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ABSTRACT 
Simulation is critical to the development of effective unmanned ground 

vehicles (UGVs). Simulation provides the ability to test virtual hardware and 
software systems in conditions that may be difficult to recreate physically. An 
important benefit of simulation is that it grants researchers access to simulated 
hardware, such as sensors and vehicles, that might not be available otherwise. To 
successfully simulate both hardware and software systems, it is essential to 
acknowledge the needs and requirements of the simulation platform. In this paper, 
we investigate two simulation environments being used at Mississippi State 
University to model and simulate UGVs: the Mississippi State University 
Autonomous Vehicle Simulator (MAVS) and Gazebo. 

Within this paper we investigate the specific modeling needs for the 
Clearpath Robotics Warthog UGV in both simulation environments. We found that 
Gazebo has more options for vehicle and robot customization. However, Gazebo 
requires more up-front and explicit information to simulate even basic vehicles. 
MAVS, in contrast, is a platform that uses pre-defined vehicle and tire models that 
reduce the informational requirements and better supports rapid prototyping of 
four-wheeled ground vehicles. The narrower scope of MAVS limits its ability to 
model complex robots, but it excels at vehicle-terrain interaction and sensor 
simulation. It is fundamental to understand what level of granularity each system 
offers regarding simulation creation (i.e., how customizable the vehicle, physics, 
and environment is) to utilize each simulation environment effectively. 

 
Citation: Moore, M.N., Ray, P.A., Hudson, C.R., Goodin, C., Doude, M., Carruth, D.W., Ewing, M.R., & Towne, 
B.W. (2020). “Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo”, In 
Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, 
Aug. 13-15, 2020. 
 

 
 

 
DISTRIBUTION STATEMENT A. Approved for 
public release: distribution unlimited. 



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al. 
 

Page 2 of 13 

1.  INTRODUCTION 
Simulation is an increasingly important step in the 

process of creating, testing, and training advanced 
robotic and vehicular systems. Simulation 
platforms are currently being used to support the 
development of autonomous unmanned ground 
vehicles (UGVs), often intended for military 
operations. Exploring the capabilities of UGVs in 
simulation is beneficial in addressing specific 
challenges that accompany these vehicles, as well 
as how they navigate and interact with terrain. 
Some of the challenging scenarios presented when 
working with UGVs include navigation in 
unconstrained off-road terrains, navigation in 
environments with limited (or without) GPS 
information, human error while operating, and high 
cost of hardware. Simulation provides a 
straightforward way to approach these tasks and 
supports the production of robust, reliable systems. 

The two simulation platforms that will be 
discussed in this paper are the Mississippi State 
University Autonomous Vehicle Simulator 
(MAVS) [1] and Gazebo [2]. The goals of this 
paper are to note the differences between these 
simulation environments and to highlight their 
individual strengths. To illustrate the differences in 
creating and running simulations in both platforms, 
we describe a model of the Clearpath Warthog and 
document the necessary steps for both simulators.  

One of the benefits of Gazebo is its long 
development history. Gazebo has been used by 
many researchers and offers a large library of 
models, environments, and documentation. 
Gazebo’s 3D model editing tool enables rapid 
prototyping and real-time feedback. In contrast, 
MAVS excels at accurate, physics-based sensor 
simulations. MAVS is capable of rendering photo-
realistic outdoor scenes with authentic sensor 
interaction. Both Gazebo and MAVS provide 
integrations with the Robot Operating System 
(ROS). ROS is a widely used framework for 
developing software for autonomous robots and 
ground vehicles. By integrating ROS, both MAVS 
and Gazebo provide interfaces for integrating 

popular perception, planning, and control 
algorithms for testing. 

 
2.  VEHICLE MODELING & 
SIMULATION 

 
2.1 Advantages 

Safe Testing Conditions. When developing any 
vehicle, autonomous or not, passenger and 
pedestrian safety is crucial. For self-driving or 
autonomous cars, simulation provides a way to 
thoroughly test things like reaction time in a safe, 
simulated environment. Self-driving technologies 
can be evaluated over time by simulating miles 
driven, or by introducing rare edge cases. In this 
case, simulating dangerous conditions before real-
world implementation is a necessity. 

 
Access to Hardware. Often, research in robotics 

or ground vehicle systems is limited (or prolonged) 
by costs associated with hardware and design. 
Monetary costs are not the only relevant concern – 
the constraint of time is also a factor. When 
physically constructing models from the ground up, 
extra money and time can be spent re-engineering 
prototypes. Introducing modeling and simulation 
into the research development cycle manages these 
issues. Virtual modeling allows design changes to 
be quick and requires less human involvement. 
Reverting to previous model instances becomes 
much more convenient. Simulating a model in 
action lets the creator instantly observe if 
modifications function as expected.  

 
Diverse Simulation Scenarios. Setting up testing 

scenes for vehicles requires an on-site team of 
humans responsible for building and monitoring the 
scene, operating the vehicle(s), and running tests. 
This occupies a significant amount of time which 
could otherwise be used to create more diverse 
scenarios in simulated environments. Simulation 
offers control over scenario parameters that can be 
difficult or impossible to recreate in real-world 
testing (i.e., rainfall, dust, movement of vehicles, 



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al. 
 

Page 3 of 13 

etc.) When these tasks become relatively abstracted 
via simulation, testing can be centered around 
exploring new and interesting research ideas. 

 
Automatic Generation of Labeled Data. 

Researchers have used Gazebo to “synthesize 
automatically labeled 3D point clouds of natural 
environments” [3]. Specifically, the 3D laser 
rangefinder on the ground mobile robot “Andabata” 
[4] was emulated within Gazebo. The paper 
addressed the relevance of scene classification, 
which enables ground robots to autonomously 
navigate natural environments. Throughout the 
literature datasets containing 3D scans of terrain 
elements (i.e., ground, vegetation) can be found – 
most of which have already been manually or 
interactively annotated in software. The authors 
noted that few labeled datasets exist for ground 
robots in natural environments. Using simulation, 
the researchers generated realistic 3D point clouds 
by assigning arbitrary reflectivity values to 
environment elements. 

Research has also been done to automate the 
process of collecting and labelling training data for 
convolutional neural networks (CNNs) using 
MAVS [5]. It was found that the simulated data 
generated could be useful for training CNNs to 
segment image or camera data in outdoor 
environments with limited error. Prior to running 
simulations, all objects within a scene were 
semantically labeled. In MAVS, they generated 
random terrain surfaces, three different ecosystem 
types, three different sensor types, and 
automatically labeled the training and LiDAR data. 
If humans were to manually label the data described 
above, it could take countless hours. 

 
Validation of Results. When simulated models 

accurately represent real-world models, simulation 
can provide an effective tool for research, 
development, and testing of UGVs. Confidence in 
the results of simulation depends on verification 
and validation of the models that comprise the 
simulation framework. This requires verifying that 

the specifications meet the needs of the model or 
system user and validating that the model or 
system’s output matches what is intended. It is 
important to recognize that the transition from 
simulation to real-world (sim to real transfer) is 
rarely one-to-one. There are limitations in sim to 
real transfer in areas like Reinforcement Learning 
[6] and in tasks like 3D human pose estimation [7]. 

 
3.  MODELING PLATFORMS 
 
3.1 Gazebo 

Gazebo is a popular open-source 3D robotics 
simulation platform. From 2004-2011, Gazebo was 
a contributor to the Player Project [8], founded to 
encourage research efforts in robotics and sensor 
systems through the use of free software–
specifically simulation platforms. As a result, 
client/server robot control interface Player, 2D 
robot simulator Stage, and 3D robot simulator 
Gazebo were all developed. By 2011, Gazebo had 
transitioned into an independent project. Gazebo 
was created for the purpose of rapidly testing 
algorithms, designing complex robots, simulating, 
training systems within realistic scenarios, and 
more. 

To accurately and flexibly render simulation 
components and their physical features, Gazebo 
uses two different XML file formats: Unified 
Robotic Description Format (URDF) and 
Simulation Description Format (SDF). Files 
specifying a given robot or vehicle’s visual, 
structural, and kinematic properties (i.e., links, 
joints, sensors, etc.) are generally written in URDF. 
While URDFs are useful and standardized in some 
robotics applications (e.g., NVIDIA Isaac Sim [9], 
MathWorks Simscape Multibody [10]), URDFs 
only define a robot in isolation and cannot specify 
the pose of that robot within a world. Originally 
designed to address the shortcomings of URDFs 
within Gazebo [11], SDF was introduced. 
Typically, files written in SDF are used for 
controlling and visualizing movement at the 
robot/vehicle level, or describing elements like 
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terrain, agents, or static and dynamic objects at the 
world level. 

Four diverse, high-performance physics engines 
are available through Gazebo’s physics API: Open 
Dynamics Engine (ODE) [12], Bullet [13], 
Simbody from Stanford University [14], and 
Dynamic Animation and Robotics Toolkit (DART) 
from Georgia Tech [15]. Twenty-five sensor 
classes [16] are defined for Gazebo, including 
common sensors for autonomous robotic and 
vehicular systems like LiDAR and GPS. Gazebo is 
capable of emulating realistic 3D scenes using 
Object-Oriented Graphics Rendering Engine 
(OGRE) [17]. User interaction with Gazebo can be 
achieved through its native 3D graphic editor or by 
modifying a file’s code directly. 

ROS is commonly used as a direct 
communication, planning, and control interface 
with Gazebo. ROS is a widely used framework for 
developing software and implementing real-time 
control of simulated robots and vehicles. 
Communication with ROS is best accomplished by 
including additional simulation-specific tags within 
URDF files as well as installing Gazebo plug-ins 
and dependencies. This enables seamless control 
via the ros_control [18] packages. The ros_control 
set of packages includes controller interfaces, 
controller managers, transmissions and interfaces 
for hardware. Gazebo simulations are ultimately 
launched through compatible roslaunch [19] files. 
 
3.2 MAVS 

MAVS is a collection of software tools and 
libraries used for realistic on-road and off-road 
vehicle simulations. MAVS has been in 
development for three years and was started to 
address the shortcomings of existing simulators to 
interactively simulate autonomous navigation in 
complex off-road terrain. MAVS leverages Intel’s 
Embree platform [20]: a collection of ray tracing 
kernels optimized for CPUs. Embree allows MAVS 
to support in-depth physics models for LiDAR and 
camera systems to produce accurate physics-based 
sensor data.  

In [1], the authors showcased the detail given to 
simulated sensors by accurately modeling the 
behavior of LiDAR using ray tracing and validating 
their results against controlled field tests, analytical 
models, and laboratory results. This work 
demonstrated MAVS’ ability to simulate LiDAR in 
complex environments in real-time. 

MAVS additionally provides resources for 
automatic terrain generation for off-road 
autonomy, enabling rapid testing in a large set of 
unique environments. Since real-world 
autonomous systems must contend with adverse 
weather conditions, MAVS provides realistic 
simulated weather environments. Environment 
details such as fog, snow, clouds, wind, and time of 
day are all adjustable through its user interface. It 
uses ReactPhysics3D to model vehicle physics; 
however, it is compatible with other vehicle 
dynamics models including Chrono [21].   

Another notable feature of MAVS is its robust 
vehicle-terrain interaction (VTI) model. MAVS 
represents vehicles using a multibody dynamics 
model which allows multiple independent forces to 
be calculated for each component of the vehicle. 
This enables realistic simulations of vehicle 
behavior on different surfaces. Currently, MAVS 
has implemented equations to model tire 
interactions on six different surfaces: wet and dry 
pavement, fine- and coarse-grained soil, snow, and 
ice. 

MAVS is written in C++ and has an optional 
Python wrapper for ease of use. Geometric and 
physical descriptions for vehicles and terrain are 
specified in JSON files. The input JSON file 
contains features such as wheel offsets and chassis 
dimension that are used by the RP3D engine. The 
MAVS coordinate system follows an East-North-
Up scheme. The positive x direction is east, the 
positive y direction is north, the positive z direction 
points upward, and the default length unit is in 
meters. Currently, the software is available at no 
cost to non-commercial users. 
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3.3 Simulation Use Cases 
A. Gazebo 

Gazebo has been used as a simulation tool for a 
variety of scientific robotic applications. Okayama 
University of Science researchers [22] show that 
autonomous navigation algorithms performed 
similarly in both real-world and simulated 
environments. The experiment was conducted 
using two mobile robots: Pioneer 3-DX [23], a 
small two-wheel two-motor differential robot, and 
PeopleBot [24], a differential robot designed for 
service/human-interface tasks. Their results 
demonstrate that simulation-based code developed 
using ROS and Gazebo can be deployed to real-
world scenarios without modification. 

Researchers from Innopolis University and Kazan 
Federal University [25] modeled the Russian 
crawler-type UGV “Engineer” using ROS and 
Gazebo. Their research described the complexity of 
modeling, animating, and simulating UGVs and 
approximating track-terrain interaction. Despite the 
challenges, the model succeeded at mirroring the 
movement and physics of the real Engineer robot. 
It also supported both crawler or “caterpillar” 
locomotion and upper manipulator control. 

In an effective display of Gazebo’s range of 
simulation environments, a plug-in was created to 
model unmanned underwater vehicles and 
structures [26]. Submersible turbines and sensors 
were modeled that react to the environment using 
hydrodynamic and hydrostatic force simulations. 
Gazebo’s ability to model vehicles with multiple 
degrees of freedom has been extended to simulate 
UAVs as well [27].  
 
B. MAVS 

MAVS is a relatively new option for high-
performance ground vehicle simulation. In one of 
the earliest papers about the platform [1], the 
authors addressed the problem of realistically 
simulating LiDAR and its interaction with 
vegetation. The use of LiDAR in on-road 
autonomous vehicles is well established, but unique 
challenges present themselves when applying these 

techniques to unstructured, natural environments. 
One issue that remains unaddressed due to the lack 
of adequate simulations is the failure of LiDAR to 
accurately distinguish between obstacles like trees 
or concrete, and objects that can be easily traversed 
like grass or low vegetation. In this work the 
authors presented a statistical method for modeling 
LiDAR returns from grass; a common scenario in 
real-world, off-road autonomous vehicle 
development that was underserved in current 
simulation platforms. The authors point to the three 
requirements for accurate, physics-based LiDAR 
simulation: Beam divergence and beam shape, 
modeling the light-scattering properties of 
vegetation, and on-board signal processing. 

 
 
4.  VEHICLE IMPLEMENTATION 

 
4.1 Vehicle Data 
A. Gazebo 

The foundation for every Gazebo simulation is the 
world file. As mentioned in previous sections, files 
which describe elements at the world-level are 
written in SDF. World files are indicated with a 
.world extension and contain all elements involved 
in a simulation. These elements are items such as 
robots, sensors, objects, agents, etc. as well as 
global parameters like the sky, ambient light, and 
physics properties. Some world elements are 
marked as static, meaning they only possess 
collision geometry (or geometry relative to the 
interaction of one object with another). Static 
encompasses all objects which are not meant to 
move within the simulated world environment. 
Properly labeling these entities as so ensures that 
non-moving objects do not have unnecessary 
performance defects on the simulation. 
Correspondingly, there are world elements marked 
as dynamic. This is specified by either setting the 
<static> element to false in an SDF file or omitting 
the element entirely. Dynamic objects possess 
inertia in additional to collision geometry, 
distinguishing them from static objects. 
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Model files are another key component required 
to successfully run Gazebo simulations. Like world 
files, they are written in the SDF XML file format. 
The purpose of model files is to both simplify world 
files and ease model reuse in general. Gazebo 
model files can be provided from the online model 
database [28], shipped as example models with 
Gazebo (in previous versions), shared amongst the 
online community of users, or created using 
Gazebo’s model editor or other 3D modeling 
software (i.e., Blender [29]). 

To better understand how models are constructed 
in Gazebo, Table 1 provides an overview of the 
components of an SDF Model Object, which refers 
to the <model> tag in an SDF file. Each model has 
a collection of Links, Joints, Visuals, Collision 
objects, Inertial and Sensor properties, and Plugins  
for controlling the model itself [30]. 

 
Table 1: Components of SDF Models. 
Variable Description 
Links Physical link for one 

body in model (i.e., 
wheel) with collision, 
visual, and inertial 
properties 

Collision Collision properties of 
a link; 
Contains the geometry 
for collision checking, 
usually a simple shape 
or triangle mesh 

Visual 0 or more visual 
properties of a link; 
Specifies the shape 
(i.e., cylinder) of an 
object 

Inertial Inertial/dynamic 
properties of a link 
(i.e., mass) 

Sensor 0 or more sensors that 
collect data from 
world for plug-in use 

Light 0 or more light sources 
attached to a link 

Joints Connects two links 
that have kinematic 
and dynamic 
properties 

Plugins 
 

Third-party libraries 
which control models 

 
The ordering of variables listed above in Table 1 

is the suggested order in which features should be 
added to an SDF model file – from least to most 
complex. 

 
B. MAVS 

Every MAVS simulation is defined by the core 
MAVS class. This class has methods and member 
variables for setting every simulation parameter 
such as the vehicle, physics engine, sensors, etc. 
The context of simulation environments is defined 
in the Environment member of the MAVS class. 
Features like light and weather are managed by the 
Environment. Environmental features like Rain, 
turbidity, albedo, fog density, cloud-cover fraction, 
snowfall rate, and wind speed can be set by calling 
the member functions of the environment class.   

A scene is a component of the MAVS 
environment and must be created and added to the 
environment. Whereas Gazebo combines physical 
properties and the ambient properties in the world 
file, MAVS separates these into two classes, the 
scene and environment. The scene is defined as a 
series of meshes which describe the polygonal 
objects within the scene as well as the terrain and 
terrain features. Random scenes can be created 
automatically, or a scene can be generated using a 
description file. Scene variables can be described 
via the text file and can also be modified using 
Python commands. Features such as potholes and 
terrain roughness can also be defined for the scene.  

To implement a vehicle model using RP3D, 
MAVS requires the vehicle specifications be 
defined using via a JSON file. The JSON must 
contain five components that are defined using 
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forty-five variables. The first structure, Chassis, is 
defined via the Sprung Mass, the Center of Gravity 
Offset, and the Dimensions per Table 2. 

 
Table 2: Chassis Parameters. 

Variable Description 
Center of Gravity 
Offset 

The offset in meters 
from the lower plane 
of the chassis 

Dimensions The length, width, and 
height of the chassis in 
meters 

Sprung Mass The portion of the 
vehicle mass 
supported by the 
suspension 

 
The suspension, or Axles, are defined by nine 

variables for each axle.  
 
Table 3: Suspension Parameters. 
Variable Description 
Longitudinal Offset Offset from center of 

gravity, positive and 
negative for front and 
rear axle, respectively 

Track Width Distance between 
center of each tire 

Spring Constant Required for the linear 
spring-damper model 
used by the suspension 

Damping Constant 
Spring Length 
Steered/Powered Boolean  
Unsprung Mass The portion of the 

vehicle mass not 
supported by the 
suspension 

Max Steer Angle The angle in both 
directions a tire can 
turn 

 
The tire specifications are a subset of the Axles 

structure and require five variables. Both tires on 
the axle are given the same values, Spring 

Constant, Damping Constant, Radius, Width, and 
High Slip Crossover Angle.   

 
Table 4: Tire Parameters. 
Variable Description 
Spring Constant Tires are also modeled 

as an independent 
spring-damper system, 
requiring these 
constants 

Damping Constant 

Radius Tire radius in meters 
High Slip Crossover 
Angle 

Used by the Crolla 
Model [31] to calculate 
net lateral traction 

Width Tire width in meters 
 
The final list of values, Initial Pose, contains two 

variables, Position and Orientation. Position is a 
three-element list containing the desired origin in 
Cartesian coordinates of the simulated vehicle. 
Orientation is a four-element quaternion describing 
the rotation of the vehicle in 3D space. 

 
5. VEHICLE-TERRAIN INTERACTION 

As mentioned previously, a motivation for the 
development of MAVS was the lack of simulators 
that could adequately simulate both sensors and 
terrain for off-road autonomous vehicles. To 
address limitations in representations of terrain, a 
robust vehicle-terrain interaction model was 
developed within MAVS. However, we are 
unaware of any publications that describe a similar 
model for Gazebo. Although there are multiple 
options for physics engines, ODE, the default 
physics engine for Gazebo, does not seem to pay 
special attention to modeling tire and surface 
interactions. The friction and contact model used by 
ODE is based on an efficient implementation of the 
Dantzig LCP solver [32] but it is unclear how that 
is used to implement VTI. 

To better simulate vehicle-terrain interaction, 
particularly off-road terrain, MAVS implements 
multiple equations that accurately model tires and a 
variety of surfaces. The MAVS VTI model is 
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iterative and calculates all the relevant forces in six 
phases for each discrete timestep. The multibody 
dynamics (MBD) model introduced in the previous 
sections describes vehicle behavior such as 
orientation, position, and velocity for each time 
step. These variables are used by the VTI model to 
calculate the torque and forces to be applied to the 
vehicle through the hub of the wheel which is 
connected to the chassis by a slider joint and spring-
damper system. 

 
5.1 Wheel Velocities 

The first step in the VTI calculation is calculating 
the wheel velocities based on the global tire frame. 
The MBD model describes tire velocity using the 
global world coordinates and an orientation matrix. 
Using the tire velocity from the global coordinates, 
(�⃗�𝑣𝑡𝑡), and the Look-To vector, 𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡), the 
longitudinal velocity at timestep t, 𝑣𝑣‖(𝑡𝑡), is 
calculated with  

 
𝑣𝑣‖(𝑡𝑡) =  𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡) ∙ �⃗�𝑣𝑡𝑡(𝑡𝑡) 

 
Where the longitudinal velocity is a portion of the 

total tire velocity that is directed forward. Likewise, 
the lateral velocity is found using the Look-side 
vector. This is the velocity perpendicular to the 
wheel hub if the tires were straight, calculating the 
side-to-side velocity at time t with 

 
𝑣𝑣⊥(𝑡𝑡) =  𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡) ∙ �⃗�𝑣𝑡𝑡(𝑡𝑡) 

 
And finally, the vertical velocity of the tires is 

found using the Look-Up vector with 
 

𝑣𝑣↑(𝑡𝑡) =  𝐿𝐿𝐿𝐿�����⃗ (𝑡𝑡) ∙ �⃗�𝑣𝑡𝑡(𝑡𝑡) 
 

The tire velocity based on the tire frame can 
therefore be defined as the sum of these products, 
producing the new reference frame to calculate VTI 
with 

 
�⃗�𝑣𝑡𝑡(𝑡𝑡) = 𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡)𝑣𝑣‖(𝑡𝑡) +  𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡)𝑣𝑣⊥(𝑡𝑡) +  𝐿𝐿𝐿𝐿�����⃗ (𝑡𝑡) 𝑣𝑣↑(𝑡𝑡) 

 
5.2 Normal Forces 

The second step in calculating the VTI model is 
to derive the normal forces and tire deflection. This 
will be used in the longitudinal and lateral force 
calculation. Using the coordinate of the tire at the 
current time step, 𝑝𝑝𝑡𝑡 = [𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧], the terrain height 
at the same point, 𝑍𝑍(𝑥𝑥,𝑦𝑦), and the tire diameter, d, 
the tire deflection, 𝛿𝛿(𝑡𝑡), is calculated as 

 

𝛿𝛿(𝑡𝑡) = 𝑍𝑍�𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦� + 
𝑑𝑑
2
− 𝑝𝑝𝑧𝑧 

 
Using the tire spring coefficient, k¸ the damping 

coefficient, c, and the vertical tire velocity from the 
previous step, the normal force 𝑁𝑁(𝑡𝑡), is calculated 
with  

𝑁𝑁(𝐿𝐿) = 𝑘𝑘𝛿𝛿(𝑡𝑡) − 𝑐𝑐 𝑣𝑣↑(𝑡𝑡) 
 
5.3 Slip and Slip Angle 

To calculate the effective radius, tire deflection 
must be taking into consideration. By subtracting 
tire deflection from the undeflected radius, the 
effective radius is given by  

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑑𝑑
2
− 𝛿𝛿(𝑡𝑡) 

 
To calculate the tire slip, 𝑠𝑠(𝑡𝑡), using the 

longitudinal and angular velocity the following 
piece-wise equation is implemented: 
 

𝑠𝑠(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧
𝑟𝑟𝑟𝑟𝑡𝑡

𝑣𝑣‖
− 1    𝑣𝑣‖ < 𝑟𝑟𝑟𝑟𝑡𝑡 𝑎𝑎𝑎𝑎𝑑𝑑 𝑣𝑣‖ ≠ 0 

1 −
𝑣𝑣‖
𝑟𝑟𝑟𝑟𝑡𝑡

 𝑣𝑣‖ > 𝑟𝑟𝑟𝑟𝑡𝑡 𝑎𝑎𝑎𝑎𝑑𝑑 𝑟𝑟𝑟𝑟𝑡𝑡 ≠ 0

0                                    𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒

 

 
To calculate the slip angle at time step t, 𝛼𝛼(𝑡𝑡), 

the steering angle, 𝜃𝜃(𝑡𝑡), is used in the following 
equation. 
 

𝛼𝛼 = tan−1
𝑣𝑣⊥(𝑡𝑡)
�𝑣𝑣‖(𝑡𝑡)�

− 𝜃𝜃(𝑡𝑡) 
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The first step in the VTI calculation is calculating 

the individual wheel velocities based on the global 
tire frame. The MBD model describes tire velocity 
using the global world coordinates and an 
orientation matrix. To calculate the forces acting on 
the tires, these need to be converted to velocities 
relative to the tire frame rather than the global 
frame. Using the tire velocity from the global 
coordinates, (�⃗�𝑣𝑡𝑡), and the Look-To vector, 𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡), 
the longitudinal velocity at timestep t, 𝑣𝑣‖(𝑡𝑡), is 
calculated with 

 
5.4 VTI Forces 

Using the previous steps, the force exerted on the 
tire by the terrain is modeled with the following 
VTI equation. The inputs include the normal force, 
the tire slip, tire slip angle, and tire deflection. 
 

𝐹𝐹𝑣𝑣𝑡𝑡𝑣𝑣 = �𝐹𝐹‖𝑣𝑣𝑡𝑡𝑣𝑣 ,𝐹𝐹⊥𝑣𝑣𝑡𝑡𝑣𝑣� = 𝑓𝑓(𝑁𝑁, 𝛿𝛿, 𝑠𝑠,𝛼𝛼) 
 

5.5 Wheel Angular Velocity 
The wheel dynamics and the VTI are treated 

independently in MAVS. After the VTI forces are 
updated, the wheel angular velocity is calculated at 
each time step according to the equation 

𝑟𝑟𝑡𝑡(𝑡𝑡 +  𝛿𝛿𝑡𝑡) = 𝑟𝑟𝑡𝑡(𝑡𝑡) +
𝑑𝑑𝑡𝑡
𝐼𝐼𝑡𝑡

(𝑄𝑄(𝑡𝑡) −  
𝑑𝑑
2
𝐹𝐹‖ − 𝛽𝛽𝑟𝑟𝑡𝑡(𝑡𝑡) 

 
Where 𝛽𝛽 is the viscous friction coefficient of the 

tire, 𝑄𝑄(𝑡𝑡) is the applied torque from the driveline, 
𝐼𝐼𝑡𝑡 is the moment of inertia of the tire, and 𝐹𝐹‖ is the 
longitudinal net traction calculated from the VTI. 
The angular velocity calculated at this time step 
will be used in the following time step to calculate 
the wheel slip. 

 
5.6 Global Frame Forces  

The 3D force applied to the wheel hub, in global 
coordinates, is given by  
 

𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐹𝐹‖𝑣𝑣𝑡𝑡𝑣𝑣𝐿𝐿𝐿𝐿����⃗ + 𝐹𝐹⊥𝑣𝑣𝑡𝑡𝑣𝑣𝐿𝐿𝐿𝐿����⃗ + 𝑁𝑁𝐿𝐿𝐿𝐿�����⃗  
 

This force is applied when the tire and VTI model 
completes. The vehicle and driveline models then 
perform their update steps and re-initiate the tire 
model with the updated tire position, velocity, 
angular velocity, and applies torque. 

 
6. WARTHOG IMPLEMENTATION 

The vehicle selected for this implementation, the 
Clearpath Robotics Warthog [33], is described as 
“ROS Ready” by the manufacturer and has 
simulation and modeling files provided and 
maintained on GitHub [34]. Figure 1 shows a 
Warthog in the field. The files provided include a 
URDF file that describes the behavior of the model 
as well as the physical specifications like size and 
weight. Additionally, an object file is provided that 
specifies the dimensions used by the visual 
representation. As this was provided by the 
manufacturer, the details are assumed to be 
accurate and reliable. 

These simulation files are intended to be used 
with the ROS and Gazebo platforms and did not 
include certain details required by MAVS. MAVS 
is designed with common ground vehicles as its 
focus and thus lacks the ability to simulate some 
mechanisms more often used in robotics. The rigid 
multibody dynamic model used by MAVS prevents 
it from simulating the geometric passive 
articulation that allows the left and right halves of 

Figure 1:  Clearpath promotional image of 
Warthog with sensor attachments. 
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the Warthog to pivot independently. Since the 
Warthog does not have a suspension like an on-
road, production vehicle, certain assumptions were 
made to model it in MAVS. 

The weight of the Warthog provided in the 
datasheet was used for the Sprung Mass in the 
vehicle description JSON for MAVS. Normally, 
this would only be the weight of the vehicle 
components supported by the suspension and 
would not include the weight of the wheels or the 
entire weight of the suspension itself. The 
maximum engine torque was also absent from 
modeling files and was estimated using information 
provided in datasheets.  

To get details about the axle and tire placement, 
the object file was opened in a 3D viewer provided 
by MAVS. By viewing the model provided by 
Clearpath in the viewer, the tire width, radius, axle 
offsets, and center of gravity were measured. 
Additionally, the visual model of the Warthog was 
offset from the physical model and needed to be 
centered. Once the model corrections were made 
the vehicle was simulated within MAVS. Figure 2 
shows the completed vehicle in a forest 
environment. 

 For Gazebo, the process was much simpler and 
straightforward. Using a fresh installation of 

Ubuntu 16.04, the process of downloading, 
installing, and running the Warthog simulation took 
only a few minutes. No modification to the setup or 
simulation files were needed. Figure 3 below shows 
the Warthog model launched in Gazebo inside of an 
example urban environment created by Clearpath 
[34]. 

7.  CONCLUSIONS 
In this paper, we explored both the differences and 

capabilities of two 3D simulation environments, 
MAVS and Gazebo, by describing the minimum 
informational requirements needed for simulation 
and vehicle setup. To further illustrate this, we 
implemented Clearpath Robotics’ Warthog UGV in 
each platform and made necessary adaptations to 
the model to faithfully match the virtual vehicle to 
the physical vehicle. Research use cases for MAVS 
and Gazebo were discussed to highlight the 
potential for robot and ground vehicle creation, 
testing, and simulation customization relative to 
each environment. Additionally, the fidelity of both 
physics models were discussed—paying close 
attention to the vehicle-terrain interactions. This 
knowledge was shared to facilitate and encourage 
the use of modeling and simulation of UGVs in 
MAVS and Gazebo.  

Figure 2: MAVS Warthog model in 
example off-road forest environment. 

 

Figure 3: Gazebo Warthog model in example 
urban environment. 
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Future work will be done to test and validate the 
accuracy of our simulated results by comparing 

them to real-world implementations using the 
Warthog vehicle.
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