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ABSTRACT 

This paper describes the use of neural networks to enhance simulations for 
subsequent training of anomaly-detection systems. Simulations can provide edge 
conditions for anomaly detection which may be sparse or non-existent in real- 
world data. Simulations suffer, however, by producing data that is “too clean” 
resulting in anomaly detection systems that cannot transition from simulated data 
to actual conditions. Our approach enhances simulations using neural networks 
trained on real-world data to create outputs that are more realistic and variable 
than traditional simulations. 
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1. INTRODUCTION 
 

Creating autonomous vehicles that can perform 
optimally in unusual circumstances is a difficult 
problem in machine learning (ML). The reason for 
this is that most data is collected from systems 
functioning normally. For example, it is relatively 
straightforward to create a training set of typical 
rush hour traffic by simply equipping cars with 
cameras and driving them around in cities known   
to have traffic problems. But this is only a partial 
solution. In major evacuations, such as those for 

hurricanes, traffic is often directed to use all avail- 
able lanes. A self-driving car that is not trained for 
that possibility can be expected to behave in 
unpredictable ways. A neural network can easily 
“learn” to ignore such corner cases. For example,    
a network can be trained to drive one mile with 
perfect (99.9998%) accuracy if it assumes accidents 
simply do not happen [1]. 

This also happens with ML-based anomaly de- 
tection and response systems.  The vast number of 
vehicles, from automobiles to satellites behave 
nominally for the vast majority of their functional 
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lifespan. Training for degraded modes requires vast 
amount of data being collected in a large number of 
malfunctioning states. Often, this data does not exist 
in sufficient quantity, and would be expensive to 
produce. One can imagine the paperwork required 
to slowly and rigorously destroy a collection of 
multi-million-dollar vehicles simply to train their 
diagnostic systems. 

An effective solution to this problem is to use 
simulations [2], [3], [4]. Using synthetic data allows 
neural networks to be trained on edge cases in 
sufficient quantity such that the ML system can’t 
develop undesirable biases. However, such simu- 
lations are often “too easy” for ML systems to 
understand, and fail in real world deployments [5]. 

 To address this issue, we propose the use of 
machine learning to enhance the outputs of sim- 
ple simulations, making them perform similarly to 
much more sophisticated simulators. In our current 
work with satellite anomaly detection for NASA 
and NOAA this technique is being developed to 
create realistic simulations for anomaly detection 
and classification, but we believe that it is broadly 
applicable. Briefly, the approach is as follows: 

1) A simulator is constructed that approxi- 
mately mimics the behavior of the target 
vehicle. This simulation can be quite 
coarse - for example a square wave can b e  
used for nearly any periodic waveform, 
such the rotation of a wheel. This model 
does not have to include all systems on the 
target vehicle. 

2) Data, either recorded from operational ve- 
hicles or from sophisticated, real-time sim- 
ulators, is gathered in the course of normal 
operations. This data represents baseline 
behavior 

3) The simple simulator is configured to gen- 
erate its version of the baseline data, which 
is also recorded. 

4) A first neural network is trained to enhance 
the simple data to match the general char- 
acteristics of the target data. This model 
learns to map the coarse behavior of the 

simulator to a correct but generalized and 
unrealistically clean behavior. To add addi- 
tional stochastic information to the output 
of this network, a second neural network is 
trained to replicate environmental 
contributions. The output of both neural 
networks are combined to produce a high-
quality, realistic output. 

Once trained, the enhanced simulator can infer 
realistic signals from a simulator that is running in a 
variety of “degraded” configurations. For example, 
shock absorbers can wear out. Air filters can 
become clogged. Subsystems can be crippled. 
Families of vehicles that are built on a common 
framework can be rapidly generated using the same 
simulator and different training data. This ability to 
quickly develop new capabilities that can be run 
rapidly on commodity hardware allows 
autonomous ML diagnostic systems to be trained 
effectively and at scale. 

 
2. TELEMETRY EXAMPLE 

An overview of the pipeline used to create 
lightweight, high-fidelity simulations is shown in 
Figure 1. For this example, the signals are synthe- 
sized sin waves with periods of 8 and 2 minutes. 
These signals are similar to those generated by 
rotating satellites (the shorter frequency) in orbit 
around another object (the longer frequency). To 
begin, we will generate an example signal and place 
it in our telemetry storage and retrieval system [6], 
shown as “Goal” in figure 1. Briefly, the steps 
involved in the process are: 

1) Construct, lightweight, high-speed simula- 
tions 

2) Generate approximate data 
3) Train a neural network to map low-fidelity 

to high-fidelity data 
4) High-fidelity simulation or real vehicle 

data source 
5) Convert simulation to accurate, clean data 
6) Environmental data source 
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7) Latent space data source 
8) Train generative adversarial model (GAN) 

to create realistic environment influence 
9) Generate environmental influences 

 

The elements are then combined to produce the 
final, high-fidelity output (“Combined”). 

2.1. Simulation 
 

For this development effort, we  had  access  to 
highly sophisticated simulators for the NOAA 
GOES satellites and years of data. These simulators 
in many cases include the same software and often 
flight hardware. They are excellent for evaluating    
a particular set of options given a scenario and are 
extremely limited with respect to how much faster 
than real time they can operate. 

ASRC Federal is in the process of developing 
simple software simulators that can be run in large 
numbers in the Cloud and much faster than real 
time. However, the cost for fast simulators is lower 
fidelity. So instead of the waveform shown as 
“Goal” in Figure 1 that would take 5-10 minutes to 
produce on a high-fidelity simulator, these simula- 
tors can generate the highly quantized data shown 
in Figure 2 (“Source”) in a few seconds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Enhanced simulation pipeline 
 
 

We will apply the same pipeline and techniques 
to our example data that we would use for actual 
telemetry. 

 
Figure 2: Training Source and Target Time Series 
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2.2. Waveform mapping 

To transform the low fidelity output of the sim- 
ulator into high-fidelity waveforms while maintain- 
ing the computational speed and memory footprint 
that simple simulations provide requires the training 
of two neural networks: The first is trained to map 
the output of the simple simulators to the output   
of the high-fidelity simulators or recorded activity 
from the actual satellite. All networks were imple- 
mented in Tensorflow version 2.1.0. 

For this example, we developed a wide, shal- 
low Multi-Layer Perceptron (MLP) network. The 
structure of the network is shown in Figure 3. It 
consists of four MLP layers (referred to in Tensor- 
flow as “Dense”), with two inner, hidden layers 
(“Hidden 1” and “Hidden 2”) that then feed to an 
output layer. The size and number of dimensions are 
shown in the “Output Shape” column. Here we can 
see that these are one dimensional, with the number 
of neurons indicated by the second value in the 
tuple. These layers can be fed a variable number of 
input vectors, as specified by the first, “None” tag. 
The input and output layers are the size of the time 
series. The inner layers are wider, at 3,200 neurons. 
Wider networks are better at  matching  functions 
of this type [7]. The extra depth is required to  
match the multiple waveforms that the network has 
to learn. The last column, “Param #”, represents the 
total number of weights that the network will 
manipulate during the training sequence. 

 
 
 
 
 
 
 
 

Figure 3: Enhancing MLP  Neural  Network 

The model is trained by matching a large num- 
ber of “source” time series such as those in Figure 

2, with a corresponding set of high-fidelity “tar- 
get” time series whose beginning and end are offset 
by a random amount so that all sample sizes are   
the same. After training the model for 40 epochs 
with a batch size of 15, we were able to produce the 
enhanced waveforms shown in Figure 4. These 
waveforms are produced by taking a specific time 
series of simulation data as a vector (Figure 2 
“Source”) and mapping the input to an enhanced 
output vector (Figure 2 “Target”) of the same time. 
Timing for this output vector can be taken from the 
corresponding input vector element. Once trained, 
an input vector is multiplied by these weights to 
produce the enhanced values shown in figure 4. 

 
 
 
 
 
 
 
 
 

Figure 4: Enhanced Simulation 
 
 

It is important to note that once the model is 
trained, that the inference that transforms the highly 
quantized simulation to the smooth, enhanced sim- 
ulation is extremely fast, particularly when using 
hardware acceleration. This use of Neural Networks 
is what allows us to get high-fidelity results out of 
low-fidelity simulators without substantial speed or 
memory penalties. 

However, we are now at the point that most 
high-fidelity simulation-based training systems en- 
counter. The signal is too clean. An anomaly detec- 
tion system trained on signals like these may not   
be able to discriminate between “normal” levels of 
noise and a genuine anomaly. It needs to be pro- 
cessed further to resemble the original waveforms 
in Figure 2. 



Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Training robust anomaly detection using ML-Enhanced simulations, P. Feldman Page 5 of 8 

 

 

2.3. Noise Training and Generation 
 

In this approach, noise is trained indepen- 
dently using Generative Adversarial Neural Net- 
works (GANs) 

Generative adversarial learning is a technique 
where a generative network builds synthetic items 
(such as images) while the discriminative network 
attempts to distinguish the synthetic items from real 
ones take from a training set or distribution [8]. 
Typically, the generative network learns to map 
from a randomly generated latent space to the  
distribution of interest (such as pictures of faces), 
while the discriminative network tries to detect the 
synthetic items. The generative network’s training 
objective is to increase the error rate of the 
discriminative network by “fooling” the 
discriminator network through producing synthetic 
items that the discriminator thinks are real. This 
technique is quite capable of producing 
photorealistic results. The faces seen in Figures 5, 
6, and 7, are  completely  synthetic, and were 
generated using the online StyleGAN2 generator 
thispersondoesnotexist.com [9]. 

 
 
 
 
 
 

Figure 8: Extracted Source Noise 
 

is reshaped to be compatible as the input layer of 
the discriminator. 

 
 
 
 
 
 
 
 

Figure 9: Generator construction 
 
 
 
 
 

Figure 5 

 
 
 
 

Figure 6 

 
 
 
 

Figure 7 

The discriminator is provided with two sources 
that it must distinguish between: 

1) A large number of real time series from 
the database whose beginning and end are 
offset by a random amount so that all 
sample sizes are the same. 

Noise and other stochastic environmental effects 
of real telemetry are extracted using a moving 
average filter [10]. This average is subtracted from 
the original signal, leaving the noise that needs to 
be simulated (Figure 8). 

Our GAN for satellite telemetry is created by 
connecting the discriminator and generator net- 
works together. The generator was built as shown 
in Figure 9. The 16-element latent vector is densely 
connected to a layer of 64 neurons. These are then 
normalized and spread to a layer of 500 neurons, 
the number of samples in the time series. This layer 

2) A matching number of outputs from the 
generator, using the same format as the real 
input. 

The discriminator (Figure 10) consists of one 
convolutional layer that merges input from 4 rows    
of inputs using a window 20 neurons wide with a 
stride of 4 neurons per step. This layer pools each 
convolution based on the maximum value of the 
sample. This configuration aids in finding patterns 
in signals. The layers are progressively narrowed   
to the final single neuron whose value determines  
if the input is considered real or fake. We use a 

https://thispersondoesnotexist.com/
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binary crossentropy loss function, which compares 
the summed errors across all classifications [11] 
combined with the Adam adaptive optimizer [12]. 
This value is then compared against the passed in 
values from the real and generated inputs to provide 
the information needed for training. 

 

 
Figure 10: Discriminator construction 

 
The real and generated data are tagged for dis- 

criminator training and evaluation. Real data has a 
tag of 1.0, while generated data has a tag of 0.0. 

Training is divided into the training of the 
discriminator, and the training  of  the  generator,  
as shown in Figure 11. In the first section, the 
discriminator as a standalone model is fed with 
equal amounts of data from the real data set and the 
generated data set. It then trains on the entire batch 
(200 rows) of real and generated data. After this 
pass, the discriminator’s weights are frozen, and the 
generator is trained as part of the entire GAN 
model. This allows the generator to be trained on 
the backpropagating error from the discriminator. 
To have the generator converge on realistic values, 
the tags for this pass are reversed, and the discrim- 
inator is “told” that the generated values are real. If 
it determines that they are false, then a distance is 
calculated that would adjust the weights towards the 
correct answer. Since the discriminator is frozen, 
the weights are only adjusted on the generator. 

To match the qualities of this noise, our model 

 
 
 
 
 
 

Figure 11: GAN Training 
 

needed around 1,000 iterations. During this process. 
the accuracy – how many of the real and fake 
samples were correctly classified, and the loss –   
the normalized error across all classifications were 
sampled at 100-step intervals across the 1,000 iter- 
ations and are shown in Figure 12. It is important  
to remember when looking at this chart that the 
generator and the detector are engaged in an ad- 
versarial process, where the generator constantly 
tries to improve its ability to fool the detector, and 
the detector constantly tries to improve its ability to 
identify these forgeries. As we can see in the figure, 
the discriminator improves slightly faster than the 
generator, which is the goal of a GAN. If the two 
elements are too imbalanced, the system cannot 
learn effectively. 

 
 
 
 
 
 
 
 
 
Figure 12: Accuracy/Loss for Real and Fake Clas- 
sifications 

 
After 1,000 iterations, the generated noise is 

sufficiently similar to the actual noise. The output of 
the simulator enhancing neural network can then be 
summed with the noise-generating neural network 
to produce the final signal, shown in Figure 13, 
below: 
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Figure 13: Simulator output, enhanced, with noise 
added 

 

3. DISCUSSION 
 

The majority of this particular research occurred 
during the peak of the COVID-19 NASA/NOAA 
response, and we were unable to access the high-
fidelity simulators we were planning to use. As such 
the simulations described in this paper are based on 
simplified approximations. However, based on our 
experience modeling other satellite telemetry with 
small, rapidly-trained MLP networks [13] leads us 
to believe that the results here can be applied to 
actual telemetry data when it becomes available. 

An issue that needs to be examined in more 
detail is the ability for the enhancing network to 
adapt low-fidelity signals to cases not covered by 
real telemetry or high-fidelity simulators. Because 
high-fidelity simulators are rare, they will only be 
used to explore likely problem spaces or respond to 
situations that occur on the actual vehicle. Unusual 
edge cases that show up quickly where only the  
low fidelity simulators are capable of responding 
will have  to be researched more deeply to see if   
the data produced by the enhancing neural network 
is sufficiently valid. 

An example of such an unusual scenario oc- 
curred in 2009, when US Airways flight 1549 struck 
a flock of geese shortly after takeoff resulting in a 
loss of power in both engines. With only a short 
period of time to evaluate potential options, the 
flight crew decided to ditch the plane in the Hudson 
river, saving all passengers [14]. 

What would have happened if the crew had  

been less experienced? Could there be a way to 
evaluate options for these types of cases where time 
is critical and experience limited or nonexistent? If 
enhanced simulators can be built to be small and 
fast enough to run at many  times  normal  speed 
and in parallel, it may be possible to automate a 
response to a Mayday request by starting an always- 
available cluster of simulations to evaluate potential 
best options given edge-case degraded modes. In 
essence, multiple reinforcement learning simula- 
tions are set up with the objective function being   
in the case of Flight 1549, a safe landing. 

Such simulations need not be limited to satel- 
lites or civil aviation. Simulation and prediction of 
degraded ground vehicle behavior ranges from 
situations as specific as overheating train  axles [15] 
to predicting traffic [16]. Combat often involves 
ground vehicles operating individually or in groups 
in degraded modes that cannot anticipated. An 
approach to adapting quickly to these unanticipated 
situations using scalable high-fidelity simulation 
may make for a more adaptive combat capability 
that is able to adjust to changing conditions faster 
than the Adversary. 

 
4. CONCLUSIONS 

All machine learning depends on large volumes 
of data. Creating a pipeline for providing synthetic 
data on demand is a market that is currently worth 
tens of millions of  $US  annually  that  is  likely  to 
only increase over time. ASRC is developing 
systems to provide synthetic data at scale. Synthetic 
data allows organizations to be independent of data 
sources with potential limitations and foreign com- 
plications. 

Machine learning models are useless without 
data, and diverse data can make the same model 
applicable in diverse contexts. Even if progress 
ceased in the development of more sophisticated 
models, machine learning could be effectively ap- 
plied to new domains simply by training current 
state-of-the-art models with new, well understood 
and balanced datasets. 
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Simulation as a way of creating usable assets    
is currently being done in an ad-hoc basis in the 
AI/ML community. Particularly for the government 
user, it is often the only secure way to generate the 
amounts of data needed for the effective training   
of unusual models, such as satellites. In this paper, 
we have shown that it may be feasible to produce 
large amounts of simulated data that can in turn be 
used to train machine leaning systems to recognize 
and adapt to rare and unlikely situations. Future 
work will focus on increasing the range, scale, and 
sophistication of these types of simulations. 
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