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ABSTRACT
Modern perception systems for autonomous vehicles are often dependent

on deep neural networks, however, such networks are unfortunately susceptible
to subtle perturbations to their inputs. Due to the interconnected nature of
perception/control systems in autonomous vehicles, it is quite difficult to evaluate
the autonomy stack’s robustness in different scenarios. Numerous tools have been
developed to assist developers increase the robustness of these algorithms for
on-road driving, but little has been accomplished for off-road driving. This work
aims to bridge this gap by presenting a reinforcement learning framework to
identify unsuspecting off-road scenes that confuse a custom autonomy stack with
a DNN-based perception algorithm to ultimately lead the vehicle into a collision.
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1. INTRODUCTION
Autonomous vehicles (AVs) are complex

machines with advanced vehicle dynamics and often
consist of interconnected perception, navigation,
and control systems. Validating the satisfactory
performance of AVs is crucial to their deployment
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in all applications. In recent years, the algorithms
that ”drive” these vehicles are now relying on deep
neural networks (DNNs) [1], however, DNNs have
been shown to be susceptible to subtle variations
in their inputs [2]; these perturbed inputs are often
known as adversarial examples. The existence of
these adversarial examples is primarily attributed
to uncertainty (leaving aside problems inherent to
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DNNs). While both on-road and off-road AVs share
sources of uncertainty from weather and interactions
with dynamic actors, specific to on-road AVs is the
unpredictable behavior of other actors, and specific
to off-road AVs is the large variation in natural,
unstructured environments.

Many researchers have turned to simulation as a
cost-effective alternative for testing AVs. However,
due to popular interest, a majority of the published
research in the field of AV testing are designed
for or only demonstrate effectiveness in the on-road
domain. Most of these works also specifically pertain
to safety-critical cases in which vehicle failure can be
catastrophic. A thorough summary of these works
is given in [3]. Consequently, numerous driving
simulators (CARLA [4], WeBots [5], Prescan [6],
VISTA 1.0 [7], VISTA 2.0 [8] etc.) and various
datasets (ApolloScape [9], Berkeley DeepDrive [10],
KITTI [11], Cityscapes [12], etc.) have been created
to assist developers improve the robustness of the
on-road AV machine learning components. But few,
if any, of these works are helpful for autonomous
off-road driving.

There is a clear need for both off-road simulation
platforms as well as algorithms for testing and
validating AV performance in such environments.
While almost every simulator provides the tools to
programmatically place objects, we do not know
of any library specifically designed for creating
off-road driving scenarios automatically. To the best
of our knowledge, we only know of one off-road
simulation platform [13] which is designed to test AV
driving policies. This platform is built on CARLA,
however, all of the pre-made driving environments
are fixed and making manual modifications would
be tedious. As for off-road AV testing, we believe
there should exist a common framework for defining
off-road driving scenarios, similar to NHTSA’s
operational design domain [14] framework. Since
safety-critical scenarios are not as relevant to the
off-road domain, we believe there is a greater need
for identifying unsuspecting scenarios that pose a

challenge for the vehicle’s autonomy stack and result
in unexpected/poor performance. Further, given
that any off-road driving scenario can easily be
parameterized by tens or hundreds of parameters
at a minimum, we suggest that any algorithm
for testing/validating off-road AV performance be
capable of working with large decision spaces.

In this paper, we aim to bridge the off-road
AV virtual testing/validation gap by providing the
following contributions:

• We propose a scenario decomposition strategy
tailored to the off-road domain.

• We present a scalable framework based on
deep reinforcement learning for generating
adversarial off-road scenarios aimed at
confusing an AV’s autonomy stack using a
Distributed Twin-Delayed Deep Deterministic
Policy Gradient algorithm with Prioritized
Experience Replay and a novel Action
Saturation Penalty.

The rest of this paper is structured as follows: In
Section 2 we will describe our proposed off-road
driving scenario decomposition. In Section 3 we will
describe the adversarial scene generation problem.
We present our methodology in Section 4. We
discuss the experimental setup, experiments, and
results in Section 5. And finally we provide our
conclusions in Section 6.

2. OFF-ROAD SCENARIO DECOMPOSITION
In this section we will introduce our proposed

off-road scenario decomposition. The U.S. National
Highway Traffic Safety Administration (NHTSA)
developed the operational design domain (ODD)
[14] as an attempt to provide a unified framework
for testing (on-road) automated vehicles. The
ODD is composed of attributes which effectively
describe the range of scenarios/conditions that a
vehicle is designed to operate in. While the ODD
framework is imperfect and it can be challenging to
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list/quantify all possible attributes [15], we believe
that AV developers should adhere to a unified
taxonomy when discussing driving scenarios. Since
the focus of our work is on the off-road domain,
we propose a modified set of primary attribute
categories: structural attributes, textural attributes,
and operational attributes.

Structural attributes define the geometry of all
the structural objects that compose the scene. This
includes the ground surface, static obstacles (e.g.,
trees, bushes, rocks), water bodies, etc. In a general
manner, we refer to the obstacles as structural scene
actors or SSAs. When defining simulated test
scenarios, for most SSAs the following attributes will
suffice: x-position, y-position, yaw angle, and mesh
scale factor (z-position can be omitted because the
simulator has access to the ground surface).

Textural attributes enhance the visual realism
by describing visual effects of the scene. These
attributes mostly include describing the intensities of
various weather/lighting conditions.

Operational attributes describe operational
constraints on any vehicle’s behavior within the
scene (e.g., go/no-go areas, speed ranges/limits,
and areas without GPS), can define the vehicle’s
task (e.g., start/goal locations), as well as describe
the behavior of other agents (e.g., non-player
characters).

Definition 2.1 (Off-Road Driving Scenario). An
off-road driving scenario is defined by a combination
of attributes from all three categories, x ∈ X =
{Astr,Atxt,Aop}, where Astr is the set of all possible
values for the structural attributes, Atxt is the set of
all possible values for the textural attributes, and Aop

is the set of all possible values for the operational
attributes that describe the scenario.

3. PROBLEM DEFINITION
Let x ∈ X be an instance of a driving scenario

description. At a high-level, we wish to identify
scenarios that are unsuspecting (i.e., not too difficult

for a human driver to accomplish) and yet lead
the vehicle to exhibit unexpected, and usually
undesirable/sub-optimal, actions, such as taking a
longer route when a shorter one exists or crashing
into an obstacle. Let us define what we call
the scenario difficulty gap, which represents the
”scenario’s difficulty perceived by the AV” minus
the ”scenario’s actual difficulty”. If we can define
a function d : X × Y → R to compute this difficult
gap, with X defined above and Y represents the set
of all possible vehicle trajectories, then our goal is to
identify the scenario(s) that maximize this quantity
defined by

x∗ = argmax
x∈X

d(x, y(x)), (1)

where y(x) ∈ Y represents the resulting vehicle
trajectory. However, since this notion of difficulty
gap is quite abstract, we instead focus our attention
to a modified optimization problem

x∗ = argmax
x∈X

d̃(x, y(x)), (2)

where d̃ acts as a proxy for d and is a concrete
and computationally tractable function that should be
defined to capture a desired autonomy failure mode.

4. GENERATING ADVERSARIAL SCENES
WITH DEEP REINFORCEMENT LEARNING

Our approach for solving equation (2) is to
strategically create numerous driving scenarios in
simulation and evaluate them against a given
proxy function. Since off-road scenarios can
be defined by many attributes, we propose the
use of gradient-based search methods as these
tend to scale well with the number of decision
variables, compared to simulated annealing [16, 17]
and genetic algorithms [18] used in the literature.
Specifically, we propose to frame the problem in the
reinforcement learning context and use a Distributed
Twin-Delayed Deep Deterministic Policy Gradient
(TD3) algorithm with Prioritized Experience Replay
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(PER) and a novel Action Saturation Penalty
(ASP). TD3 [19] is the base actor-critic algorithm,
prioritized experience replay [20] allows us to
prioritize learning from past difficult scenarios, and
the action saturation penalty helps prevent the actor
from choosing extreme values during the early stages
of training.

To help frame the problem in the RL context we
first decompose the scenario space into a set of fixed
attributes Xfixed and a set of variable attributes Xvar

(this is done for convenience as one may want to
fix certain attributes). The action space is the set
of variable scenario attributes Xvar. The state space
should (ideally) contain the full scene description
and the vehicle’s trajectory as denoted by the set
X × Y . However, if any fixed attributes are not
used to compute the difficulty proxy calculation,
then we may omit those attributes from the state
vector that is passed to the actor network. When
running a simulation, we have access to the entire
vehicle’s state and control inputs, however, given
the frame rate at which most simulations run at,
the resulting vehicle’s trajectory will contain an
excessively large number of Nsimpath points. To keep
the state vector at a reasonable size, we sample the
vehicle’s state and control information temporally
along the vehicle’s trajectory into Npath data points,
where Npath << Nsimpath. Consequently, we must
first run the simulated driving scenario with the
previous action in order to construct the state vector.
Finally, the reward function in this RL context is the
difficulty proxy’s evaluation.

Figure 1 provides an illustration of the process for
training the RL agent and for generating adversarial
scenarios. This framework consists of three layers:
the ASG, an RL backbone, and a simulation
platform. The actor processes the current state
and outputs an action, which in this case is the
variable scene description. An Unreal Engine (UE)
worker is then given a scenario request consisting
of both the fixed and variable scene attributes,
and the UE worker begins communicating with a

remote autonomy stack to carry out the navigation
task. When the simulation is complete, the UE
worker sends the vehicle’s trajectory information to
a processing block which outputs three objects: 1)
the resulting next state vector, 2) the (state, action,
reward, next state) RL transition to add to the replay
buffer, from which we can sample from and train the
critic/actor networks, and 3) a more detailed set of
information regarding the entire scenario to store for
further review.

5. EXPERIMENTAL RESULTS
To conduct experiments with our proposed

approach, we will use Unreal Engine 4 (UE4)
as well as our custom UE4 plugin called
AutomaticSceneGeneration. This plugin is designed
to quickly generate basic off-road scenes (i.e., a flat
ground plane) with any composition of structural
scene actors, and it will also launch basic navigation
scenarios and return the vehicle’s trajectory at the
end of each scenario. It also requires use of the
ROSIntegration plugin [21] for ROS communication.
The rest of this section describes the base autonomy
system under test, the experiments performed, and
the results.

5.1. Base Autonomy System
All of our experiments use a Polaris MRZR vehicle

model (with hand-tuned model parameters) as the
test vehicle with a forward-facing camera and a
localization sensor. The camera is a combined
RGB and depth-camera with a 90 degree field
of view and a resolution of 256 × 256 running
at 15 Hz. The localization sensor provides the
vehicle’s position and orientation and runs at 60
Hz. The full autonomy system is illustrated in
Figure 2. The vehicle’s perception system is a
custom traversability semantic segmentation DNN
that labels each pixel from the camera images as
belonging to an object that is traversable (e.g., the
ground plane), non-traversable (e.g., SSAs), or to the
sky. This semantic segmentation network is based
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Figure 1: Adversarial scene generation framework. Although only one simulation instance is shown, this framework can work with
any number of simulation instances running in parallel.

on the U-Net architecture [22] and is trained with
categorical cross-entropy. The labeled images for the
training dataset are created using an automatic image
labeler from the AutomaticSceneGeneration plugin.
Example raw and semantic segmentation images are
shown in Figure 3. The vehicle’s path planner
uses an A* voting path planner. The A* planner
discretizes the environment into an obstacle grid and
vehicle grid. The obstacle grid indicates possible
obstacle locations and keeps track of how many votes
each vertex has. The vehicle grid contains nodes
connected by edges that the path planner uses to
generate paths. For computational performance, the
obstacle grid may be finer than the vehicle grid, but in
our experiments we set the node spacing to 5 meters
in both grids. Example grids are depicted in Figure 4.
With every image that comes in, the segmentation
network produces predicted labels, and if any labels
correspond to points in 3D space with a height of less
than 2 meters, then the closest obstacle node is given
a vote, with 50 maximum votes per obstacle node.
The A* path planner waits 1 second before planning
the first path, and then every 2 seconds it generates
a new path from the vehicle’s current location to the
goal location. The cost of traversing any edge in the
vehicle grid is equal to the arc-length of that edge
times a scaling factor. The more obstacle votes near

a vehicle grid edge, the larger the scaling factor. The
path follower runs at 20 Hz and uses a basic PD
controller to follow the most recently generated path
with a constant tracking speed.

5.2. Base Experiment Parameters
As a way of mimicking a flawed autonomy system,

we intentionally train our semantic segmentation
network on a data set containing only barberry
bushes, see Figure 5, despite the simulation also
including juniper trees. The landscape is of size
300 × 300 meters. The vehicle’s task is to start at
(100,100) meters and navigate to (200,200) meters
without crashing into an obstacle. We impose a
safety radius around the start and goal locations such
that any obstacles placed inside these regions will
be removed. We also consider the vehicle to have
succeeded in reaching the goal location if it enters the
goal radius. Both the safety radius and goal radius
are set to 11 meters. The goal for the ASG is to
create scenes composed of eight barberry bushes and
eight juniper trees on a flat ground plane to induce
a vehicle collision. The proxy function used by the
ASG is defined by

d̃collision = 0.1vis + 0.25dgoal + 10/(dobs + ϵ), (3)

where vis ∈ [−1, 1] indicates how visible all
obstacles are in the camera’s field of view at some
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Figure 2: A* traversability autonomy stack.

(a) Raw color image. (b) Traversability semantic
segmentation image (blue

= sky, white = ground
plane, and black =

obstacle).

Figure 3: An example pair of a (a) raw color image and (b)
labeled image in the traversability semantic segmentation

dataset. Image in (b) is bordered for clarity.

x

y

(a) Vehicle grid with 10
meter spacing. Dotted
lines represent graph

edges.

x

y

(b) Obstacle grid with 5
meter spacing.

Figure 4: Example vehicle and obstacle grids for use by the
traversability-based A* path planner.

point during the simulation, dgoal is the distance

Figure 5: Vegetation meshes used in our simulations. Barberry
bush on the left and juniper tree on the right.

between the vehicle’s end location and the goal
location, and dobs is the closest distance the vehicle
came to any one obstacle during the simulation. We
ran three separate experiments modifying only the
speed of the vehicle and whether or not the obstacles
can cast shadows. In each experiment, we train
the RL agent for 1000 episodes with five steps per
episode. Conducting a single experiment using eight
parallel simulations takes approximately 12 hours.

5.3. Experiment and Results
In this section, we will describe the conducted

experiments and discuss some of the highlights from
each experiment. Table 1 contains the experimental
parameters as well as how many collisions occurred
during each experiment.

In experiment 1, the vehicle was set to move at
a speed of 5 m/s and the default lighting settings
in UE4 were used (stationary directional light with
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Table 1: Experiment Parameters and Number of Collisions.

Vehicle
Speed
[m/s]

Shadow
Casting?

Num.
Collisions

Exp. 1 5 Yes 444
Exp. 2 5 No 175
Exp. 3 2.5 Yes 304

shadow casting). Of the 5000 scenarios, 444 resulted
in a vehicle collision. Upon analyzing the vehicle’s
internal decisions on some of the most the difficult
scenarios, we learned that our segmentation network,
when trained only on bushes, misclassifies tree
shadows as non-traversable objects, see example in
Figure 6. Consequently, many scenes with a vehicle
collision were due to avoiding a tree’s shadow and
not having enough time to adequately reroute around
nearby obstacles. Figure 7 shows two scenes from
experiment 1 that resulted in a vehicle collision. The
dashed line in these figures represents the optimal
path to take assuming perfect knowledge of the scene
a priori. Figure 8 shows the path planner’s state
at three different time instances from the scene in
Figure 7b to show how the collision occurred.

Figure 6: Perception network shadow misclassification. The
left image is the raw camera image and right the image is the

predicted semantic segmentation image, which shows the
shadow being classified as an obstacle. Image is bordered for

clarity.

In light of learning how shadows affect the
vehicle’s behavior, in experiment 2 we chose to
disable shadow casting on all obstacles in the
simulation and maintain the same vehicle speed of
5 m/s. Of the 5000 scenarios, 175 resulted in a
vehicle collision. The fewer number of crashes is to

(a) Collision with tree.

(b) Collision with bush.

Figure 7: Two collisions from experiment 1. Images show
high-level scene summary.

be expected as most of the collisions in experiment 1
were due to the avoidance of shadows. The collisions
that did occur were mainly due to the constraint of
forward motion only and the inability to make sharp
turns. As an example, sometimes the path planner
would route the vehicle away from obstacles without
giving the vehicle enough time to avoid the obstacle.
Additionally, some collisions occurred because the
segmentation network often classified tree trunks
as being traversable and hence the vehicle would
occasionally try to drive through trees. Figure 9
shows two scenes from experiment 2 that resulted in
a vehicle collision.

Last, in experiment 3 we re-enabled shadow
casting but instead lowered the vehicle speed to 2.5
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(a) Vehicle is tracking one of the first
few generated paths and everything

appears okay so far.

(b) The perception network
misclassifies the tree’s shadow as an

obstacle (large cluster of red dots
surrounding the vehicle) and based

on the newly generated path, the
vehicle must change its course.

(c) Based on the vehicle’s current
pose and speed, it cannot avoid the

bush and thus crashes into it, despite
a new route from the path planner.

The path follower has not yet
received the new path, hence the

tracking point shown is stale.

Figure 8: Snapshots of the path planner’s decisions at three chronological time instances for the scene in Figure 7b. The intensity of
the red indicates the number of obstacle votes assigned to that obstacle vertex. These images show how the vehicle attempts to avoid a

tree’s shadow but in the process crashes into a bush.

m/s to see if the additional time to process sensor
data would lead to fewer collisions. Of the 5000
scenarios, 304 resulted in a vehicle collision. Since
shadows were enabled, many of the collisions were
still due to avoiding shadows. However, we did
find one interesting scenario, shown in Figure 10, in
which the path planner alternated between having the
vehicle travel to the left and right around a bush, and
eventually the vehicle crashes into the bush.

6. CONCLUSIONS
In this work we developed both an off-road

simulation test platform and a reinforcement
learning-based framework that is capable of
identifying a multitude of scenarios that pose as
a challenge to navigate by a custom autonomy
stack with a DNN-based perception system
and a basic path planner and follower. Our
experiments revealed that the failure mechanism
for collisions are not straightforward and often
require a thorough analysis of the autonomy stack’s

run-time decisions. Our experiments even revealed
failure mechanisms that were unexpected by the
developers of the autonomy stack, which is one of
the main use-cases for this work. In future work,
we plan to increase the capability of our simulation
platform to modify weather conditions as well
as test vehicles on a non-flat ground surface, and
we intend to demonstrate how our framework can
identify weaknesses throughout the autonomy stack
development cycle.
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