Second is determining what outputs will be produced
for a given set of inputs. Third is determining what
sets of inputs can produce a desired output.

For MCDC coverage, each node type in the logic
graph has different computations. Constant nodes
simply provide a constant value, and signal nodes
provide the datatype and data dictionary min/max
values initially. Mathematical nodes look at all
combination of child node values to identify what
outputs can be produced. Comparator nodes look
at what values are available from their children to
identify cases that can set the comparison result to
true and false. Logical nodes identify what child
values are available to produce the MCDC condition
for the current logical operator. If the children do
not have values needed to set a desired condition,
the parent will ask the child to output those values,
and this process is repeated to the requirement inputs
to determine all values necessary to set the desired
values.

To follow this process through the example tree,
the focus starts on one of the comparators, shown in
figure 5. The comparator outputs true if the signal
INPUT is greater than the constant COMPARISON.
INPUT has a data dictionary minimum of 0,
and maximum of 10, while COMPARISON has
a value of 5. All combinations of INPUT and
COMPARISON are compared with the greater than
operator, with the results shown in figure 5, of
INPUT = 0 greater than COMPARISON = 5 is False,
and INPUT = 10 greater than COMPARISON = 5 is
False.

Automation of Test Case Generation and Software System Modelling, Lingg, et al.

Page 6 of 16



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 5: Visualization of MCDC Comparison.

Both the true and false result of the comparison
are produced, so the output of comparison is fully
exercised, satisfying MCDC, and no other values,
such as a nominal value, are necessary. If this did not
produce all necessary outputs, say if the comparison
operator was is equal to, the following process would
be used. The is equal to operator would find neither
0 or 10 is equal to 5, so all outputs are false. Since
the constant cannot change, the INPUT signal would
have to be set to a value that makes the is equal
operator true. This would be a value of 5. So the
equal to operator would tell the INPUT child node
to add a value of 5 to its list of values, since this is
within the INPUT data dictionary range, the value
would be successfully added.

Next is a quick dive into how MCDC is
determined for a logical operator. In the example
we only have AND operators, which is satisfied by
the input cases True/True, True/False and False/True,
as shown in 6. From looking at the greater than
comparison above, we know the first case was a false
result, and the second was a true result. So to satisfy
the logical AND operator, we would use the greater
than operator’s second case twice, and first case once.
Analyzing the children of the is equal operator would

reveal what cases of the is equal operator would
satisfy the inputs needed by the AND. For more
details on producing and automating MCDC tests,
see our white paper on automation of MCDC testing
[13].

Figure 6: Visualization of MCDC Logical Operator.

A full run of this requirement through this tool
produces a JSON test procedure, that satisfies all
MCDC cases, and can be converted into a ReqIF, or
other format for importing test procedures to a formal
requirement tool like DOORS or Cameo.

Next we will look at system analysis, which is
performed on the model of the system produced
from parsing the requirement text. The basics are
identifying what outputs are set from known inputs
and what inputs are set from known outputs. This
is not that dissimilar to analysis provided by similar
tools, such as SCADE/Simulink. The difference is
this tool tool starts from text based requirements,
rather than requiring requirement developers to start
with a model of the system. We can also provide
an analysis of how a signal, or set of signals, would
impact outputs if allowed to be set to any value, while
other signals are locked to specified values. This
tool then provides advanced manual and automated
system analysis to locate potential conflicts within
the requirements. First we will look at the basics
of how outputs are identified from input values, and
what inputs are necessary to set specified outputs.
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Identifying what outputs are set from a set of
locked down inputs starts with looking at the inputs
being produced by the requirement. If a user wants
to see what outputs are set when INPUT is set to
6, and INPUT VALID is set to true, the system
will find which requirements input these signals, and
would find a match in the example requirement. For
analysis of the outputs of this requirement, the logic
graph will be followed from the outputs down to the
inputs. If the input is one of the locked down inputs,
the desired value will be passed to the parent node to
be evaluated. Evaluations continue up the logic graph
until outputs are identified, as shown in figure 7.
For the example requirement and the inputs specified
above, the value of INPUT will be greater than
COMPARISON, and INPUT VALID is true, so the
AND of condition1 will evaluate to true. condition1
sets OUTPUT to true and OUTPUT VALID to true,
so the outputs have been identified from the specified
inputs. The algorithm could analyze the other
conditions, but once a condition evaluates to true, the
otherwise cases do not need to be evaluated.

Figure 7: Visualization of Output Analysis.

Identifying what inputs are needed to set known
outputs starts with looking at the outputs being
produced by the requirement. If a user wants
to see what inputs can set OUTPUT to True and
OUTPUT VALID to true, the system will first find
which requirement produces these signals, and would
find a match in the example requirement. Next the
system checks the conditions in order, to see if any

condition sets the outputs to the desired values. In
this case, condition1 sets the outputs as desired. Then
the logic is followed down from condition1. For
the AND to be set true, both the greater than and
equal to comparisons must be true. The equal to
comparison can only be set true if INPUT VALID
is true. Following the logic graph down from the
greater than finds any value of INPUT greater than
COMPARISON (5) will set that comparator true. So
the system analysis will report OUTPUT=true and
OUTPUT VALID=true is satisfied by any value of
INPUT greater than 5, and INPUT VALID set to
true, as shown in figure 8.

Figure 8: Visualization of Input Analysis.

The system analysis goes one step further in
that if not all signals are locked down, any signal
not locked down is evaluated at nominal, data
dictionary min and max, and datatype min and max.
An example is if we want to know the outputs
if only INPUT is locked down to 6. Because
INPUT VALID can be either true or false, both
condition1 and condition3 can evaluate to true in
this case. So the outputs are either OUTPUT=true
and OUTPUT VALID=true as shown in figure 7, or
OUTPUT=maintain and OUTPUT VALID=false as
shown in figure 9.
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Figure 9: Visualization of Output Analysis, Validity False.

In addition to the basic logic analysis, a time
based analysis can be performed. Identifying how
signals propagate through the system can include
time delays, as well as loop backs. As well as
changing inputs over time and seeing how the set of
outputs changes over time.

A final capability is analyzing requirement
changes. Figure 10 shows a visualization of a
requirement difference report, where blue shows new
logic, and red would show removed logic, if there
was any. Because the differences are determined on
which logical conditions are different, estimations of
complexity changes can be made much more fine
grained. This is something we have only started
exploring, so this is as much as we have to report
in this paper.

Figure 10: Visualization of requirement changes.

3.3. Building a Model of Multiple
Requirements

The analysis of a single requirement is simply
a building block in the system. When one or more
requirements are read in, the requirements are linked
together by their signals. The data dictionary is used
to differentiate between signals and constants within
the system, while an Interface Control Document
(ICD) is used to identify system inputs and outputs,
and provide the details of these system signals.
Figure 11 shows an example of multiple logic blocks,
with their internal logic collapsed down to show
just the requirement relationships. In this case,
there are two system inputs passed in, these are
converted to internal signals with validities, and a
system output is produced from the internal signals.
When each requirement’s logic is brought into a
logic graph, its inputs and outputs are mapped to the
requirement. Then when the user wants to set certain
signals, or find what inputs set certain signals, which
requirements input or produce these signals can be
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quickly looked up.

Figure 11: Visualization of Multiple Logic Block Relationships.

3.4. System Analysis with Multiple
Requirements

The core element of analyzing dataflow across
multiple requirements is identifying the paths from
a given signal to all inputs that can affect the signal,
or all outputs affected by the signal. This analysis is
performed by starting with a signal and a direction
of toward the inputs or outputs. The signal mapping
is used to find all requirements that input or output
the desired signal. Then, depending on the direction,
all input or output signals of the requirement are
identified and added to a path tree, along with the
identity of the requirement. This process is repeated
for all signals found along the way, until system
inputs or outputs are reached. This provides a
complete analysis of the requirement path from the
signal to system inputs or outputs, and all internal
signals impacted along the way. Traversing the
logic shown in figure 11 for each system input, will
produce the traversals shown in 12. This is used for
further system analysis described below, but can also
be used to quickly provide an analysis of the impact
of changing a given signal.

Figure 12: Visualization of Signal Path Trees.

Identifying outputs set by locking down input
signals, or what inputs are needed to set certain
output values is extended to the multiple requirement
scope. Using the signal path trees defined in figure
12, the trees are searched in a breath first traversal.
Any requirements that show up more than once
will only be in the analysis path once, at the last
point found in the breadth first search. This ensures
that each requirement is not processed until its
dependencies have been processed. For example,
parsing the path trees in figure 12 will produce an
analysis list of Block 1, followed by Block 2 or
Block 3 in any order, and finally Block 4, which
is dependent on Blocks 2 and 3 last. Then this
list of requirements is processed, starting with the
defined input or outputs, and the inputs and outputs
of each requirement along the way is combined into
sets of valid signals along the analysis path. For the
example, if we analyze the output with all system
inputs set to known values, System Input 1 and
System Input 1 Valid would be set to a known value,
and Signal 1 and Signal 1 Valid would be identified.
All of these would be passed to Comp 2, with System
Input 2. This would be repeated for Comp 3 and 4,
to find System Output.
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Figure 13: Visualization of an Output That Cannot be Set.

Figure 13 uses a simplified version of the
conflicting requirements in the background, to show
what conflict analysis would look like. The conflict
would be detected when looking at what sets Signal
2, from Component 2, to True and False. Setting
Signal 2 to False works fine as there are a number
of possible paths, but setting it True is different.
This analysis would identify all inputs of Component
2 that set Signal 2 True, just like described in the
previous section. Then these values would be used
to set the output of Component 1, and identify all
necessary inputs. The result is System Input 1 cannot
be set to both True (required by Component 2) and
False (required by Component 1) at the same time,
no set of inputs will be identified that can set Signal
2 to True.

Figure 14 shows a simple example of a masked
out input. Input 1 and 2 are tested with all possible
values. The results show that due to input 1 being
masked by the AND gate causing it to have to be
set true and false at the same time. We can see this
because the output is toggled by input 2, but never by
input 1.

Figure 14: Visualization of an Input That is Masked Out.

3.5. Application to System or System of
Systems

A future capability is to be able to perform
analysis on a system of systems. All of the above
algorithms analyze the requirements for a single
software application. However this same method
can extend to how multiple components of a system,
or multiple systems, interact together. In the same
way inputs and outputs of requirements are linked
together, inputs and outputs of components of a
system, or systems of systems, can be connected
together to perform dataflow analysis on larger
systems.
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Figure 15: Visualization of a System of Systems.

3.6. Interoperability with other tools.

Interoperability is an important feature of this
tool, not only having the ability to bring requirements
into the system analysis tool, but the ability to
integrate with other tools, and extend the digital
engineering environment. Built into the tool is the
capability to import and export different formats.
JSON and XML are both supported, as well as
interfaces to import and export data with the
IBM DOORS Requirement Management Tool [14].
Beyond this, is a number of additional capabilities
that are planned for future development. ReqIF
and OLSC integration is planned to be added for
integration with tools, such as JAMA and Cameo. To
better integrate with existing text based requirement
environments, a future expansion of this tool is
to use Machine Learning to not only parse the
requirements, but also use what it learned while
parsing the requirement to maintain the requirement
text when the model changes, in the same format
the requirement was originally written in. Figure
16 shows a possible screen example of what having
requirement text and model side by side might look
like, so each is in synch with changes to the other

Figure 16: Example requirement text and model side-by-side.

4. RESULTS
During manual development of tests we found

that developing one fairly basic test procedure
required 120 minutes to develop the test procedure,
and 30 minutes to debug initial failures in the
procedure, for a total time of 150 minutes to
complete the test. The automated test case generation
tool required 30 minutes to generate the test
procedure, including the test developer’s time to
complete the test, and only 5 minutes to debug the
test, for a total time of 35 minutes to complete the
test. This is a little over 4x improvement in overall
time to complete the test procedure. While the tool
generates the test, the test developer is free to do
other tasks, reducing the actual engineer-hours spent
per test even further.

Though we do not have a comprehensive analysis
of time spent on manually vs auto-generated test
procedures, the improvements observed in this
simple example would indicate that similar, or even
greater, improvements could be made when testing
more complex requirements. As requirements get
more complicated, most time during manual test
development is spent identifying the system inputs
necessary to set the test inputs. The system
modelling provided can generate sets of system
inputs in a fraction the time it takes a test developer
to identify all of the possible paths. Further, simply
identifying the requirement paths back to system
inputs can help test developers reduce the time
necessary to develop tests, and help in identifying
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gaps that need to be tested in the requirements. Even
if increasingly complex tests do not show a linear
reduction in time to develop the test, a reduction of
nearly 2 hours to develop each test would represent a
reduction in a man year for each 1000 requirements.
This is very significant in systems with thousands of
requirements.

Beyond automated test generation is analyzing
and identifying conflicts within the system model.
AoE developed a set of requirements [15] that are
not directly tied to any project to use for testing
this system. Figure 17 shows a visualization of this
example system.

Figure 17: Visualization of Our Example System.

In this section, we will look at the results of the
following types of analysis:

• Tracing a signal to all outputs.

• Tracing a signal to all inputs.

• Finding output values from setting inputs.

• Finding input values from setting outputs.

• Find outputs that cannot be set.

• Find inputs that cannot set any outputs.

Figure 18: Visualization of Tracing a Signal to All Outputs.

The first analysis is tracing from a given signal
to all outputs, or inputs, this signal impacts.
Both analysis methods are fairly straightforward as
described in the Methods 3.4 section. Figure 18
shows a signal (IN FUEL TANK TEMP, which is
an input to FMUREQ-1776) traced to all its outputs
and 19 shows a signal (FUEL LEVEL LEAK, which
is an input to FMUREQ-1788) traced to all its
inputs. Each diagram shows a checkerboard pattern
for the ’destination’ requirements. In addition,
information is provided as to what constants and
system in/outputs are impacted by this signal, and
all internal signal names that connect between
requirements.

Figure 19: Test run of tracing a signal to all inputs.

Next we look at a test of the system to identify
outputs set from known inputs. We set the output we
want to identify as FAULT DETECT ENABLED,
and the inputs as :

• IN RECORDED SPEED = 150
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• IN RECORDED SPEED ACTIVE = True

• IN PBIT STATUS = True

• IN PBIT STATUS ACTIVE = True

• IN ON GROUND ACTIVE = True

• IN ON GROUND = False

• IN ON GROUND ACTIVE = True

Ultimately these inputs directly set the inputs of
FMUREQ-1794, as shown in figure 20, leading to
setting FAULT DETECT ENABLED to True.

Figure 20: Test run of finding all outputs set by inputs.

We further double check this by more runs
with IN ON GROUND = True on one run,
IN RECORDED SPEED = IN FILGHT TH on
another, and IN PBIT STATUS = False on a final
test. In each case, FAULT DETECT ENABLE is set
False, showing proper evaluation.

The process of identifying outputs is then
reversed to identify what input combinations can
set a known output. The same requirement
will be tested due to its familiarity. Identifying
what inputs set FAULT DETECT ENABLE to
True is fairly simple as it is basically only the
case shown in figure 20, with a few variations
allowed for testing numeric boundary conditions of

RECORDED SPEED and the corresponding signal
of IN RECORDED SPEED. Identifying all possible
cases that set FAULT DETECT ENABLE to False
is much more extensive as any combination of
inputs different from that in figure 20, where
RECORDED SPEED is <= IN FLIGHT TH will
set the output to False. All possible cases of this
result number in the thousands. This large number
of combinations is still identified in less than a
minute, while humans just trying to write down all
combinations will take longer.

Identifying outputs that cannot be set is
performed by looping through all boundary values
of an output signal, and verifying at least one case
can successfully set the output. A simple example
was provided in the methods 3.4 section, and for
our results we look at a the complex real world
case. The signal OVERSPEED FAULT will be our
real world example signal. This signal is set in
FMUREQ-1795, via a number of ANDed signals.
Both manual analysis, and tool automation, show a
number of inputs that can set OVERSPEED FAULT
to false, but things get more interesting when we
look at setting OVERSPEED FAULT to true. All
gates of FMUREQ-1795 must be set true, resulting
in one possible path to set OVERSPEED FAULT
true, which includes FAULT DETECT ENABLED
and ON GROUND both set to true. FMUREQ-1785
must set FAULT DETECT ENABLED to true to
satisfy our conditions up to this point. However,
to set this condition, ON GROUND must be
set to true, leading to a conflict that prevents
OVERSPEED FAULT from ever being true. The
analyzer will detect this by finding no set of input
combinations can ever set OVERSPEED FAULT to
anything but false.

Going the other way and identifying inputs that
do not set an output are done by identifying outputs
which a given input is connected to, then setting
those outputs to their equivalence class values, and
finally searching back to find what input sets can
set the outputs. If the inputs in question have
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no impact on the outputs, they are masked out.
Take 20 for an example. If this requirement is
updated to require IN PBIT STATUS always be
False, this will conflict with PBIT STATUS, masking
it out. Running the analyzer on this condition will
show that neither IN PBIT STATUS set to True or
False will change FAULT DETECT ENABLED, so
IN PBIT STATUS is masked out.

Ultimately the goal of this algorithm is to save
engineering time. Three experienced engineers
performed the above analyses and timed their results.
The total manual analysis time averaged between the
three engineers was 45 minutes, while the automated
analysis took 1 minute to compute all possible input
values, the remaining computations were effectively
instant.

5. CONCLUSION
In this paper we have presented an algorithm

for parsing structured human written requirements
into a system model using logic graph. The system
model is then analyzed by a number of methods to
determine if there are any gaps in the requirements.

We have previously shown that time to develop
a simple test can be reduced by 75%, or two hours.
Further we have discussed how this tool can reduce
test developer time by automatically generating a test
procedure skeleton that would need to be created
manually, as well as identifying paths to system
inputs. This framework for parsing requirements also
works well as a template for writing non-ambiguous,
testable, requirements that can be parsed with no
possibility of error.

The system analysis identifies gaps in the
requirements that is very time consuming for humans
to identify. In some cases, the humans may not be
able to identify the issues. The performance of this
analysis was shown to be significantly faster than
manual analysis, while providing a very high level
of detail in the results.

We look to expand this tool in the future
with better machine learning capabilities to be

able to parse natural human language, and identify
inconsistencies or gaps in the requirement text.
Further system analysis methods are planned,
including prompts to a user to define requirements
for equivalence classes, or signals, not fully defined
in the model.
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