
Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

Using A Gaming Engine for Autonomous Vehicle Modeling and Simulation, Brabbs, et al.

Distribution A. Approved for public release; distribution unlimited. OPSEC Number: OPSEC4300

Page 1 of 8

2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

MODELING & SIMULATION & SOFTWARE (MS2) TECHNICAL SESSION
AUGUST 11-13, 2020 - NOVI, MICHIGAN

Using A Gaming Engine for Autonomous Vehicle Modeling and

Simulation

John Brabbs1, Benjamin Haynes1, Thomas Stanko1

1US Army CCDC-GVSC, Warren, MI

ABSTRACT
Autonomous vehicles provide a unique challenge for simulation to

effectively and performantly model due to their system level complexity and the
inclusion of autonomy software. This environment is made even more challenging
when looking at the interactions of humans in-the-loop with the vehicles and
autonomy software and also how to include more simulation in the testing process
for Autonomous Vehicles. With the use of a software framework built from a
Commercial off the Shelf (COTS) game engine the Ground Vehicle Systems
Laboratory demonstrated the feasibility of real-time human, software and
hardware in the loop testing of autonomous systems. This approach facilitated the
execution of two major events which are described herein.

Citation: John Brabbs, Benjamin Haynes, Thomas Stanko, “Using A Gaming Engine for
Autonomous Vehicle Modeling and Simulation”, In Proceedings of the Ground Vehicle Systems
Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020.

1. INTRODUCTION

Research in autonomous military operational
environments is hindered by the logistical
difficulties of testing and evaluating systems in the
physical world. Additionally, the effort to engineer
and integrate a small number of vehicles can be cost
and safety prohibitive, while certain behaviors and
test results only present themselves when multiple
platforms are operating together. Similar problems
occur in urban driving, when training machine
learning algorithms [1]. An alternative to physical
testing is evaluation in simulation. Simulation is a
broad term, and encompasses many forms of
computer-based simulacrums of real-world

phenomenon, but in this case is the presentation of
a virtual environment to either humans or agents in-
the-loop to evaluate their performance, integration,
and usage. The Ground Vehicle Systems Center’s
(GVSC) Immersive Simulation’s three capabilities
Warfighter Experimentation (looking at Tactics,
Techniques & Procedures); crew station design and
development; and Autonomy (Autonomy-in-the-
loop) will be used in the research and development
of autonomous vehicles.

2. BACKGROUND

GVSC’s Immersive Simulation’s three
capabilities of Warfighter Experimentation, crew

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using A Gaming Engine for Autonomous Vehicle Modeling and Simulation, Brabbs, et al.

Distribution A. Approved for public release; distribution unlimited. OPSEC Number: OPSEC4300

Page 2 of 8

station and Autonomy previous to 2020, had been
using multiple simulation engines to support these
three capabilities. Two different capability (crew
station, Autonomy) efforts were completed at the
GVSC’s Ground Vehicle Simulation Laboratory
(GVSL) in 2019, with one of the goals to use the
same COTS game engine. These efforts sought to
evaluate the human and autonomy algorithm
performance in the context of military operational
environments. The research objectives of each
study below are unique. The crew station capability
effort seeks to capture baseline data related to
Manned-Unmanned Teaming (MUM-T)
performance to support development and
integrations of intelligent aids/crew enabling
technologies [2]. The Autonomy capability effort
looks at the testing of autonomous leader follower
(LF) software in a simulated environment.

2.1. Human in the Loop

The goals of the Crew Optimization and
Augmentation Technologies (COAT) research
study were as follows; Conduct missions with
active duty Soldier operators to obtain feedback on
current system capabilities and performance,
Capture baseline data related to Manned-
Unmanned Teaming (MUM-T) performance to
support development and integration of intelligent
aids/crew enabling technologies, and to inform the
process used to collect and analyze MUM-T
research data, specifically team performance
measurement(s); ideally to refine a set of metrics
and procedures to be used for future testing [2].
These goals required a detailed, operationally
relevant virtual environment to adequately focus
the presence of the participants in the scenario [3].
To provide more realism the COAT experiment
used a six degree of freedom motion platform,
Crew Station/Turret Motion Based Simulator
(CS/TMBS), shown in Figure 1.

Figure 1 - CS/TMBS with Cab

Three major components make up the user
experience when interacting with a MUM-T
system. The controller, the algorithms, and the
environment.

The controller constitutes the system with which
an operator interacts with a robotic asset. In this
case, it was through the use of physical controls,
and touch screen displays, running a human-
machine-interface software application.

The software within the vehicle, the crew stations,
shown in Figure 2, and the associated command
and control (C2) systems consists of many
individual algorithms. The unique system
composed of a particular set of these algorithms is
the system under test for this experiment.

Figure 2 - Robotic Combat Vehicle (RCV) Crew station

The virtual environment, shown in Figure 3, must
be capable of providing coherent stimuli to the
participants of the study, and the system under test
that allow tasks and responses to be reflective of
military operational tasks and responses. This is a
combined goal with that of presence [3] of the
participants, to ensure that environment is effective.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using A Gaming Engine for Autonomous Vehicle Modeling and Simulation, Brabbs, et al.

Distribution A. Approved for public release; distribution unlimited. OPSEC Number: OPSEC4300

Page 3 of 8

In particular, the environment must provide
synchronized sensor feeds which share a cohesive
state. Each participant must be able to complete
individual tasks that enable the unit-under-test’s
warfighting functions. The individual members of
the section must be able to accomplish tasks that
enable movement and maneuver, intelligence, fires,
sustainment, and protection[4].

Figure 3 - RCV Conducting an area defense during COAT

Experiment

2.2. Autonomy in the Loop
 The Program Executive Office Combat Support

and Combat Service Support (PEO CS&CSS)
goals for the Continuous Autonomy Simulation
Test Laboratory Environment (CASTLE) is to
develop a virtual test harness for Autonomy-in-
the-loop in order to reduce program risk and
augment testing of its emerging programs. PEO
CS&CSS, GVSC and the Aberdeen Test &
Evaluation Center (ATEC) endeavor to verify
and validate elements of CASTLE like the virtual
environment, shown in Figure 4, and operational
vignettes to establish a level of confidence in the
ability of the virtual environment to provide
adequate stimulus to the autonomy software in
order to measure the performance of the system
behaviors.

Figure 4 - CASTLE running a playback simulation

 We define “Autonomy-in-the-loop”, shown in
Figure 5, as a system where an autonomous
vehicle algorithm is included in a test setup where
the inputs are produced in real-time from a
simulation framework, and the outputs of the
algorithm are fed back to a simulation framework.
In this sense, the autonomy algorithm is a ‘black-
box’ within the simulation framework. This is a
valuable configuration which allows for testing of
autonomy algorithms in a wider variety of
operational environments. The virtual
environment needs to provide the same stimuli
the autonomy system would expect if it is in the
real world like data from the vehicle, sensors (e.g.
cameras, RADAR, LIDAR …), localization,
terrain, environment and communications (e.g.
radios). The simulation engine that GVSC has
been using for the past ten years was Autonomous
Navigation Virtual Environment Laboratory
(ANVEL). ANVEL’s Application Programmer
Interface (API) allowed plugins to be created to
support how the autonomy software
communicates with the simulation as shown in
Figure 5. An example of this is an ANVEL
LIDAR plugin was created that provides the
Velodyne UDP packets in the sa` me way the real
world Velodyne LiDAR’s Puck 16 Channel
(VLP16) for the autonomy system.

 The Autonomy-in-the-Loop also needs the

ability to run 1000’s of scenarios using

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using A Gaming Engine for Autonomous Vehicle Modeling and Simulation, Brabbs, et al.

Distribution A. Approved for public release; distribution unlimited. OPSEC Number: OPSEC4300

Page 4 of 8

automation to evaluate edge cases, do regression
testing, verify software updates provided via a
new feature, address an issue or fix a problem.
This can be done by developing a way to
automate the tasks that a developer, soldier or
tester will need to do for fully exercising the
capability and features of the Autonomy System.
CASTLE’s current configuration supports the
Expedient Leader Follower (ExLF) which is a
convoy march unit with a lead vehicle driven by
a soldier and follower vehicle(s) are driven by the
autonomy system. CASTLE has the ability to
playback a path (recorded from live or simulation
data) for the lead vehicle, so a human is not
required to drive vehicle during testing.

 In CASTLE there is the need to have a scenario

or series of scenarios designed to support
debugging/testing a capability or feature for the
Autonomy-in-the-loop. The goal is to have the
CASTLE user be able to develop scenarios that
support the desired configuration to be tested and
evaluated. An example of this could be the desire
to test how well an ExLF Convoy makes a left
turn at different gap distances on different
courses. The scenario scripts will allow the
CASTLE user to easily change one parameter at
a time or change all the parameters to run 100’s
or 1000’s of scenarios testing all the different
combinations or only the edge cases. As GVSC
developed CASTLE it became apparent that
ANVEL would not support the future
requirements that GVSC desired in a simulation
framework for the Autonomy-in-the-loop.
ANVEL had a small user community and any
new capabilities desired required the government
to provide all the investment. In late 2018 GVSC
and PdM ALUGS made the decision to start
looking at how to transition CASTLE from using
ANVEL to Unreal Engine 4 (UE4). The reason to
move to UE4 was a larger user community, free
to use, already being used by autonomous vehicle
projects (General Motor’s Cruise[6], Ford[7],
CARLA[1]..), API, documentation and training

available for free, supports headless and can run
in a container, other Army organizations using.

Figure 5 - CASTLE ExLF Follower Configuration

3. SIMULATION FRAMEWORK

 In order to simulate the behavior of the vehicles
within a scenario, a system of software was
developed and integrated (see Figure 6 - MUMTSF
Block Diagram). This system constitutes the
simulation framework which fed data to the
Interfaces and Algorithms under test. The system is
based on the open source Unreal Engine 4
maintained by Epic Games [5]. The Unreal Engine
provides a sophisticated rendering pipeline which
can produce photo-realistic images in real-time.
This enables the streaming of game imagery to
controllers and algorithms that mimic a variety of
sensor systems. In addition, the engine provides a
robust networking implementation in the form of a
centralized server, and data “Replication”. These
sub-systems are described in detail below.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using A Gaming Engine for Autonomous Vehicle Modeling and Simulation, Brabbs, et al.

Distribution A. Approved for public release; distribution unlimited. OPSEC Number: OPSEC4300

Page 5 of 8

Figure 6 - MUMTSF Block Diagram

3.1. Sensor Simulation

Sensors define how the external systems (humans,
software, or hardware) perceive the virtual world.
In order to facilitate the objectives several types of
system sensors were simulated and passed to the
“in-the-loop” systems. These included Electro-
Optical/Infra-Red (EO/IR) sensors (in daylight and
IR modes), laser range finder (LRF) sensors,
RADAR, LIDAR, and Global Positioning System
(GPS) /Inertial Measurement Unit (IMU) sensors.
Each sensor was implemented to consume data
either from the simulation environment or from the
vehicle dynamics sub-system. Updates were
provided to the external systems every frame
(approximately 60Hz). The creation of these sensor

feeds is accomplished by sampling of the rendered
feeds within the simulation environment, and
applying shaders or post process effects, or through
custom developed plugins.

Each simulated platform can have a multitude of
sensors, and the skeletal meshes of those models
are configured with “Sockets” to indicate the
locations of sensors. The sensors are configured
with basic parameter such as field-of-view (FOV),
resolution, and pan-tilt properties as defined by the
mission scenario and platform specifications. The
simplified models allow for real time per-frame
generation of sensor data which can be streamed to
external applications to mimic a physical vehicle.

3.2. Physics Simulation

In order to provide appropriate fidelity
experiences for agents, the results of the physical
models describing vehicles, bipedal characters, and

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using A Gaming Engine for Autonomous Vehicle Modeling and Simulation, Brabbs, et al.

Distribution A. Approved for public release; distribution unlimited. OPSEC Number: OPSEC4300

Page 6 of 8

projectiles must be calculated in real-time and
updates across all participating clients in the
simulation. Primary information about actors
within the environment was contained on the game
server. All entities within the simulation registered
their position with the game server to be replicated
to all other clients.

Ownship vehicles (the vehicles controlled by the
physical controls stations) were subject to
additional processing for physics calculations. The
inputs from the participants were recorded from the
physical and touch screen interfaces, and
packetized into UDP datagrams. The control
messages were sent directly to separate vehicle
dynamics processes for each platform. The vehicle
dynamics process was an instance of the FAAC
Real Time Incorporated (RTI) SimCreator
program, configured for either the driving
dynamics of a M113 (surrogate RCV vehicle), or a
M2A3 (surrogate MCV vehicle). The processes
calculated the vehicle dynamics solutions at a high
frequency, and packaged up the net movement to
the vehicle center of gravity into a UDP datagram
which was sent at 60Hz to the central UE4 server.
The server then updated the position of the actor
representing that vehicle in the course of each
frame.

3.3. Networking

It is critical that all connected clients within the
simulation experience the same environment, and
are able to reason about the virtual “world” with a
shared context. Unreal Engine provides a method to
execute this model, by declaring a central server as
the authoritative source of truth, and providing
mechanisms for clients to both submit updates to
server data, and to receive changes to that data.

4. OPERATIONAL EXPERIMENTATION

The simulation environment was chosen to
execute a soldier touch point within the GVSL in
November of 2019. 16 participants operated a
simulated section (3 vehicles) of MCV and RCV
assets over the course of 2 weeks.

4.1. Soldier Touch Point

The goal of the soldier touch point was to provide
a set of baseline data of soldier behavior and
activity in a virtual environment. The participants
were recruited in sections, to crew a single Manned
Control Vehicle (MCV), and two Robotic Combat
Vehicles (RCV).

4.2. Simulation in Motion

The simulation environment, and integrated
applications provided an end-to-end closed loop
driving, gunning, and engaging environment for
solider participants to execute their operational
orders. The use of physics-based vehicle dynamics
models provided real-time motion cuing to
participants, while visuals on the WMI control
stations were driven by Unreal Engine graphics
streams over a h264 encoded UDP packet format.
The soldiers successfully completed attack,
movement to contact, and defense operations with
pseudo-simulated opposing forces (OPFOR).

5. CASTLE UE4 DEMONSTRATION

The simulation environment was chosen to
demonstrate the feasibility of using UE4 for
providing the virtual environment to support
Autonomy-in-the-loop as a proof of concept. The
goal of the proof of concept was to create a
CASTLE UE4 prototype that would demonstrate
running the same ExLF four vehicle convoy for a
Camp Grayling scenario that was currently running
in ANVEL by the end of December 2019, using the
knowledge gained during the development of the
COAT experiment.

5.1. CASTLE UE4 Prototype

The GVSC MS2 Immersive Simulation software
development team’s first step was to look at what
would be needed to demonstrate the feasibility of
using UE4. For creating a CASTLE UE4 prototype
the requirements included needing a PLS Vehicle
model, Camp Grayling Terrain, LIDAR, Speed &

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using A Gaming Engine for Autonomous Vehicle Modeling and Simulation, Brabbs, et al.

Distribution A. Approved for public release; distribution unlimited. OPSEC Number: OPSEC4300

Page 7 of 8

Curvature controller, ability to communicate with
the autonomy kit and navigation, ability to create a
path for leader and data collection for pass/fail. One
of the first steps was to take the heightmap used for
the Camp Grayling terrain in ANVEL and convert
that to how UE4 needs heightmaps. Since Camp
Grayling terrain is a geo-specific area, this process
also required correlation with the real-world
location, so leader path data collected from real
testing could be replayed to test the autonomy-in-
the-loop.

 Next step was to create a Palletized Load System
(PLS) model which required getting a 3D model of
the PLS. A 3D M1075 PLS that included the
skeletal/static meshes was available from US
Army’s MILGAMING website, so that was
downloaded and imported into UE4. Since the PLS
is five-axle truck, this require using an N-wheeled
vehicle movement component which exposes to
Unreal the PhysX class for N-wheeled vehicle
movement. Once the PLS 3D Model was created,
parameters (provided from real world testing)
needed to be set and tuned to represent how the PLS
physics should perform realistically to how it
would work in the real world. A virtual test course
was created to test and validate acceleration,
braking, turning and climbing grades. The ANVEL
Playback plugin was converted to UE4, so that the
UE4 Vehicle model could be moved using a path
generated from live vehicle testing or generated by
driving a PLS vehicle in simulation. The ANVEL
Path Painter plugin was converted to UE4, so that
CASTLE developers can drive the PLS vehicle in
simulation and create a path for testing the UE4
PLS model working with Playback. Playback
required testing how well the correlation of a path
created from real world ExLF data capture worked,
based on differences between ANVEL and UE4.

For communication with the Autonomy-in-the-
loop the ANVEL Speed & Curvature and
Autonomous Ground Resupply Navigation

(AGRNAV) plugins were converted to UE4. The
Autonomy runs on a Linux Virtual Machine (VM)
that includes Robotic Operating System (ROS)
Core, the ExLF Autonomy Software, Navigation
Simulation (converts the simulation localization
information to format Autonomy needs) and By-
Wire Stub (sends/receives messages between
autonomy & simulation). In the real ExLF system
there is a Navigation system that provides the
localization of vehicle to the Autonomy but when
running the Autonomy-in-the-loop the simulation
provides via the UE4 AGRNAV plugin and the
Navigation simulation, which converts into correct
format for Autonomy Software. Also on the real
ExLF there is a By-Wire system that provides
updates, controls moving and stopping the PLS via
communication with the Autonomy, in simulation
this is done via By-Wire stub communicating with
the Speed & Curvature controller and AGRNAV.
The LIDAR allows the Autonomy to determine if
there are any obstacles in the path of the PLS. A
new UE4 LIDAR plugin was created that could
support two simulated VLP-16s attached to the 3D
PLS vehicle model and send the same Velodyne
UDP stream. The CASTLE ANVEL version also
had the ability to collect data from both the
Autonomy and the simulation to determine if the
scenario passed or failed this Sentry Plugin was
also converted to UE4 in support of the proof-of-
concept.

The ANVEL version of CASTLE had one
computer represent one vehicle (which included the
Autonomy SW VM, simulation SW) this same
configuration was kept for CASTLE UE4
prototype, this included one Lead Vehicle
simulation computer and three Follower Vehicle
simulation computers. When using ANVEL as the
simulation engine, each instance of ANVEL that is
used to represent a vehicle uses the Distributed
Interactive Simulation (DIS) plugin to
communicate with other ANVEL instance the state

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using A Gaming Engine for Autonomous Vehicle Modeling and Simulation, Brabbs, et al.

Distribution A. Approved for public release; distribution unlimited. OPSEC Number: OPSEC4300

Page 8 of 8

of the vehicle. The UE4 version of CASTLE
decided to use the built in UE4 replication software
for the communication between the UE4 instances
representing each vehicle, this provided the
additional benefit of communicating everything
each UE4 instance is doing in simulation. Once all
the UE4 plugins were created and tested for one
vehicle, they needed to be integrated for running an
ExLF convoy. A decision was made to run with a
UE4 Listen Server and each vehicle simulation
using the UE4 editor and communicating with the
Listen Server as shown in Figure 7. There were
some challenges getting the communication correct
with the speed & curvature controller, replication
and correlation but by Dec 31, 2019 the
development team was able to demonstrate a four
vehicle ExLF convoy working with Autonomy-in-
the-loop.

Figure 7 - CASTLE UE4 Prototype

6. CONCLUSIONS AND FUTURE WORK
The GVSC MS2 Immersive Simulation has begun

to demonstrate the feasibility of a gaming engine
(Unreal Engine 4) to drive the simulation of both
human and autonomy in the loop experimentation.
This design will allow the US Army to invest in the
additional capabilities needed for the simulation
framework above what is provided by Unreal

Engine, and to take advantage of the features that a
gaming company like Epic Games is already
creating to keep the gaming engine as modern as
possible to support games like Fortnite and the
large user community using Unreal Engine.

The GVSC MS2 Immersive Simulation software
development team has taken the knowledge gained
from COAT experiment and CASTLE UE4
prototype demonstration to develop a core baseline
simulation application using UE4 that will be able
to support Immersive Simulations three capabilities
of Warfighter Experimentation (looking at Tactics,
Techniques & Procedures); crew station design and
development; and Autonomy (Autonomy-in-the-
loop). Follow on experimentation is also scheduled
using the methods and software described here.

1. REFERENCES
[1] A. Dosovitskiy, “CARLA: An Open Urban

Driving Simulator,” p. 16.
[2] Immersive Simulations, “NGCV MUM-T VE

COAT-OCT19.” Nov. 01, 2019.
[3] B. G. Witmer and M. J. Singer, “Measuring

Presence in Virtual Environments: A Presence
Questionnaire,” Presence Teleoperators
Virtual Environ., vol. 7, no. 3, pp. 225–240,
Jun. 1998, doi: 10.1162/105474698565686.

[4] U.S. ARMY, ADP 3-0 OPERATIONS. Army
Publishing Directorate, 2019.

[5] Epic Games, Unreal Engine. .
[6] K. Wiggers, “GM’s Cruise is preparing for a

self-driving future in the cloud,” VentureBeat,
APR 20, 2019.

[7] A. Jayaraman, A. Micks, and E. Gross,
"Creating 3D Virtual Driving Environments for
Simulation-Aided Development of
Autonomous Driving and Active Safety,"
WCX™ 17: SAE World Congress Experience,
Detroit, MI, April 4-6, 2017

	1. INTRODUCTION
	2. Background
	2.1. Human in the Loop
	2.2. Autonomy in the Loop

	3. SIMULATION FRAMEWORK
	3.1. Sensor Simulation
	3.2. Physics Simulation
	3.3. Networking

	4. OPerational EXPERIMENTATION
	4.1. Soldier Touch Point
	4.2. Simulation in Motion

	5. CASTLE UE4 DEMONSTRATION
	5.1. CASTLE UE4 Prototype

	6. CONCLUSIONS AND FUTURE WORK
	1. REFERENCES

