
2023 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
MODELING SIMULATION & SOFTWARE (MS2) TECHNICAL SESSION

AUGUST 15-17, 2023 - NOVI, MICHIGAN

EVALUATION OF HASH-SEEDED PSEUDO-RANDOM NUMBER
GENERATORS IN PARALLEL ENVIRONMENTS

John Kaniarz1, Mark Brudnak, PhD1

1US Army DEVCOM-GVSC, Warren, MI

ABSTRACT

A customized approach to Pseudo Random Number Generation (PRNG) is
developed specifically for the highly parallelizable sensor models in the ground
vehicle autonomy application domain. The work considers three desirable
attributes (namely quality, efficiency and determinism). Furthermore, the
application demands high fanout (1:1Million+) seeding of traditional PRNGs. An
approach using hash functions to generate the seeds for the PRNGs, each of which
generates a small (i.e. 20) run of numbers, to handle determinism is investigated.
Quality and efficiency are evaluated for multiple combinations of hash functions
and PRNGs and a pareto front is created. Quality assessments were performed
using industry standard testing suites (TestU01 and PractRand) and efficiency of
various hash, PRNG, and batch size combinations was benchmarked on
Windows/x64, ARM and NVIDIA/CUDA architectures.

Citation: J. Kaniarz, M. Brudnak, “Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel
Environments,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS),
NDIA, Novi, MI, Aug. 15-17, 2023.

1. INTRODUCTION

Modeling and Simulation (M&S) is a
precise discipline because the underlying
technologies are precise, namely computers
and programming languages. As such M&S
practitioners can encode mathematical laws
into implementations which easily compute
using 15 significant digits of precision.
Furthermore, the data which feeds these
models are considered equally precise; planes
are perfectly flat, joints contain no slack,

bodies are perfectly rigid, terrain is composed
of connected polygons, etc. These
simplifying assumptions make computation
and representation easier and more
computable and very often provide a very
good first order approximation to reality. In
other cases, these assumptions oversimplify
reality and make even a first order
assumption in adequate. One aspect of
modeling which is underserved by this
precision is the representation and modeling
of natural environments. In this case the
system to be modeled is imprecise, complex,
and stochastic. It is therefore imperative that

DISTRIBUTION STATEMENT A. Approved for
public release; distribution is unlimited. OPSEC
#7619

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 2 of 12

the modeling of any system which interacts
with a natural environment either through
contact (i.e. tire/track) or through sensing
(i.e. camera, LIDAR, radar) in some way
reflect this imprecision which we regard as
uncertainty around simplified yet precise
models. Typically, uncertainty is introduced
in these cases by a source of randomness such
a Pseudo Random Number Generator
(PRNG).

In this work we are seeking to add
randomness to sensor models which are used
in the autonomous systems domain,
specifically cameras and LIDARs.
Simulations of these sensor systems are
highly parallelizable in that each individual
point in a raster or scan is independent of the
others. This work was motivated by the need
for a high-quality PRNG which could work
with a highly parallelized LIDAR model. In
this use case the following characteristics are
essential:

1. High within sample quality
2. High between sample quality
3. High over-time quality
4. Determinism
5. Parallelism
6. Efficiency
With respect to quality, we intend the

statistical quality of non-correlation. By
determinism we mean that given the same
global seed value, the actual random number
are well-determined for each time step, each
beam and each value within a beam. By
parallelism, we mean that the PRNG does not
depend on a shared state across parallel wok
units (i.e. threads). Because a single LIDAR
scan may have on the order of 1 million
individual beams, we don’t want to depend
on a shared seed or serialize the generation of
random numbers. By efficiency we mean
computational cost.

Most programming languages and/or their
standard libraries contain facilities for the
generation of random numbers. These
facilities typically implement one of the well-

known algorithms such as Linear
Congruential Generator (LCG) which takes
the form of

𝑥𝑥𝑛𝑛+1 = (𝑎𝑎𝑥𝑥𝑛𝑛 + 𝑐𝑐)mod 𝑚𝑚
where the prior value of the generator 𝑥𝑥𝑛𝑛 is
often referred to as the seed, and 𝑎𝑎, 𝑐𝑐, and 𝑚𝑚
are chosen to provide long periods in the
cyclic nature of modular arithmetic. These
types of generators are fast to compute, being
composed of a few integer arithmetic
operations. As such, they are designed to
provide a single sequence of random
numbers due to the shared state as
represented by the seed. So LCGs provide
efficiency but are not well suited to parallel
use because of the shared seed. To achieve
parallelism and determinism, we sought a
method which would allow each work item to
maintain its own seed for efficiency, but
make the seed deterministically depend on
the time step and the work item.

1.1. Related work

Random number generators have been
extensively researched and studied. Surveys
of methods may be found on-line [1]. Press
et al. [2] also provide a good discussion of the
topic. Matsumoto, et al. [3] examine the
problem of poor choice in the seeding of
PRNG algorithms when employed in a
parallel configuration. More recently
Jarzynski, et al. [4] examined hash functions
as suitable sources of PRNGs which they
evaluated on GPU hardware for both
efficiency and quality. Steele and Vigna [5]
recently discuss the choice of multipliers in
the linear congruential PRNGs. Manssen, et
al. [6] discuss the practical implementation of
popular PRNG on GPU hardware and present
their own algorithm designed to be efficient
on CUDA hardware.

The approach to parallel independent
streams of PRNG has been addressed by
several researchers. Mascagni and
Srivivasan developed an algorithm for
generating parameterized PRNGs in the

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 3 of 12

context of Monte Carlo simulation. Steele, et
al. [7] present an algorithm which they call
“SplitMix” which allows a deterministic split
of the stream of random number generators.
In their approach, this splitting behavior can
be arbitrarily deep, but it couples the
generation and splitting functions. It is based
on the DotMix algorithm of Leiserson, et al.
[8] which introduces the idea of pedigrees to
handle the branching of random number
generator seeds. Subsequently Steele and
Vigna improve on the SplitMix algorithm
with the LXM family or PRNG algorithms.
This family improves the PRNG with longer
periods (up to 2128) along with a better mixing
function. Salmon, et al. [9] approach the
problem of splitting using a simple counter
and introduce a new PRNG which they call
Philox. Phillips, et al. [10] address the
problem of GPU based PRNGs with small
batches over thousands of threads in the
context of simulating Brownian Dynamics.
L’Ecuyer, et al. [11], [12] also examine
PRNGs in parallel on GPU hardware and
provide an excellent survey of prior work on
the topic.

Finally, regarding the testing of PRNGs
with respect to statistical performance several
options are available. Srinivasan, et al. [13]
give a good overview of the qualities which
make a good PRNG and outline some testing
approaches. An early test suite called
DIEHARD was developed by Marsaglia [14]
which was subsequently improved by Brown,
et al. [15] as Dieharder. L’Ecuyer and
Simard [16] developed a test suite called
TestU01 which used provides several
statistical tests for a PRNG stream. The test
suite provides different batteries of tests
named “SmallCrush”, “Crush” and
“BigCrush” with 15, 144, and 160 metrics
respectively. Finally, the PractRand suite
developed by Cook [17] provides a software
suite designed to interface with a user-
provided PRNG.

1.2. Summary
The remainder of this paper presents our

approach to seeding PRNGs for each work
item. Based on our approach, we then seek
to find high quality hash functions and
PRNGs which work well in our high fan-out,
low evaluation use case. We describe the
contenders and our inclusion/exclusion
criteria. We then present our evaluation
methods. Results of the analysis are
presented and the paper finished with our
conclusions and lessons learned.

2. OUR APPROACH

Our approach (see Figure 1) is a hybrid of
DotMix and SplitRand’s approach with
inspiration from Philox. DotMix creates
independent sequential PRNG for each task
initialized with a hash of a unique identifier.
This unique identifier, called a pedigree, is a
list of counters. The pedigree of a task is the
pedigree of its parent concatenated with N,
where N is the Nth subtask spawned.

Figure 1. Topology of the Hash-Seeded PRNG approach for
high-fanout, low batch application.

Understanding the difference between
DotMix and our approach first requires a
change in terminology. Instead of tracking
task dependencies and threads, we track
processing steps and work items respectively.
A work-item’s identifier (e.g., its pixel
number) is constant irrespective of what core
or in what order the work is performed. So,
our pseudo-pedigree in a multi-camera
simulation might look like this: [frame#,
camera#, pixel#].

If we stopped at this stage, we could use the
DotMix algorithm. But as Steele showed in

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 4 of 12

the SplintRand algorithm [7], there are much
more efficient ways of hashing. Alternately
we could take these numbers, plus a counter,
as the 4 parameters to Philox4x32. However,
in practical implementation, the pedigree
would have more than 4 items, as shown in
Figure 2, and would not map so easily. Also,
as we show later, there are faster methods
than using Philox.

Figure 2. Pedigrees (i.e. numbers of the form X.Y.Z…)
shown for the levels of nesting in this application.

What Steele noticed about hashing the
pedigree is we don’t need to hash the whole
pedigree once it’s completely known.
Instead, SplitRand maintains a running hash
state, shared across all items at the same
level. Then for each work item, it finishes the
hash independently. Furthermore, it doesn’t
use a hashing function capable of variable
length inputs, it instead creates a hash chain
using by hashing a mix of the parent tasks
hash and the sub-tasks counter. For our
algorithm we do the same but use a 2→1

reducing hashing function a counter based
PRNG (CBPRNG). The formula is:

state𝑛𝑛 = 𝐻𝐻(state𝑛𝑛−1, counter)

where state0 is the global seed for the
program and 𝑛𝑛 is the 𝑛𝑛th item in the pedigree.
On a leaf node of our dependency tree the
PRNG is seeded with state𝑛𝑛.

Not any hashing function is suitable for this
purpose. A hash collision will result in two
PRNGs being initialized with the same seed
which will cause two pixels to have the exact
same sequence of random numbers which
will result in visible artifacts.

To avoid this, we need the hash function to
be a bijection but, by definition, a reducing
function cannot be a bijection. As a practical
workaround, we require the hashing function
to be bijective in each argument. More
specifically, we need a function of multiple
arguments and, with respect to each
argument, the function is a bijection when all
other arguments are held constant. In the case
of a two-argument function, you can think of
this as a collection of bijections on one
parameter selected by the other parameter.

With this requirement we can show that
there can be no meaningful collisions within
the domain of camera simulation. In the case
of individual pixels: each PRNG is initialized
with 𝐻𝐻(camera_seed, pixel#) since camera
seed is constant across the camera/frame,
each pixel is guaranteed a unique seed. And
when viewed temporally, pixel# is constant
across frames and therefore each pixel will
always get a new seed for each frame. In the
case of stereo camera pairs, the same holds
for the same pixel in different cameras in the
same frame as they differ only by camera#.

At one level up, each camera will have a
unique seed as calculated by
𝐻𝐻(frame_seed, camera#) where
frame_seed is constant at a given time step.
It should be noted that different pixels at
different timesteps, or different pixels in

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 5 of 12

different cameras may still collide as two or
more of the parameters in the hashing chain
have changed. However, with 264 possible
seeds, collisions will be extremely rare and
with the seeds being used for unrelated
PRNGs, the collisions should be
unnoticeable in the simulation output.

As an additional optimization, a different,
faster hash function may be used at the leaf
nodes. Users may want to do this because the
final hash function in the chain is used many
orders of magnitude more often than the hash
functions leading up to it. The high entropy
output of the preceding hash functions
mitigates the low-entropy input weakness of
lower quality hash functions. Alternately, a
PRNG that offers separate streams may be
used with no final hash at the leaf node. The
PRNG’s seeding function assumes the duties
of the hash.

3. SELECTION OF HASH FUNCTIONS
AND PRNGS.
As demonstrated by the wealth of options as
collected by Jarzynski [4], creating new
PRNG and hashing functions is a popular
pastime among scientists and hobbyists alike.
Also shown by Jarzynski is that most don’t
hold up to scrutiny.

Because we are testing hash/PRNG
combinations, the number of tests we will
ultimately have to run grows geometrically.
Therefore, we limit our consideration to
functions that are either: popular, included in

popular software, or well-regarded in the
literature. From this list we further eliminate
functions that are cryptographic (slow), have
large state (>128bits), are floating-point
based, or are ill-suited for GPU compute.

3.1. Hash Functions

The list of hash functions considered in this
work are contained in Table 1.

For the 1→1 hashes (denoted by h()) in this

list, we convert them into 2→1 hashes
(denoted by H(x, y)) with the methods
collected by Jarzynski and described in the
following sections. Note: The caret (^)
symbol denotes a bitwise exclusive-or
operation as defined in the C family of
computer languages.

Nesting Method

This hash is implemented as:

H(x, y) = h(x ^ h(y))

In Jarzynski’s study, this improves the

quality of poor hashes at the expense of
doubling the computational effort as it
requires two evaluations of h().

Dot Product Method

This hash is implemented as:

H(x, y) = h(x * C1 + y * C2)

Table 1 Hash functions evaluated.
Hash Name Description
DotMix The N→1 hash used in the Pedigrees architecture. [8] We only use it as a 2→1 hash.
Iqint1 A 1→1 hash function recommended by Jarzynski [4]
Lea64 A variant of the Murmur hash finalizer. A 1→1 mixing function optimized for 32-bit architectures.

Used in SplitRand [7]
MoreMur A variant of the Murmur hash finalizer. A 1→1 mixing function with constants optimized for

higher-order avalanche. The best of the known variants. [18]
Nasam A 1→1 mixing function similar in form to the Murmur hash finalizer but with more operations. [19]
Xxhash32 A hash recommended by Jarzynski [4]
Various
PRNG [20]

Any full-period PRNG of the form state𝑛𝑛 = 𝑓𝑓(state𝑛𝑛−1) is also a bijection and suitable for use as
a 1→1 hash.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 6 of 12

where C1 and C2 are co-prime. In our
implementation we used the constants in the
“dot” portion of the DotMix hash as they are
shown to be collision resistant [8].

Linear Method:

This hash is implemented as:

H(x, y) = h(y * A + x)

which is a simplification of the dot product
method and the fastest combination method,
but Jarzynski found that it weakens the
strength of the hash. In our implementation
we make some minor tweaks to improve its
avalanche properties (i.e. the probability of a
given bit to flip on the output, given a single
bit flip on the input). First, because the form
is identical to LCG, we use a spectrally good
A from Steele [5] instead of any old prime.
In addition, because the counter (y) has less
entropy than the seed, we multiply the
counter by A to whiten it instead of the seed.

Xor-encrypt-xor (XEX) Method:

This hash is implemented as:

H(x, y) = x ^ h(x ^ y)

This method was not included in Jarzynski

but it is a common mode of operation for
block encryption cyphers and simple enough
for inclusion. We later noticed that XEX is a

bijection with respect to only one parameter
and this inadequacy shows up in our test
results. This method is incompatible with our
architecture but is included here for
completeness.

3.2. PRNGs

The PRNG functions which we included in
this analysis are shown in Table 2. We also
have two customized variants: lcg64top32
and philox2x32x10rev. The first is the same
as our 64-bit LCG except the low 32 bits are
discarded as suggested by O’Neill as a cheap
improvement. [21] The second is
Philox2x32x10 with the inputs reversed to
make the key 64 bits and the counter 32 bits.

4. TESTING APPROACH

TestU01 [16] and PractRand [17] are two
test suites that we used to measure the quality
of our system. TestU01 is the gold standard
in the scientific community as its tests are
based on common measurements and
processes. Its weakness is that many of its
tests are floating-point-based which makes it
less sensitive to weaknesses in the low order
bits. PractRand, in comparison, treats the
input as a stream of bytes. It’s primarily
looking for patterns in the bits or low
variance.

These test batteries are designed for
sequential PRNG testing and not parallel
testing. So, we converted our parallel output
into a sequential stream by concatenating the
output of multiple generators until the test
was satisfied. Because different applications
will use different quantities of numbers per
generator, and different generators produce
data at different bit sizes, we normalized the
output to 32-bit words and retested each
hash/PRNG pair at 4, 8, 16, 32, 64, 128, and
256 random words generated per seed.

TestU01’s “BigCrush” battery reports 160
metrics which we report as a pass/fail
percentage. PractRand runs until it finds a

Table 2 PRNG functions evaluated.
PRNG
Name

Description

LCG
variants

For the 64-bit generator we use
Knuth’s constants. For the 32-bit
generator we use the constants from
Numerical Recipes.

PCG
Variants

A family of PRNG functions [21]

Philox
Variants

A family of CBPRNG functions.
Optimized for GPU Compute. [9]

Xorshift
Variants

A subset of linear-feedback shift
registers which are efficient to
implement on modern processors.
[20]

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 7 of 12

statistical flaw on any metric. At which point
it reports the number of bytes analyzed.

Running BigCrush requires significant
computing resources. Roughly 20 core-hours
per test. To reduce our compute effort, we
first ran the algorithms against “SmallCrush”
and then “Crush”. Only the algorithms that
passed were promoted to the next level of
testing. After seeing consistency of the
results across all batch sizes on Crush, we
skipped the 8, 32, and 128 words per
generator analyses on BigCrush as they are
unlikely to yield any new information.

While PractRand is also computationally
expensive, it can fail fast. So for it, we only
eliminated algorithms that failed SmallCrush.

Philox, which is suitable as a total system
replacement, was not paired with any hash
functions as it would reduce performance for
no benefit.

5. RESULTS
Figure 3 shows the results of our testing

using PractRand on x86-64 architecture with
16 numbers generated per work-item. Many
algorithm pairs pass the statistical tests and
are suitable for use with our architecture.
They are lined up at the top of the graph.
Amongst these options, the faster algorithms
are on the right. The BigCrush results, Arm-
64 results, and results for N = 4, 16, 256 paint
a similar picture and are available in the
Appendix.

Of note, PCG RXS M XS 64 is consistently
the fastest or near fastest and it passes without
any additional hashing (labeled as “identity”
hash). Its separate streams feature provides
the differentiation required.

The plots for N = 8, 32, 64, and 128 do not
contain any surprises and are omitted for
brevity. As a series, the performance of the
pair is close to that of the hash for small N,
and smoothly transitions toward the

Figure 3 Quality vs performance of hash/PRNG pairs. The hash function is indicated by color; the PRNG by letter. Quality data
measured by PractRand. Performance measured on x86-64 architecture.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 8 of 12

performance of the PRNG for larger N. We
did not find any catastrophic hash/PRNG
pairings except for the broad case of mixing
32-bit and 64-bit algorithms.

When run on Arm64 architecture the
relative rankings are consistent with x86-64.
However, bit-shift heavy algorithms received
a noticeable bump in performance. This is
unsurprising as ARM machine instructions
include “free” bit shifts.

When ran on NVIDIA GPU the results are
again very similar with the notable exception
being the Philox family of algorithms. Philox
was designed to run well on GPU, and it
shows.

It is important to note that all the generators
with 32 bits of state were found inadequate.
There are two reasons for this. The first is that
BigCrush analyzes enough data to fail any
generator with less than 36 bits of internal
state [21]. Secondly, because we initialized
32-bit generators with 64-bit hashes, the
reduction of the hash output to 32 bits to
initialize the PRNG is not a bijection. Due to
the birthday problem, a collision is likely to
occur well before 232 work items. 32-bit
generators must be seeded with 32-bit hashes
to keep our guarantee of limited collision
resistance.

6. CONCLUSIONS

Overall, our testing shows that our
architecture can provide deterministic
parallel pseudo-random numbers when
paired with appropriate hash and PRNG
functions. It passes industry-standard tests of
randomness with many different hash/PRNG
combinations providing implementation
flexibility. Of the algorithms we tested, PCG
RXS M XS 64 is the clear choice for use
within this architecture. It is as sound as any
other generator to the limits of our testing and
is the fastest passing PRNG. Its separate
streams feature enables it to eliminate the
final hashing step before initializing the
generators which provides a small increase in
performance.

7. REFERENCES

[1] "Pseudorandom number generator,"

Wikipedia, [Online]. Available:
https:// en.wikipedia.org/ wiki/
Pseudorandom_ number_ generator.
[Accessed 16 2 2023].

[2] H. W. Press, A. S. Teukolsky, T. W.
Vetterling and P. B. Flannery,
Numerical Recipies in C: The Art of
Scientific Computing, 2nd ed., New
York: Cambridge University Press,
1992.

[3] M. Matsumoto, I. Wada, A. Kuramoto
and H. Ashihara, "Common Defects in
Initialization of Pseudorandom
Number Generators,"
ACMTrans.Model. Comput. Simul.,
vol. 17, no. 4, 2007.

[4] M. Jarzynski and M. Olano, "Hash
Functions for GPU Rendering,"
Journal of Computer Graphics, vol. 9,
no. 3, 2020.

[5] G. L. Steele and S. Vigna,
"Computationally easy, spectrally
good multipliers for congruential
pseudorandom number generators,"
Journal of Software: Practice and
Experience, vol. 52, no. 2, pp. 443-
458, 2022.

[6] M. W. M. &. H. A. Manssen, "Random
number generators for massively
parallel simulations on GPU," The
European Physical Journal Special
Topics, vol. 210, pp. 53-71, 2012.

[7] G. L. Steele, D. Lea and C. Flood,
"Fast Splittable Pseudorandom
Number Generators," in OOPSLA,
Portland, OR, 2014.

[8] C. E. Leiserson, T. B. Schardl and J.
Sukha, "Deterministic Parallel
Random-Number Generation for
Dynamic-Multithreading Platforms,"
in PPoPP, New Orleans, LA, 2012.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 9 of 12

[9] J. K. Salmon, M. A. Moraes, R. O.
Dror and D. E. Shaw, "Parallel random
numbers: As easy as 1, 2, 3," in
Proceedings of 2011 International
Conference for High Performance
Computing, Networking, Storage and
Analysis, Seattle, WA, 2011.

[10] C. L. Phillips, J. A. Anderson and S. C.
Glotzer, "Pseudo-random number
generation for Brownian Dynamics
and Dissipative Particle Dynamics
simulations on GPU devices," Journal
of Computational Physics, vol. 230,
pp. 7191-7201, 2011.

[11] P. L'Ecuyer, D. Munger, B. Oreshkin
and R. Simard, "Random numbers for
parallel computers: Requirements and
methods, with emphasis on GPUs,"
Mathematics and Computers in
Simulations, vol. 135, pp. 3-17, 2017.

[12] P. L'Ecuyer, O. Nadeau-Chamard, Y.-
F. Chen and J. Lebar, "Multiple
Streamswith Recurrence-Based,
Counter-Based, and Splittable
Random Number Generators," in
Proceedings of the 2021 Winter
Simulation Conference, Phoenix, AZ,
2021.

[13] A. Srinivasan, M. Mascagni and D.
Ceperley, "Testing parallel random
number generators," Parallel
Computing, vol. 29, pp. 69-94, 2003.

[14] G. Marsaglia, "DIEHARD: a battery of
tests of randomness," Florida State
University, 1995. [Online]. Available:
https://en.wikipedia.org/wiki/Diehard
_tests. [Accessed 21 02 2023].

[15] R. G. Brown, D. Eddelbuettel and D.
Bauer, "Dieharder: A Random Number
Test Suite," Duke University, [Online].
Available: https:/ /webhome.
phy.duke.edu/ ~rgb/ General/

dieharder/ dieharder.abs. [Accessed 21
02 2023].

[16] P. L'Ecuyer and R. Simard, "TestU01:
A Software Library in ANSI C for
Empirical Testing of Random Number
Generators," University of Montreal,
Montreal, 2013.

[17] J. D. Cook, "PractRand," John D. Cook
Consulting, 5 2 2020. [Online].
Available: https://pracrand.
sourceforge.net/. [Accessed 21 02
2023].

[18] P. Evensen, "Stronger, better, morer,
Moremur; a better Murmur3-type
mixer.," 16 12 2019. [Online].
Available:
https://mostlymangling.blogspot.com/
2019/12/stronger-better-morer-
moremur-better.html.

[19] P. Evensen, "NASAM: Not Another
Strange Acronym Mixer," 3 1 2020.
[Online]. Available:
https://mostlymangling.blogspot.com/
2020/01/nasam-not-another-strange-
acronym-mixer.html.

[20] G. Marsaglia, "Xorshift RNGs,"
Journal of Statistical Software, vol. 8,
pp. 1-6, 2003.

[21] M. E. O'Neill, "PCG: A Family of
Simple Fast Space-Efficient
Statistically Good Algorithms for
Random Number Generation," Harvey
Mudd College, Claremont, CA, 2014.

[22] M. Mascagni and A. Srinivasan,
"Algorithm 806: SPRNG: A Scalable
Library for Pseudorandom Number
Generation," ACM Transactions on
Mathematical Software, vol. 26, no. 3,
pp. 436-461, 2000.

.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 10 of 12

Appendix.

Figure 4 PractRand quality vs performance of hash/PRNG pairs in the small batch case (N=4) on x86-
64 architecture.

Figure 5 PractRand quality vs performance of hash/PRNG pairs in the medium batch case (N=16) on
x86-64 architecture.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 11 of 12

Figure 6 PractRand quality vs performance of hash/PRNG pairs in the Large batch case (N=256) on
x86-64 architecture.

Figure 7 TestU01 (BigCrush) quality vs performance of hash/PRNG pairs in the medium batch case
(N=16) on x86-64 architecture.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Hash-Seeded Pseudo-Random Number Generators in Parallel Environments, Kaniarz, et al.

Page 12 of 12

Figure 8 PractRand quality vs performance of hash/PRNG pairs in the medium batch case (N=16) on
Arm64 architecture.

Figure 9 PractRand quality vs performance of hash/PRNG pairs in the medium batch case (N=16) on
NVIDIA/CUDA architecture.

