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ABSTRACT 

A proposed new method of energy absorption in multilayered plates is to implement shear-
thickening fluids between the plate layers to act as a damping mechanism. Research into the 
implementation of shear thickening fluids (STF) in Kevlar body armor has yielded positive results 
for ballistic loadings. The objective of this integrated computational materials engineering 
(ICME) study is to accurately model the behavior of shear thickening fluids using the discrete 
element method (DEM) to better understand shear-thickening mechanisms and how shear 
thickening fluids behave under high shear rates experienced during impulse loading. These results 
are implemented in a reduced order model of a multilayered plate to determine the effect of shear 
thickening fluids on energy absorption capabilities. 

 
INTRODUCTION 

Structural energy absorption is critical for 
improving vehicle survivability and mitigating 
occupant injury in blast events. Increasing armor 
material is not always a viable solution; the impact 
of vehicle weight on mission performance has 
become a major issue for military vehicles [1-3]. 
Implementing shear thickening fluids (STFs) 

between plate layers in multilayer plates to act as a 
damping mechanism may provide a solution to both 
these problems. Integrated computation materials 
engineering (ICME) provides a useful method for 
studying the behavior and implementation of new 
materials, such as STFs, in which reduced order 
models can easily be incorporated to link multiscale 
models [3,4].  
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Shear thickening is a non-Newtonian behavior 
where viscosity increases significantly, sometimes 
discontinuously, with shear rate [4-9]. This 
behavior of STFs has proven to be useful in a 
variety of defense applications. Impregnating 
Kevlar and other synthetic woven fabrics with an 
STF has improved body armor performance under 
ballistic loading conditions [10,11]. Furthermore, it 
has been proposed that STFs can be used to develop 
tuned dampers [12,13] and shock resistant batteries 
[14]. 

STFs are often colloidal suspensions consisting of 
densely packed, solid particles less than a 
micrometer in diameter [5-10, 14]. The causes of 
reversible shear thickening are thought to be 
hydroclusters, which are jamming clusters of 
particles caused by hydrodynamic lubrication 
forces between particles, and dilatancy, the 
expansion of the densely packed particles when 
they are subjected to large shear stresses[7,9]. 

The first section of this paper discusses the 
development of a preliminary micro-scale model of 
a STF developed in the CFD software STAR-
CCM+. This model uses the discrete element 
method (DEM) to model the particles in the STF 
explicitly. The next section discusses a reduced 
order model used to capture the effects of 
implementing a STF at plate layer interfaces within 
a multilayer plate. The final section presents the 
results of these two models. 

  
MICROSCALE MODEL OF STF 

  In this section, the methods used to develop the 
microscale model of the fluid phase and particles in 
the STF are discussed. The particles are modeled 
using the discrete element method (DEM) and are 
coupled with the fluid through drag and lubrication 
forces. The fluid is modeled using traditional finite 
volume CFD. Both the fluid phase and particles are 
modeled in the computational fluid dynamics 
program STAR-CCM+. Due to the computational 
demands of this model, HPC resources were used 
to run the simulations. 

The STF used for this paper consists of silica 
particles 500 nanometers in diameter suspended in 
polyethylene glycol 200 (PEG 200) with a packing 
fraction of 0.57. The model is based on published 
measurements taken using a stress-controlled 
rheometer (SR-500, Rheometrics) with a 25 mm 
diameter cone and a cone angle of 0.1 radian [10]. 
The geometry of the cone and plate rheometer are 
shown in figure 1. 

 

 
 
 

Fluid Phase Modeling 
Using the rheometer geometry, a three 

dimensional Eulerian mesh was generated in STAR 
CCM+. A no-slip wall boundary condition was 
applied to the top and bottom surfaces of the mesh 
to simulate the cone and plate of the rheometer. An 
atmospheric pressure boundary condition was 
applied to the outer edge of the fluid domain. All 
boundaries were given the additional condition that 
the particles could not pass through them. Figure 2 
illustrates the application of the fluid boundary 
conditions. 

 
  
A rotational velocity was then applied to the top 

wall (the cone surface) to generate shear. Figure 3 
shows the resulting velocity boundary condition 
along the top of the fluid domain for a local rotation 

            α
α 

Ω 

25 mm Figure 1: Geometry of cone and plate rheometer (fluid 
sample shown in grey) 

No Slip Wall      Atmospheric Pressure 

Figure 2: Boundary conditions applied to Eulerian 
Mesh 
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rate of 0.4 radians/second. A strain-controlled 
rather than stress-controlled boundary condition is 
used since the rheometer data is reported in terms 
of shear rate. 

 

 

In order to simulate conditions similar to those 
experienced under impulsive loads, the model was 
subjected to shear rates greater than 100 s-1. The 
simulations were allowed to converge to a steady-
state flow. 

 
Particle Phase Modeling 
The discrete element model (DEM) is used to 

model the behavior of the particles in the STF. 
DEM is a meshless, Lagrangian method that 
includes the particles’ rotational degrees of 
freedom [15-19]. The particles are modeled as 
separate, spherical rigid bodies that interact with 
other particles and their environment through 
lateral and normal forces [15-19].  

The forces acting on each particle in STAR-
CCM+ are given in equations (1-2). Fd is the drag 
force acting on the particle, Fv is the viscous force 
that acts on the particle, and Fp is the force due to 
the pressure gradient that acts on the particle [17]. I 
is the moment of inertia of the particle and �̈� is the 
angular acceleration. The drag coefficients of the 
particles are calculated using Gidaspow’s equation 
[17]. 

𝑚$%&'()*+
,𝒗
,'
= 𝑭, + 𝑭$ + 𝑭12,3 + 𝑭)24'%)' + 𝑭5 (1) 

 

𝐼�̈� = 𝑟 × 𝑭)24'%)'
'%49+4'%*       (2) 

 
The Hertz-Mindlin contact model is used to 

calculate the contact force. The lubrication force 
between neighboring particles is proportional to 
their relative velocities, analogously to a damping 
force. The lubrication force acts along the normal 
vector between the two particle centroids and can 
be written in the general form: 

𝑭:4 = 	𝐶4𝒗𝒓𝒏    (3) 
 

Cn is the damping coefficient related to the liquid 
viscosity as defined in Equation (4), where R is the 
particle radius, ηf is the dynamic viscosity of the 
fluid phase, and H is the initial distance between 
particles i and j  as shown in figure 4 [18]. The 
relative velocity between particles i and j is vnr, 
which is defined in Equation (5). To avoid 
singularity, the lubrication force is set to zero when 
H is equal to 0.01r. 

𝐶4 =
?@ABCD

E
   (4) 

 
𝒗&4 = FG𝒗( − 𝒗IJ ∙ 𝒏L𝒏           (5)  

 
 
 
 
 
 

The effects of the particle motion on the fluid 
phase appear as a source term in the momentum 
equation for each Eulerian cell. This source term, 
defined in Equation (6), is calculated by summing 
the integral of the drag force and mass flow rate of 
each particle in the cell over its time of residency 
and then dividing by the time step [17]. 

𝑆 = −F N
∆'
L∑ ∫ G𝑭,&%9 +𝑚Ṙ 𝒗J𝛿𝑡

V'
W(          (6) 

 

Figure 3: Example of top wall velocity boundary 
condition 

i 
j 

H 

n 

Figure 4: Two DEM particles distance H away from 
each other 
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The particles are randomly injected into the fluid 
domain and allowed to settle before the velocity 
boundary condition is applied. 

Calculating Viscosity 
Equation (7) gives the general relationship 

between shear stress, τ, effective fluid dynamic 
viscosity, η, and shear rate, �̇�.  

𝜏 = 𝜂�̇�   (7) 
 
The shear rate for a cone and plate rheometer with 

cone angle, α, less than or equal to 0.1 radians is 
given in Equation (8) [8]. Ω is the rotational speed 
in rad s-1 at which the cone turns. 

�̇�(𝑟) ≅ _
`

    (8) 
 

The shear stress is calculated using the measured 
torque on the cone, T. Equation (9) gives the 
relationship between the shear stress at the edge of 
the cone, τ(R), and  T[8]. RC is the radius of the cone 
itself.  

𝜏 = ab
cBCde

   (9) 
 
REDUCED ORDER MODEL OF 
MULTILAYER PLATE 

In this section, the steps necessary to develop a 
reduced order model of a multilayer plate with the 
STF implemented along the layer interfaces using 
the reverberation matrix method (RMM) are 
described. RMM is used due to its capability to 
accurately model the dynamic response of 
multilayer plates in the frequency domain and the 
simplicity of implementing boundary effects at the 
layer interfaces to the model [19-22]. The steps to 
develop the RMM model are: defining the local 
coordinates and interface boundary conditions, 
defining the propagation of shear and pressure 
waves in the frequency domain, and finally 
defining the reverberation matrix itself. This model 
is used as a macro-scale model of the multilayer 
plates and shear thickening fluid. 

 

Coordinate Definition 
The N-layer multilayer plate is assumed wide 

enough that boundary conditions do not affect its 

response, meaning that the plate is modeled as 
infinitely wide. A two dimensional coordinate 
system (x,z) is defined at the 0th interface in the 
same plane as the shear and pressure wave normals. 
Local coordinates are defined at each layer 
interface, as shown in figure 5. 

The material properties of each Jth layer are 
isotropic. The force applied at each interface is 
defined as a vector fJ. 

 
Wave Propagation in Frequency Domain 
The reverberation matrix method uses shear and 

pressure waves to determine the dynamic response 
of the multilayer plate. A double Fourier Transform 
is performed on the fundamental equations for 
shear and pressure waves to transfer them from the 
time and space domains to the frequency ω and 
wave number k domains. Equations (10a) and (10b) 

ℎgh 

0 

I 

J 

N 

⋮ 

⋮ 

𝑓(𝑥, 𝜔) 
𝑥, 	𝑥WN 

𝑥g(gnN), 	𝑥gh 

𝑥hg , 	𝑥(hoN)h 

𝑥p(pnN), 	𝑥pp  

𝑧g(gnN) 

𝑧gh 

𝑧hg 

𝑧h(hoN) 

𝑧p(pnN) 

	𝑧, 𝑧WN 

Figure 5: Local coordinates for an infinitely wide plate 
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give the resulting general wave equations for the 
pressure wave (p-wave) and shear wave (sv-wave) 
respectively, where is the transformed pressure 
wave potential and is the transformed shear wave 
potential.  

,Drs
,tD

+ 𝛼c𝜑w = 0  (10a) 
 

,Dyz

,tD
+ 𝛽c𝜓} = 0  (10b) 

 
The p-wave and s-wave numbers in the z-

direction are given by equations (11 a-b) 
respectively. Cp is the p-wave speed, and Cs is sv-
wave speed. 

𝛼 = ~�D

��D
− 𝑘c  (11a) 

 

𝛽 = ~�D

��D
− 𝑘c  (11b) 

 
The general solutions for the wave equations can 

be described in terms of the unknown arrival wave 
amplitudes,	𝑎w$ and 𝑎w� , and the unknown departure 
wave amplitudes, 𝑑�$ and 𝑑��, at the interface. These 
solutions are as follows: 
𝜑w(𝑘, 𝑧, 𝜔) =	 𝑎w$(𝑘, 𝑤)𝑒n(`t + 𝑑�$(𝑘, 𝑤)𝑒(`t   (11a) 

 
𝜓}(𝑘, 𝑧, 𝜔) =	 𝑎w�(𝑘, 𝑤)𝑒n(`t + 𝑑��(𝑘, 𝑤)𝑒(`t		 (11b) 

 
The displacements and stress components in the 

x-z plane are determined by applying the 
fundamental elastodynamic solutions. 
 

Interface Boundary Conditions and 
Implementation of Shear Thickening Fluid 

At each Jth interface, the plate layers have equal 
and opposite traction forces applied to them to 
maintain equilibrium. For fully bonded interfaces, 
the plate layers at the interface have the same 
displacements. These conditions yield the 
boundary conditions described in equations (12 a-
d). The superscripts (J-1) and (J+1) indicate if the 

displacement or stress is measured on the upper or 
lower side of the interface respectively. 

𝑢�
h(hnN) − 	𝑢�

h(hoN) = 0	 (12a)	
	

𝑢t
h(hnN) + 𝑢t

h(hoN) = 0 (12b) 
 

𝜎�t
h(hnN) + 𝜎�t

h(hoN) = 0 (12c) 
 

𝜎tt
h(hnN) − 𝜎tt

h(hoN) = 0  (12d) 
 
The bottom face of the plate is assumed to be 

traction free, while the only traction acting on the 
top of the plate is the vector f(ω). Therefore there 
are only two boundary conditions at the 0 and N 
interfaces of the plate. 

When the STF is placed at the layer interfaces 
lateral sliding occurs, meaning that the boundary 
condition given in Equation (12a) is no longer 
valid. Instead, a traction proportional to the relative 
lateral velocity of the plate layers occurs which is 
analogous to adding a damping force along the 
layer interface. This new boundary condition is 
given by Equation (13).  

  
𝐶+�(�̇��

h(hnN) − 	�̇��
h(hoN)) = −𝜎�t

h(hnN)       (13) 
 
This coefficient is calculated using the definition 

of work. The work done by a viscous damper over 
a complete period of vibration is given by equations 
(14 a-b), in which X is the amplitude of vibration 
and ω is the angular frequency of vibration [23]. 

𝑊 = ∮𝐶+�𝑢�̇𝑑𝑥 = 	∫ 𝐶+��̇��c𝑑𝑡
D�
�
W  (14a) 

 
𝑊 = −𝜋𝐶+�𝜔𝑋c  (14b) 

 
The work necessary to shear a fluid between two 

parallel plates is given by Equation (15). τ is the 
shear stress acting on the fluid across the surface 
area A and η is the fluid’s effective dynamic 
viscosity. Using the definition of shear for a 
Couette flow between two parallel plates separated 
by a gap of height h, given in Equation (16), the 
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equivalent damping coefficient for a Newtonian 
fluid is given by Equation (17)[23]. 

𝑊 =	∮ 𝜏𝑑𝑥 =∮𝜂�̇�𝑑𝑥 = 	∫ 𝜂 ��̇�
�t
�̇��𝑑𝑡

D�
�
W  (15) 

 
��̇�
�t

= (��
�

   (16) 
 

𝐶+� =
@
�
   (17) 

 
For a non-Newtonian fluid, η is not a constant, but 

rather is a function of shear rate. This relationship 
can be calculated from the results of the previously 
discussed microscale model.  

 
Reverberation Matrix Definition 
By inserting the elastodynamic solutions into the 

boundary conditions, a linear system is built to 
describe the scattering phenomena at each Jth 
interface in terms of the unknown arriving wave 
amplitudes and departing wave amplitudes at the 
interface. Equations (18 a-b) describe these vectors 
respectively. 

𝒂s𝑱 = �𝑎w𝑝𝐽(𝐽−1), 𝑎w𝑠𝐽(𝐽−1), 𝑎w𝑝𝐽(𝐽+1), 𝑎w𝑠𝐽(𝐽+1)¢      (18a) 
 

𝒅z𝑱 = ¤𝑑}𝑝
𝐽(𝐽−1), 𝑑}𝑠

𝐽(𝐽−1), 𝑑}𝑝
𝐽(𝐽+1), 𝑑}𝑠

𝐽(𝐽+1)¥       (18b) 
 
 
 
 
 
 

 
 

This system is then written as Equation (19) 
where SJ is the local 4x4 scattering matrix at 
interface J and sJ is the local 4x1 source vector at 
interface J that corresponds to the right hand side of 
the boundary conditions. 

𝒅z𝑱 = 𝑺𝑱𝒂s𝑱 + 𝒔w𝑱   (19) 
 

At the top and bottom faces of the plate, the 
scattering matrix collapses into a 2x2 matrix due to 
the boundary conditions and the presence of only 
one plate layer along these surfaces. The global 
scattering matrix for the entire plate is described by 
Equation (20). 

 

⎣
⎢
⎢
⎢
⎡ 𝒅
z𝟎
𝒅z𝟏
⋮

𝒅z𝑵n𝟏
𝒅z𝑵 ⎦

⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡𝑺
𝟎 0
0 𝑺𝟏

⋯ 0 0
0 0

⋮ ⋱ ⋮
0 0
0 0 ⋯ 𝑺𝑵n𝟏 0

0 𝑺𝑵⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡ 𝒂s

𝟎

𝒂s𝟏
⋮

𝒂s𝑵n𝟏
𝒂s𝑵 ⎦

⎥
⎥
⎥
⎤
+

⎣
⎢
⎢
⎢
⎡ 𝒔w

𝟎

𝒔w𝟏
⋮

𝒔w𝑵n𝟏
𝒔w𝑵 ⎦

⎥
⎥
⎥
⎤
				(20) 

 
The waves that depart from an interface on one 

side of the plate layer become the arriving waves at 
the other side of the plate layer with a phase lag. 
Similarly, all arrival and departure waves within a 
plate layer can be linked using a 4Nx4N phase 
matrix P(h) by Equation (21). Equations (22 a-b) 
describe P(h). 

𝒂s = 𝑷(ℎ)𝒅z∗   (21) 
 

𝑷𝑱GℎhJ = µ𝑒
(`¶�¶ 0
0 𝑒(·¶�¶

¸  (22 a) 

 

𝑷 =

⎣
⎢
⎢
⎢
⎡
𝑷𝟏(ℎN) 0
0 𝑷𝟏(ℎN)

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝑷𝑵(ℎp) 0
0 𝑷𝑵(ℎp)⎦

⎥
⎥
⎥
⎤

    (22b) 

 
The elements in 𝒅z∗ and 𝒅z for each layer are the 

same and are linked through Equation (23), where 
u is the local permutation matrix. Equation (24) 
describes the local and global permutation 
matrices. 

𝒅z∗ = 𝒖𝒅z   (23) 
 

𝑼 = »
𝒖 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝒖

¼ , 𝒖 = ½
0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

¾  (24) 

 
The reverberation matrix, R, is defined as the 

product of the scattering, phase, and permutation 
matrices. Equations (26 a-b) state the relationship 

𝐽 

𝑎h,hnN
$  

𝑎h,hoN�  

𝑎h,hnN�  
𝑑h,hnN
$  

𝑑h,hoN�  
𝑑h,hoN
$  

𝑑h,hnN�  

𝑎h,hoN
$  

Figure 6: Arriving and departing waves at interface J 
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between R and the arriving and departing wave 
amplitudes. 

𝑹(𝑘,𝜔) = 𝑺𝑷𝑼  (25) 
 

𝒂s = 𝑷𝑼[𝑰 − 𝑹]nN𝒔w  (26a) 
 

𝒅z = [𝑰 − 𝑹]nN𝒔w  (26b) 
 

Dynamic Response 
The dynamic response of the plate ,G, is defined 

in Equation (27). Au and Du are the receiving 
matrices and are The Nuemann series is used to 
calculate the inverse of [I-R], as shown in Equation 
(29). An inverse Fourier Transform is performed on 
the dynamic response with respect to the wave 
number to return it to the frequency, displacement 
domain. 

 
𝑮(𝑘, 𝑧,𝜔) = 𝐴�𝒂s + 𝐷�𝒅z = (𝐴�𝑃𝑈 + 𝐷�)[𝐼 − 𝑅]nN𝒔w (27)  
 
[𝑰 − 𝑹]nN = 𝑰 + 𝑹 + 𝑹c + 𝑹a +⋯+𝑹É    (28) 

 
Results 

STAR-CCM+ 
The comparison between the STAR-CCM+ 

simulation results and the published rheometer data 
are shown in figure 7. As shown in this figure, 
initial simulations that did not include the 
lubrication forces between the particles resulted in 
significantly lower effective viscosities. However, 
implementing the lubrication forces lead to a large 

increase in the model’s accuracy. This behavior 
agrees with previous findings on the behavior of 
STFs, which emphasize the importance of 
lubrication forces in shear-thickening behavior 
[5,6]. Dilatancy did occur in the simulations, as 
shown in figure 8. 

The polynomial relationship between the shear 
rate and effective viscosity is calculated using least 
squares, yielding Equation (29). 

𝜂 = 1.992 − 0.0015�̇� + 4 ∗ 10nÍ(�̇�)c        (29) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

While the effective viscosities measured using the 
STAR-CCM+ model agree with published values 
at lower shear rates, the model does not accurately 
capture the shear thickening properties of the fluid 
at higher shear rates. This may indicate a need for a 
more complex model of lubrication forces between 
the particles at these shear rates. 

 
Reduced Order Model of Multilayer Plate 
To implement the behavior of the STF, the 

viscosity term in Equation (17) was replaced with 
Equation (29). An iterative method is used to solve 
for the dynamic response at each layer interface due 
to the non-linear dependency of the STF viscosity 
on shear rate. A five layer plate is simulated; each 
layer is 0.02 meters thick and made of steel. A unit 
load is applied to the bottom side of the plate. 

Figure 8: Initial particle position (left) and particle 
positions at steady state shear (right); increase in 

contact force between particles is shown 

Figure 7: STAR-CCM+ results plotted against 
measured values   
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Figure 9 shows the vertical dynamic response of 
the plate divided by its corresponding input power. 

Implementing the effects of the STF mainly 
affected the plate’s dynamic response at around 
peak response frequencies. This corresponds to the 
fact that the shear rate between plate layers is 
greatest at these frequencies. 
 
CONCLUSIONS  

In this paper a method of modeling STFs on the 
microscale using the discrete element method in 
STAR-CCM+ is presented. This paper also 
discusses using the reverberation matrix method to 
develop a reduced order, macroscale model of STFs 
for structural analysis. 

The following conclusions are drawn: 
• The results from the microscale STAR-CCM+ 

simulations indicate the importance of 
lubrication forces in modeling the shear 
thickening behavior of STFs. 

• The macroscale, RMM model is able to 
incorporate the viscosity of the STF along the 
interfaces of a multilayer plate and showed that 
implementing STFs into multilayer plates 
reduces their dynamic response. 

• STFs may provide a unique energy absorption 
mechanism for multilayer plates used in vehicle 
armor. 

While the presented model results are promising, 
future work includes: 
• Developing an improved model of the particle 

lubrication forces to improve the microscale 
model accuracy, especially for shear rates 
greater than 300 s-1 

• Implementing high pressure loading conditions 
to the microscale STAR-CCM+ model to study 
its effect on the model’s results 

 
Reference herein to any specific commercial 
company, product, process, or service by trade 
name, trademark, manufacturer, or otherwise does 
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Government or the Department of the Army (DoA). 
The opinions of the authors expressed herein do not 
necessarily state or reflect those of the United 
States Government or the DoA and shall not be 
used for advertising or product endorsement 
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