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ABSTRACT 
Implementing Prognostic and Predictive Maintenance (PPMx) for the U.S. 
Army’s ground vehicle fleet requires the design and integration of on-platform 
predictive analytics. To support the design process, U.S. Army DEVCOM Ground 
Vehicle Systems Center (GVSC) and Applied Research Laboratory (ARL) Penn 
State researchers are developing a systematic approach that uses reliability 
modeling in a guiding role. The key steps of the process are building the initial 
reliability model from available data (e.g., system diagrams and physical 
layouts), augmenting with information on observed states and failure modes via 
subject matter experts, and then conducting trades on additional sensors and 
algorithms to determine a suitable predictive analytics capability. In this paper 
we provide an example of this process as applied to an Army ground vehicle, first 
focusing on a simplified sub-problem to demonstrate the technique, then 
providing statistics on the large scale process.      
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1. INTRODUCTION 
Although the Army has been conducting ground 

vehicle Condition Based Maintenance Plus 
(CBM+) related efforts for years, there has been a 
resurgence of interest and resources put toward 
this area in the recent decade.  This area of interest 
has gone through a name change, and is now 
referred to as Prognostics and Predictive 
Maintenance (PPMx).  With improved data 
collection technologies, as well as increased 
capabilities in data transmission, processing and 
analysis, the Army is working to apply the 

benefits of these new and improved predictive 
analytical capabilities in order to provide 
advanced troubleshooting techniques and insights 
for every echelon of decision making – from the 
enterprise, to the Program Manager, to the 
maintainer.  
One of the biggest challenges in beginning to 

implement PPMx data collection and analysis 
techniques to large Army ground vehicle 
platforms is to determine what data is available, 
what data should be collected and monitored, and 
how that data will be used.  Although it sometimes 
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sounds appealing to collect more data, that is not 
always necessary, nor are there always the 
analytical resources to consume that additional 
data.  One technique that is a powerful tool in 
determining what data is necessary to collect and 
what critical components / subsystems to focus on 
for PPMx algorithms is Reliability-Centered 
Maintenance (RCM) Analysis.  According to 
MIL-STD-3034A [1], “Reliability-Centered 
Maintenance (RCM) Process,” there is a strong 
relationship between RCM and CBM+/PPMx. As 
outlined in Appendix F of MIL-STD-3034A, “The 
objective of CBM is that maintenance is 
performed based on objective evidence of need. 
RCM is the foundation for CBM; it is the process 
that is used to develop the maintenance tasks 
needed to implement CBM.”   According to DODI 
4151.22-M [2] on Reliability Centered 
Maintenance, “CBM+ is maintenance performed 
on evidence of need provided by RCM analysis 
and other enabling processes. CBM+ uses a 
systems engineering approach to collect data, 
enable analysis, and support the decision-making 
processes for system acquisition, sustainment, and 
operations.” 

Throughout this paper, we will discuss reliability 
modeling and its crucial role in designing and 
developing on-board predictive analytics.  These 
reliability models can be used for RCM analysis to 
determine which failure modes and components 
are the best candidates for monitoring and 
implementation of PPMx. 

A key component of a PPMx system for the U.S. 
Army’s ground vehicle fleet is on-platform 
predictive analytics. Implementing the predictive 
analytics requires determining what additional 
sensors are needed for health monitoring, and 
what algorithms to use to identify current, and 
predict future, health states. Evaluating a notional 
predictive analytics solution requires simulating 
the system, exercising its different failure 
precursors and failure modes, and evaluating the 
success of the solution in detecting and predicting 
the failures.  

To support the design of the predictive analytics, 
U.S. Army Ground Vehicle Systems Center 
(GVSC) and Applied Research Laboratory (ARL) 
Penn State researchers are developing a systematic 
approach that uses reliability modeling in a 
guiding role. The reliability model captures failure 
modes and statistics for individual components of 
a system, then through interconnections of 
components it captures how component failures 
propagate to system failures. It also captures the 
(potentially) observable parameters of the system 
operation (e.g., voltages, pressures) that can be 
sensed to develop an understanding of the 
system’s health state.  

The key steps of the process developed by 
GVSC and ARL Penn State are building the initial 
reliability model from available data (e.g., system 
diagrams, manuals, and physical layouts), 
augmenting the model with information on 
observed states and failure modes via subject 
matter experts, and then conducting trades on 
additional sensors and algorithms to determine a 
suitable predictive analytics capability. The 
approach implemented by this team is shown in 
Figure 1.  

 

 
Figure 1: Approach for developing health monitoring 

system (HMS) technology 

In the remainder of the paper we first provide an 
overview of the predictive analytics design 
problem, and where reliability modeling plays a 
role. Next we discuss the modeling environment 
and approach adopted. The implemented process 
is demonstrated on a simplified sub-problem to 
highlight the steps in building and exercising the 
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model. Then the entire system model is addressed, 
presenting statistics on model complexity and 
failure processes. The paper concludes with a 
summary of results and next steps. 

 
2. PREDICTIVE ANALYTICS PROBLEM 

The fundamental problem for predictive 
analytics (PA) is to observe the system under 
consideration and infer the system’s state of health 
from the available sensor information, as shown in 
Figure 2. In this paper, we use the Joint Light 
Tactical Vehicle (JLTV) as the example ground 
vehicle.  It is important to note that the example in 
this paper uses a simplified example, meaning the 
representation of the JLTV cooling system is 
modified – not an exact, detailed representation of 
all of the components and connections found in 
the actual JLTV design.  It is a generic example 
assigned to an actual Army ground vehicle 
platform in order to demonstrate the relevance of 
this type of modeling and optimization process to 
the PM.   

The ideal state of vehicle health monitoring is 
that at each moment the PA is able to assess the 
health of every component in the system. 
However, this is both unrealizable due to the 
sensing that would be required, and unnecessary 
due to the high reliability or lack of criticality of 
many of the components. Therefore, the PA is 
typically designed to infer the state of a critical 
subset of failure modes and the components that 
cause and are affected by them. This is derived via 
a Failure Modes, Effects, and Criticality Analysis 
(FMECA), conducted with the aid of subject 
matter experts.  According to the Defense 
Acquisition University (DAU), “The 
FMEA/FMECA is a reliability evaluation/design 
technique which examines potential failure modes 
within a system and its equipment, in order to 
determine the effects on equipment and system 
performance. Each mode is classified according 
impact on mission success and safety to personnel 
and equipment [3].” 

 

 
Figure 2: Predictive analytics 

A key decision in developing the PA is 
determining the suite of sensors to use to infer the 
health state. Systems like the JLTV already have 
sensors as part of the system - the designer can 
choose to augment the system with additional ones 
in order to gain the necessary insight. 

PA can infer failed components via at least two 
means; from direct measurement, and from 
inference using other measurements and 
knowledge of the observed system. As sensors 
have a cost, add weight/complexity to the sensed 
system, and can themselves fail, it is desirable to 
use only a minimal set of sensors while accurately 
determining system health. 

This is where reliability modeling can impact 
PA design. Reliability modeling decomposes 
systems into their constituent subsystems and on 
down until modeled at individual components (or 
some level of abstraction). Properties such as 
sensed outputs and failure modes can be captured. 
Next, connections are captured for components, 
subsystems, and up to the system level. The 
connections, which can also be labeled as 
couplings or flows, are one of two types: explicit 
or implicit. The explicit connections are as 
captured in the documentation, for example the 
flow of hydraulic fluid from pump to actuator. 
System schematics will clearly show these for the 
systems, and they can be captured in the reliability 
model directly. The reliability model can then 
reason about them, and infer that if one fails then 
so does the other (if in sequence). 

JLTV

Predictive
analytics

Inferred health 
state

Sensor values
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The implicit couplings are where components 
are not directly coupled as part of the design, but 
they are coupled due to proximity in the physical 
layout. For example, two components co-located 
in a space may couple directly (e.g., data flow) but 
may also couple thermally and through vibration 
due to their proximity to each other. This may 
result in their failures in the physical system being 
coupled. While the reliability model will not 
identify their coupling, subject matter experts can 
model their dependency via other means, ensuring 
their interconnection is captured. 

Sensors for the components and their 
connections are also added to the model. As 
physical components, they also have failure modes 
and interdependencies the same as the basic 
system components, and their addition drives up 
system complexity. In designing the PA, there is a 
natural tradeoff between maximizing health state 
knowledge through sensing, and minimizing 
system complexity and cost. 

A reliability tool can now analyze the 
components and their connections, and 
automatically develop fault trees that map 
component failures to subsystem and system 
failures. And as is critical to PA design, the ability 
of sensors to localize the failures to specific sets of 
components can be assessed.  

A PA designer now has two key capabilities: the 
first is the ability to experiment with different 
sensor suites and easily determine whether they 
enable sufficient localization of top level faults to 
components. Second, the reliability model 
contains the fault tree information needed for the 
designer to build an advanced predictive analytics 
capability that can infer component failures for the 
case where the failed component cannot be 
localized just from the sensor data. 

 
3. MODELING PROCESS EXAMPLE 

This section discusses the modeling approach 
that ARL Penn State used, based on PHM 
Technology’s MADe software [4, 5] for the 
reliability modeling of a Joint Light Tactical 

Vehicle (JLTV). While the full vehicle model 
capturing all of the system’s complexities is being 
used for the analysis of possible additional 
sensor(s) that would add value based on the 
criticality of the failure modes detected, only a 
simple model of a subsystem is provided here as 
an illustrative academic example. 

The process starts with the development of a 
functional model from its design specifications. 
With the primary emphasis on optimizing the 
design of predictive analytics technologies, the 
vehicle’s subsystems and components are modeled 
and the functional dependencies between the 
components are mapped. This allows the team to 
conceptualize the vehicle as both a system and as 
independent components. A simplified example of 
the JLTV cooling system is shown in Figure 3.  

Each component in the model contains physical 
properties that are capable of being monitored. 
These properties consist of the temperatures, 
pressures, volumes, etc. that flow between 
components and affect the performance of the 
system. 

 

 

 
3.1. Aids in Selecting Sensor Sets 

The MADe reliability modeling software 
contains a Predictive Health Monitoring (PHM) 
module that can determine, for a particular sensor, 
which component failures it can detect; and for a 
particular component failure, which sensors detect 
it. The module further provides the set of 

Figure 3: JLTV simplified cooling system – no 
additional sensors suggested by MADe 
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components that a failure can be narrowed to 
based on a sensor reading (the ambiguity set). Of 
particular utility is the ability to designate key 
failures and components to be monitored (and 
ones that can be ignored) and have the PHM 
module identify potential sets of existing and 
added sensors that will identify failures with a 
specified level of acceptable ambiguity. 

The ARL Penn State team created a separate, 
simplified model of the JLTV’s cooling system to 
experiment with the MADe PHM module’s 
capabilities and explore its usefulness to predictive 
algorithm development. Figure 4 shows the legacy 
set of sensors that are organic to the cooling 
system, then candidate sensor sets to be 
considered. For each sensor set, the tool provides 
information on which faults can be detected and 
which components can be localized.  The size and 
members of ambiguity sets, and other key 
attributes of interest to a PA designer are also 
obtained through use of the tool. 

 
Figure 4. Candidate Sensor Sets for the JLTV cooling 

system 

3.2. Aids in Designing PA Algorithms 
The process used to develop the reliability 

model provides critical information for the 
engineers and data scientists responsible for 
developing on-platform predictive analytics. 
These developers may not be familiar with the 
platform or the interactions between its 
components. A reliability model, including those 
created using the MADe software, can provide the 
algorithm developers with an overview of the 
platform’s component layout, details about 
physical properties and their flows between 
components (such as temperature and pressure), 
and locations of existing and recommended 
sensors. 

Interdependencies become clear as relationships 
and feedback between equipment are displayed, 
allowing the engineers to visualize how faults can 
propagate through the system. They can use this 
knowledge to select combinations of sensors and 
machine learning (ML) techniques that can extend 
detection beyond direct sensing, and allow the 
ability to predict future failures based on observed 
trends. 

As an example, the simplified JLTV cooling 
system sub-problem used here has clearly 
identified the existing sensors and component 
interactions to the ARL Penn State predictive 
algorithm development team. A top failure 
identified by a subject matter expert for the JLTV 
is an engine overheat caused by a blocked 
radiator. The ARL Penn State team was able to 
use the MADe reliability model to quickly 
determine that the JLTV cooling system cools 
both the engine coolant and the transmission oil, 
and therefore both the existing engine coolant 
temperature and transmission oil temperature 
sensors could be used as inputs to an Engine 
Overheat predictive algorithm.  The 
interdependencies between components, even in 
separate subsystems, becomes apparent by using 
the model.  These interactions may not be obvious 
by looking at a spreadsheet of failure modes or 
reading through an instruction manual.  By having 
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a visualization of the functional relationships and 
failure propagations throughout the vehicle 
system, engineers and analysts can efficiently 
identify the data flows and states that need to be 
measured on a vehicle in order to accurately 
identify the conditions surrounding faults, failures, 
and degraded operation.  The cooling system 
example contains less than 15 components.  As 
one can imagine, the value of using the model 
increases exponentially when dealing with 
hundreds of Line Replaceable Units (LRUs) on a 
given system.  The interdependencies between 
these components (1st order, 2nd order, 3rd order, 
etc.) can be less easily traced manually.  The 
sensor set optimization algorithms which present 
coverage of failure modes simplifies the work of 
the analyst as well, as the goal is not only covering 
as many critical components as possible, but also 
multiple failure modes on those components, 
which can have varying degrees of criticality 
themselves. 

We modeled the major components of JLTV, 
breaking the vehicle down into the following 
major subsystems: Engine, Transmission, 
Driveline, Suspension-Hydraulics, Pneumatics-
Brakes-Central Tire Inflation, HVAC, and Fire 
Suppression.  Failure modes were implemented 
based on input from subject matter experts.  
Analyses were conducted on each subsystem as 
well as the entire vehicle to develop sensor set 
solutions. 

The next step will be algorithm development 
based on the sensor set options provided, trading 
on the number of sensors and usability of the 
sensor data by the algorithms to provide the 
desired PA component coverage.  The model will 
be refined to account for the algorithms in 
reducing the required amounts of sensors.  The 
model will also be updated as “new” failure modes 
are encountered       and discovered through 
testing and operational usage of the vehicle.  
Maintenance strategies will be developed based on 
this information to increase reliability and 
maximize availability.    

 
4. CONCLUSION 

Developing predictive analytics involves 
identifying what parameters of a system need to be 
sensed, and implementing algorithms to process 
the sensor data to infer current and predict future 
failures. The key to both of those tasks is 
developing a model that can assess the ability of a 
set of sensors to identify and localize faults, and 
that contains information on the dependency of 
system health on the health of its subsystems, as 
well as individual components. A reliability model 
contains both of these attributes. By incorporating 
reliability modeling into the health monitoring 
system design process, we will be able to 
demonstrate the ability to create a more optimum 
on-platform predictive analytics capability, central 
to the Army’s efforts to better achieve higher 
states of system readiness.  
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