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ABSTRACT 
To advance development of the off-road autonomous vehicle technology, 

software simulations are often used as virtual testbeds for vehicle operation. 

However, this approach requires realistic simulations of natural conditions, which 

is quite challenging. Specifically, adverse driving conditions, such as snow and ice, 

are notoriously difficult to simulate realistically. The snow simulations are 

important for two reasons. One is mechanical properties of snow, which are 

important for vehicle-snow interactions and estimation of route drivability. The 

second one is simulation of sensor responses from a snow surface, which plays a 

major role in terrain classification and depends on snow texture. The presented 

work describes an overview of several approaches for realistic simulation of snow 

surface texture. The results indicate that the overall best approach is the one based 

on the Wiener–Khinchin theorem, while an alternative approach based on the 

Cholesky decomposition is the second best. 
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1. INTRODUCTION 
Determining drivability of a route is a 

fundamental problem in off-road vehicle 

autonomy. This problem is made more 

challenging in cold regions by snow and ice, 

where characteristics of snow and ice 

surfaces can vary greatly due to rapidly 

changing factors such as snow depth, 

strength, density, and friction characteristics 

[1]. Current autonomy vehicle packages are 

primarily focused on the proprioception 

technologies, do not account for the type of 

snow or ice surface, and therefore are not able 

to adequately predict drivability on these 

surfaces.  

As pointed out in [2], a comprehensive 

solution should include a look-ahead sensing 

with the terrain classification in front of the 

vehicle. This information can be used for 

optimal routing and to inform autonomous 

vehicle controllers, which would adapt for 

the upcoming driving conditions. Then, 

information from the look-ahead sensing will 
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be combined with the instantaneous vehicle 

proprioception sensing to make fine-tuning 

of autonomous systems for more robust and 

safe driving.  

To aim at reproduce a wide variety of 

driving conditions, numerical simulations are 

often used for the development of autonomy 

algorithms. Such simulations can provide 

very valuable insights and substantially 

reduce the time and cost of experiments as 

long as they reproduce realistic physics of the 

vehicle-terrain interaction and, for the terrain 

classification, realistic sensor performance. 

For the vehicle-terrain interaction 

modeling, physics based snow models are 

used. Such models use physical laws that 

govern snow accumulation, based on the 

energy-mass balance, and typically require 

many meteorological parameters as inputs, 

such as energy fluxes, precipitations, 

humidity, sun energy radiation, wind, surface 

type and geometry, etc. This is approach 

adopted in the land surface modeling (LMS), 

e.g., Noah LMS developed by the National 

Oceanic and Atmospheric Administration 

(NOAA) [3, 4] and SNODAS snow model 

developed by the  National Operational 

Hydrologic Remote Sensing Center 

(NOHRSC), which incorporated several 

previously developed approaches for 

mathematical formulation, snow dynamics, 

and mass-energy transport [5, 6]. Such 

models are useful in the studies of global 

climate, meteorology, and regional weather, 

but have limited applicability to the terrain-

informed autonomous vehicles. Due to 

availability of the data used as required inputs 

in these models, the spatial resolution of their 

simulations is rather coarse, reaching the 

limit of 1 km as its finest. For vehicle 

autonomy, much smaller spatial scales are 

needed.  

A physics based numerical model, which 

can be used to simulate snow depth on a 10 

m grid, is Glen Liston’s SnowModel [7].  

SnowModel is a single-column model that 

simulates the accumulation and ablation of 

snow in response to meteorological forcing.  

Specifically, it solves the energy balance 

equation for the snow surface and the 1D heat 

transport through the snowpack.  

Additionally, SnowModel has a forest 

canopy component that simulates the effects 

of an overhead forest canopy on 

precipitation, wind speed, and radiation.   

While meter spatial scales might be 

sufficient for estimating route drivability, 

such scales are not sufficient to reproduce the 

surface reflection of the lidars or visual 

appearance of the snow surface. For these 

tasks, even finer spatial resolution is needed 

[2, 8]. To address this problem, we adopted a 

statistical approach, in which these fine-scale 

variations in snow properties, e.g., snow 

depth, are treated as a two-dimensional (2D) 

random field with certain correlation 

properties. In the core of our approach lies a 

separation of a snow layer height field into 

the background and fine-scale fields, which 

are defined by the user-defined outer and 

inner spatial scales. The background field is 

thought to be modeled by one of the suitable 

physics-based model described above, while 

the fine-scale field, responsible for the 

texture or roughness, is modeled through the 

simulation of 2D correlated random 

processes. In this paper, several approaches 

for realistic simulation of snow texture are 

considered, compared, and suggestions are 

drawn for the best practical approach. 

 

2. DATA PREPROCESSING 
  The data described in this paper were 

collected near Union Village Dam, Thetford, 

VT, on 11 Mar 2021. Images were collected 

with the R80D SkyRaider unmanned aerial 

system (UAS) with an integrated onboard 

HDZoom camera. The UAS was flown using 

a preprogrammed flight plan allowing 

overlapping images to be collected over the 

entire test area while imaging several key 

areas to include sections of roadway, fields, 
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fabricated obstacles, and a river. An 

orthomosaic image was created from these 

photos as the first step of the photogrammetry 

that ultimately ends with a high-resolution (6 

cm) digital elevation model of the scene. This 

is created by joining the overlapping smaller 

images for the area to create a unified image 

of the entire scene, which is shown in Figure 

1. 

 

 
Figure 1: An orthomosaic image of the data 

acquisition site. 
 

As mentioned in the Introduction, the first 

step in the data pre-processing is a separation 

of the digital elevation map of the scene 

shown in Figure 1 into the background and 

fine-scale images. Such a separation is based 

on the desirable outer and inner spatial scales. 

Then, the outer scale background image can 

be simulated by a physics based model, while 

the focus of this paper is on the modeling 

approaches for the fine-scale field.  

The background can be estimated by 

various methods. The simplest one is to 

remove the mean elevation, which will not 

remove overall slope of the scene. Another 

possibility would be to remove a 2D trend in 

the elevation by fitting a plane, which would 

resolve the average slope issue. However, 

both approaches will leave in the residual 

fine-scale image all large features, such as 

hills, valleys, and natural of fabricated 

structures. To adequately construct the 

background image, we used the 2D centered 

moving average filtration with the spatial 

lags equal to the outer scale. Then, the fine 

scale image is obtained as a difference 

between the original and filtered image. 

Figures 2a and 2b show the filtered and fine-

scale images for the outer scale of 2 m. 

 

 

 

 
Figure 2: Image preprocessing. (a) Digital elevation 

model of the background for the snow scene shown 

in Figure 1. (b) Fine-scale residual image. (c) Filtered 

image shown in Figure 2b with outliers removed. 

As one can see in Figure 2b, the fine-scale 

image contains many outliers caused not by 
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snow texture, but by large-scale natural and 

fabricated features, such as trees, river, and a 

bridge. These outliers were removed by 

applied a threshold for the elevation at the 5% 

significance level. The final filtered image 

that is used to estimate statistical properties 

of the snow roughness is shown in Figure 2c, 

where pink indicates not-a-value pixels. 

 

3. SIMULATION OF RANDOM FIELD 
In this section, several methods for random 

field synthesis are considered and evaluated 

from a practical point of view. The evaluation 

of the methods here is based not only on their 

ability to re-create realistically looking 

texture, but their efficiency.  

Another aspect that is important for 

applications is the ability to create both, 

isotropic and anisotropic textures. For 

example, for snow roughness on a leveled 

plane, there is no reasons to assume 

horizontal anisotropy of snow depths. And an 

isotropic random field would be an 

appropriate choice for this scenario. 

However, on the hills or in valleys, random 

variability in snow depth might be biased by 

the gravity, which makes the texture to be 

different depending whether variations go 

along the gravity geodesic curve or not. 

Similarly, in some areas there might be 

predominant wind patterns that will render 

snow texture along the wind to be different 

from those in the cross-wind direction.  

Yet another important aspect of the 

modeling method is spatial periodicity 

beyond the modeling scene. Indeed, synthesis 

on the large spatial scales with fine resolution 

may require serious computational resources, 

in either time or memory. If a method 

generates a random filed with periodicity 

beyond the computational boundaries, then, a 

simple tiling of this image at every side will 

increase the simulated area.  

 

Lastly, the simulated scene should 

preferably exhibit spatial ergodicity 

properties. This means that statistical 

properties of the modeled random field 

should be reproduced in each synthesized 

image, not only in the ensemble sense, on 

average, when the number of synthesized 

images is very large. 

Thus, an ideal method should be fast, 

should reproduce realistic textures for 

isotropic and anisotropic cases in every 

image, and, preferably, be periodic beyond 

the boundaries of the simulated scene. 

Therefore, heavy mathematical models and 

neural networks requiring long and extensive 

training were not considered in this study. 

 

3.1. Heuristic approach 
One of the simplest methods to generate a 

random field of snow depth is through a sum 

of the 2D Gaussians randomly placed in the 

square simulation area 𝐿 × 𝐿: 

 

𝐻(𝐫) = 𝐴∑ ℎ𝑖exp [−
(𝐫−𝛆𝒊)

2

𝑎2
] ⁡𝐺

𝑖=1 , (1) 

   

where 𝐻(𝐫) is the snow depth at a spatial 

location 𝐫 = (𝑥, 𝑦), 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝐿, 

G is the number of Gaussians, ℎ𝑖 = ±1 is a 

random variable which can take the values of 

+1 or -1 with equal probability, 𝑎 is a 

parameter determining the special scale of 

variations, 𝛆𝒊 = (𝑥0𝑖, 𝑦0𝑖) is a vector of the 

ith Gaussian center, randomly placed within 

the simulation area with the uniform 

probability distribution, and 𝐴 is a scaling 

constant, which can be chosen so that the 

variance of the field 𝐻(𝐫) equals the variance 

of the actual natural scene. The model in 

Equation (1) can be easily generalized to 

include anisotropy by allowing having 

different scale parameters 𝑎𝑥 and 𝑎𝑦 along 

the x- and y- directions. Figure 3 shows 

examples of isotropic and anisotropic fields 

generated by the Gaussian model with 

various scale parameters. 
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Figure 3: Examples of random fields simulated by 

the Gaussian model. (a) Isotropic field: 𝒂𝒙 = 𝒂𝒚 =

𝟏𝟎 m. (b) Isotropic field: 𝒂𝒙 = 𝒂𝒚 = 𝟑𝟎 m. (c) 

Anisotropic field: 𝒂𝒙 = 𝟒𝟎 m, 𝒂𝒚 = 𝟏𝟎 m. 

Advantages of the Gaussian model are its 

simplicity and computational efficiency. 

Large spatial scenes can be simulated very 

quickly. However, the resulting filed may not 

be quite realistic. By appearance, one can see 

from Figure 3 that all variations bear 

somewhat smooth character, which differs 

from the actual scene depicted in Figure 2c. 

Moreover, it can be shown that the 

correlation function of the resulting fields of 

the Gaussian model is the Gaussian function, 

while the real scene is best described by the 

exponential function. 

The basic Gaussian model has a quite 

sophisticated generalization to the quasi-

wavelet random field simulation model [9], 

which can be set up so that it will match a 

given correlation function. The quasi-wavelet 

model aims at reproducing a natural way of 

random field creation, which often follows 

the principle of self-similarity, resulting in 

fractal structures. This is achieved by 

carefully selecting spatial scales of the 

Gaussian functions, following self-similar 

scale ratios. Starting with a few parent 

Gaussians, randomly placed in the simulation 

area, and applying the scaling principle, the 

resulting field is found as a sum of all 

functions of all scales. This quasi-wavelet 

model has some advantages, such as being 

able to adjust for a given correlation function 

and reproduce intermittency in the random 

fields, but it suffers from the same round 

edges as the basic Gaussian model, and is not 

easily generalizable to the anisotropic case. 

Besides, spatial ergodicity is not guaranteed.  

 

3.2. Random field simulation through 
the Cholesky decomposition 

One common method for random field 

generation is through the Cholesky 

decomposition of the covariance matrix [10, 

11]. The theory of this technique is based on 

the observation that a random field with a 

given covariance can be generated from a 

delta-correlated random field by a linear 

superposition of its samples. Indeed, let 𝐟 be 

a column-vector of independent zero-mean 

random values (for example, normally 

distributed), which are delta-correlated: 

 

〈𝑓𝑖𝑓𝑗〉 = 𝛿𝑖𝑗, (2) 
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where indices 𝑖 and 𝑗 denote the vector 

elements, 〈∙〉 stands for the mathematical 

expectation, and 𝛿𝑖𝑗 is the Kronecker delta-

symbol: 

 

𝛿𝑖𝑗 = {
1,⁡⁡⁡𝑖 = 𝑗
0,⁡⁡⁡𝑖 ≠ 𝑗

. (3) 

 

Another random variable, a column-vector 

𝐬, can be constructed such that its each 

element is a linear combination of samples in 

vector f: 

 

𝐬 = 𝐖𝐟, (4) 

 

where 𝐖 is a matrix of weights. The 

objective is to determine matrix 𝐖 so that s 

has the desired covariance properties 

estimated from the experimental data: 

 

〈𝑠𝑖𝑠𝑗〉 = 𝑐𝑖𝑗, (5) 

 

where 𝑐𝑖𝑗 is the covariance estimated from 

the experimental data. In matrix terms, 

Equation (5) reads: 

 

〈𝐬𝐬𝑇〉 = 𝐂, (6) 

 

where C is the covariance matrix between all 

elements in s, and the superscript T stands for 

matrix transpose. Substituting Equation (4) 

into Equation (6) and noting that 〈𝐟𝐟𝑇〉 = 𝐈 
one finds the following condition for the 

sought matrix W: 

 

𝐖𝐖𝑇 = 𝐂, (7) 

 

which is solved by the Cholesky 

decomposition of matrix C.  

To apply this technique to the 2D case, first, 

the empirical covariance function is 

estimated directly from the data shown in 

Figure 2c. Figure 4a shows the empirical 

covariance function under assumptions of 

spatial homogeneity and isotropy of the snow 

depth variations (blued curve), which are 

justified for the leveled terrain. As one can 

see, the empirical covariance is very well 

described by the fitted exponential 

covariance function (red dashed curve). 

 

 

 

 
Figure 4: Simulation of the random snow height 

variations by the Cholesky technique. (a) The 

empirical and analytical covariance function for the 

data shown in Figure 2c. (b) A patch of 20 m by 20 m 

from Figure 2(c). (c) Synthetic filed to represent the 

scene in Figure 4b. 

 

(b) 
m 

(c) 
m 
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Then, samples from a 2D spatial grid with a 

spatial resolution of 10 cm and the simulation 

size of 20 m by 20 m are straitened into a 

single vector s, and the covariance matrix C 

is calculated using the fitted exponential 

function. Figures 4b and 4c show a 20 m by 

20 m patch from the actual data shown in 

Figure 2c and the simulated random field. 

Comparing these two figures, one can see 

that the amplitude and characteristic scales of 

spatial variations are reproduced sufficiently 

accurately. Also, the covariance function was 

estimated using the entire image in Figure 2c, 

while only a single patch is shown in Figure 

4b, which may have somewhat different 

statistical properties. 

The drawbacks of this approach lie in its 

limited efficiency in the case of large spatial 

scales. Indeed, if there are 𝑀 samples along 

each dimension, the covariance matrix has 

the dimension of 𝑀2 ×𝑀2. In the example in 

Figure 4, which uses 10 cm resolution for a 

scene with 20 m side length, the covariance 

matrix has the dimension of 40,000 by 

40,000. For practical applications, even 

larger scenes might be of interest. The 

Cholesky decomposition of such large 

matrices becomes time and memory intensive 

to operate, which is a recognized deficiency 

of this approach [12]. Another aspect is that 

the simulated scene is not periodic in space. 

Another sampling approach that was tried 

out and which does not require the Cholesky 

decomposition is sampling from the 

multivariate correlated normal distribution, 

provided by the “lhsnorm” function in 

Matlab. This approach treats every sample in 

the simulated field as a dimension of a space, 

and, as such, can be sampled from a 

multidimensional normal distribution with a 

given covariance matrix between all samples, 

C. However, the application of this approach 

did not produce satisfactory results, as there 

is not guarantee that a single synthesized 

image possesses desirable statistical 

properties. 

3.3. Random filed simulation using 
the Wiener–Khinchin theorem. 

The method considered in this section is the 

FFT-MA method [13, 14] implemented in the 

frequency domain, which substantially 

improves efficiency by avoiding 2D 

convolution. The Wiener–Khinchin theorem 

states that the power spectral density equals 

the Fourier transform of the correlation 

function (if such a transform is feasible). For 

many analytical correlation functions, this 

transform exists in a strict mathematical 

sense. Moreover, for a finite length of the 

correlation function and simulation scenes, 

the discrete Fourier transform always exists. 

This is sufficient for the intended application. 

For a homogeneous random field, the 

theorem states: 

 

𝑃(𝐤) = ∫ 𝐵(𝛒)exp(−𝑖𝐤𝛒)𝑑𝛒
∞

−∞
, (8) 

 

where 𝐤 = (𝑘𝑥, 𝑘𝑦) is a wave vector, 𝛒 =

𝐫1 − 𝐫2 = (𝜌𝑥, 𝜌𝑦) is a separation vector 

between two spatial locations, 𝑃 is the power 

spectral density, and 𝐵 is the covariance 

function.  

As one can see in Figure 4a, the covariance 

function for snow depth variation is 

described by the exponential function: 

 

𝐵(𝛒) = 𝜎2exp (−
𝜌

𝑏
), (9) 

 

where 𝜎2 is the variance, 𝜌 = |𝛒|, and 𝑏 is 

the correlation radius. For such a function, 

Equation 8 can be evaluated analytically: 

 

𝑃(𝐤) = 𝑃(𝑘) =
𝜎2𝑏2

(1+𝑏2𝑘2)3/2
, (10) 

 

where 𝑘 = |𝐤| = √𝑘𝑥2 + 𝑘𝑦2.  

On the other hand, it can be shown that the 

Fourier transform of a random field with 

desired correlation properties equals the 

product of the spatial spectra of the square 

root of the power spectral density and the 
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delta-correlated random field [13]. 

Therefore: 

 

𝑧(𝐫) =
1

(2𝜋)2
∫ 𝑝(𝐤)exp(𝑖𝐤𝐫)𝑑𝐤
∞

−∞
, (11) 

 

where 𝑧(𝐫) is the sought field of snow height, 

 

𝑝(𝐤) = √𝑃(𝑘)𝑄(𝐤), (12) 

 

and 𝑄(𝐤) is the 2D Fourier transform of an 

independent normally distributed random 

field. The mean-centered variations are 

obtained by removing the spatial mean of 

𝑧(𝐫) over the scene. 

Figure 5 shows an example of random snow 

height realizations for two spatial scales, 0.28 

m and 1 m correlation radii. 

 

 

 
Figure 5: Snow scene generated by the Wiener–

Khinchin technique. (a) Correlation length is 0.28 m. 

(b) Correlation length is 1 m. 

This approach can accommodate the 

anisotropic case by prescribing different 

spatial scales for the x- and y-directions. 

Likewise, it can accommodate various 

covariance functions.  

One advantage of this method is its 

computational efficiency. Note that there is 

no need in covariance matrix computation, 

matrix inversion, and the Cholesky 

decomposition. The fast inverse Fourier 

transform implemented numerically in 

Equation 11 has the 𝑁log𝑁 efficiency (N 

being the total number of samples in the 

simulated field) and works very fast even for 

relatively large numerical arrays.  

Another advantage is that the generated 

scenes are periodic beyond their boundaries, 

allowing one to tile the same scene to obtain 

a realistic representation for a larger area. For 

example, Figure 6 shows a large scene 

created by tiling together 9 scenes shown in 

Figure 5a, which produces a 60 m by 60 m 

scene with no discontinuities and no efforts. 

 

 
Figure 6: Tiling a scene shown in Figure 5a to 

produce a larger scene of 60 m by 60 m using the 

field periodicity over the boundaries. 

4. CONCLUSIONS 
In order to develop a robust fully 

autonomous off-road technology, numerical 

simulations are often used in the 

developmental stage. However, the 

meaningful conclusions from such efforts 

require realistic specification of natural 



Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Simulation of Snow Texture for Autonomous Vehicle Numerical Modeling, Vecherin, et al. 

 

Page 9 of 10 

terrain properties. One specific aspect of such 

realistic terrain specification is modeling 

snow scene texture to adequately predict 

sensor performance for terrain classification. 

This will allow for a design of more 

intelligent, terrain-informed autonomous 

systems.  

In this paper, the snow height field obtained 

for an experimental site through 

photogrammetry is decomposed on the 

background and random filed components, 

based on the user-defined outer and inner 

spatial scales, and the considerations were 

given to the random field simulations that 

describe snow texture. Several common 

approaches were considered, such as 

Gaussian model, Cholesky decomposition 

technique, and the FFT-MA method based on 

the Wiener-Khinchin theorem.  

The simulation results were evaluated using  

multiple metrics, such as realistic texture 

representation, numerical efficiency, ability 

to handle isotropic and anisotropic scenarios, 

and ability to produce larger spatial scenes by 

tiling together a small simulated area without 

discontinuities on the boundaries. The results 

indicate that the overall best method that 

satisfies all the metrics is FFT-MA method, 

while the Cholesky decomposition technique 

is the second best. 
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