
2023 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
MODELING SIMULATION & SOFTWARE (MS2) TECHNICAL SESSION

AUGUST 15-17, 2023 - NOVI, MICHIGAN

EXPLORING THE IMPACT OF DATA UNCERTAINTIES IN
AUTONOMOUS GROUND VEHICLE PLATOONING

August St. Louis and Jon C. Calhoun

Holcombe Department of Electrical and Computer Engineering, Clemson University,
Clemson, SC

ABSTRACT
To improve robustness of autonomous vehicles, deployments have evolved

from a single intelligent system to a combination of several within a platoon.
Platooning vehicles move together as a unit, communicating with each other to
navigate the changing environment safely. While the technology is robust, there is
a large dependence on data collection and communication. Issues with sensors or
communication systems can cause significant problems for the system. There are
several uncertainties that impact a system’s fidelity. Small errors in data accuracy
can lead to system failure under certain circumstances. We define stale data as
a perturbation within a system that causes it to repetitively rely on old data from
external data sources (e.g. other cars in the platoon). This paper conducts a fault
injection campaign to analyze the impact of stale data in a platooning model,
where stale data occurs in the car’s communication and/or perception system. The
fault injection campaign accounts for different occurrences of a communication
error. Our analysis provides an understanding of the sensitivity of each model
parameter in causing system failures (e.g. a crash between vehicles within the
platooning model). By understanding which parameters are most influential to
the fidelity of the model, we enable the ability to make platooning algorithms
safer.

Citation: A. St. Louis and J. C. Calhoun, ”Exploring the Impact of Data Uncertainties in Autonomous
Ground Vehicle Platooning,” In Proceedings of the Ground Vehicle Systems Engineering and Technology
Symposium (GVSETS), NDIA, Novi, MI, Aug. 15-17, 2023.

DISTRIBUTION A. Approved for public release;
distribution unlimited. OPSEC #7283.



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

1 INTRODUCTION
In recent years, intelligent transportation

systems (ITS) have seen several advancements in
collision avoidance and safety improvements [1].
The increased robustness of perception and
communication technologies have allowed for a
better situational awareness between vehicles [2].
Better situational awareness has allowed for the
implementation of autonomous vehicle platooning.
The vehicles in the platoon can not only understand
their own surroundings, but are able to understand
the states of the other vehicles in the platoon.
While this provides each vehicle with a more
holistic view of its environment, it also requires
communication between each vehicle. While
navigating the environment, vehicles communicate
certain parameters such as speed, acceleration,
and position to following vehicles. Following
vehicles calculate their next step by considering
other vehicles’ current parameter measurements
and adjusting its own to follow behind at a safe
distance and speed. This update needs to occur every
second, as changes in conditions can occur in an
instant. This introduces a significant problem, what
if something interrupts that flow of information? A
connection issue can cause a vehicle to go blind
to the other vehicles in the network. The longer
the communication interference, the greater the
chance the vehicle inevitably crashes. Connection
issues arise in many ways, including: denial of
service (DoS), false data injection, and modification
attacks [3]. These systems depend greatly on
communication between vehicles to account for
obstacles in the environment. A perturbation of as
little as a couple seconds can be enough to cause a
crash.

1.1 Stale Data
There are several vulnerabilities that, if exploited,

negatively influence the autonomous vehicle
platooning system. Perception and communication
devices are integral to a platooning system. If there is

interference within one of those devices, the system
has problems updating. Significant vulnerabilities
include interfering with a vehicle’s electric control
unit (ECU). The ECU controls data processing and
connection between the vehicle and other entities [3].
Disrupting the ECU causes errors in both perception
and communication. Jamming attacks prevent sensor
information from being translated to the ECU, false
data injection attacks send spoofed information to
the ECU, and a denial of service (DoS) attack
bombards the ECU with too much information,
making the ECU incapable of collecting data from
vehicle sensors [3]. In response to an interference,
the system commonly returns the last known values
for perturbed data; this is called stale data. Stale
data refers to a system with data that is not updating
regularly. Systems with stale data commonly
experience errors due to inaccurate assumptions
based on incorrect data. Figure 1 displays the effects
of stale data on a 1D platooning model. The effects
of stale data on a 1D platooning model are displayed
in the blue car. Originally, all the vehicles are moving
at a constant 20 m/s, 20 meters apart. As the vehicles
increase their velocities to 30 m/s, the blue car’s
velocity fails to update and remains unchanged. This
causes the car to have uneven spacing and in the
worst case will lead to an eventual crash.

1.2 Contributions
The goal of this paper is to analyze the effects

of introducing stale data into a 1D platooning
model. We inject perturbations into the model to
test which model variables are most sensitive to a
perturbation; that is, which variable, if perturbed,
most likely results in a model failure. Observing
aggregate simulation results allows us to discover
which variables and variable settings are the most
sensitive. Determining the sensitive part of the model
enables development of measures to make the model
more fault-tolerant. This paper makes the following
contributions:

• Presents a portable methodology for injecting

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 2 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

stale data into a MATLAB/Simulink model.

• Analyzes impact of stale data in a 1D
platooning model.

• Results show our 1D platooning model is
sensitive to stale data, with 33% of simulation
instances ending in collision.

• Conveys that sensitivity varies based on which
model variable is observed.

The remaining sections of this paper are as
follows. Section 2 presents a background on
vehicle platooning, stale data, and fault injection.
Section 3 introduces our fault injection methodology
and our evaluation metrics. Section 4 provides a
detailed analysis of the impact of stale data on a 1D
platooning model. Section 5 discusses study trends.
Section 7 concludes the paper and provides future
work considerations.

(a) Platoon before stale data.

(b) Platoon after stale data.

Figure 1: 1D platooning model before and after stale
data.

2 BACKGROUND
2.1 Vehicle Platooning

Current implementations of intelligent
transportation systems are becoming increasingly
robust, but are not perfect. Several accidents relating
to self-driving vehicles occur because of a lack of
knowledge about that vehicle’s surroundings [4].
In this work, researchers have explored several

methods of mitigating the dangers associated with
self-driving vehicles. One of which is cooperative
driving. A common cooperative driving application
is called Cooperative Adaptive Cruise Control
(CACC). CACC and cooperative driving are common
implementations of vehicle platooning. Applications
of CACC use vehicle-to-vehicle communication
(V2V). This methodology allows a vehicle to
obtain information from a preceding vehicle in
order to inform its own next step. This allows
a system of vehicles to better anticipate problems
and react quickly to those problems. Possible
problems that may arise are influenced by several
unknowns. Significant unknowns include adverse
weather conditions, physical obstacles, and foreign
entities to the network (e.g. other vehicles, animals,
or humans). CACC has a significant positive effect
on traffic safety and efficiency [5].

The vehicles within an Autonomous Vehicle
Platoon (AVP) are split up into two groups,
platoon leader (PL) and platoon followers (PF) [6].
Newer implementations of AVPs use an effective
Reputation-based Leader Election scheme that
observes the trustworthiness of each vehicle in the
platoon based on past actions and trips. This
framework decides which vehicle becomes the PL.
The PL has the greatest responsibility and has a
direct influence on the actions of the platoon. The
PL is tasked with dynamically monitoring road
conditions, collecting and processing information,
and issuing driving instructions to PFs [6]. Utilizing
a vehicle platoon increases fuel efficiency by greatly
decreasing wind resistance to the PFs [6]. To offset
the increased drag on the PL, the PFs share some
of the fuel they have saved from reduced wind
resistance. While several aspects of AVPs are not
directly implemented in our 1D platooning model,
the topics discussed in this section greatly influence
real life vehicle platooning implementations.

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 3 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

2.2 Stale Data
Self-driving operating mechanisms are controlled

and monitored by computer-based algorithms [7].
Data and information fidelity are nontrivial aspects
of intelligent transportation systems. Attacks on
intelligent systems require insight into the failure
conditions of the equipment, control principles,
process behavior, signal processing, etc. [8]. In
this work, Krotofil et al. discuss how attackers
introduce stale data into systems. They describe
how that interference propagates in other areas of the
system. Programmable logic controllers (PLC) are
entities that are used as automation controllers. PLCs
operate in a scan cycle architecture, meaning their
control logic uses the last saved input values to relay
commands to actuators [8]. An attacker interferes
with a PLC by jamming its sensor input readings,
forcing the system to continuously read in the same
values. Attackers also jam the connection between
the PLC and an actuator, allowing the state of the
controller to update but blocking the system from
actually acting on the update [8]. Several of these
principles are common to stale data attacks. The way
in which we inject stale data into our model is largely
similar to the methodologies described in Krotofil et
al. [8].

2.3 Fault Injection
Faults introduce errors into a system and are

categorized as either hard or soft [9]. A hard fault
is systemically reproducible. An example of a hard
fault is the inability to communicate to a vehicle that
is offline. A soft fault is a fault where activation
is not systematically reproducible. These errors are
often transient, such as dropped messages and data
corruption via cosmic radiation [10].

As integrated circuit designers and manufacturers
explore more robust technologies in circuit design,
sensitivity in these circuits becomes a non-trivial
issue [11]. In this work, the authors describe the
necessity of dependability analysis in combating
several natural and deliberate perturbations. These

perturbations are examples of system faults;
faults manifest in a number of different ways.
Particle strikes and electromagnetic interference
are examples of natural system perturbations. The
presence of natural phenomena can result in faulty
logical behavior and possibly application failures. A
deliberate fault-based attack can include lasers that
are utilized to hack critical data stored in circuits,
such as cryptographic keys and other security
features. The presence of a fault can result in
application failure either from an erroneous value
induced on a circuit output, or from an erroneous
sequential behavior due to one or more incorrect bits
in internal registers [11]. These internal errors are
defined as soft errors.

In order to inject faults into a computing
system, software based fault injectors represent
low-cost and flexible methods by corrupting values
in the executing binary [12], values at the
register level using a compiler [13], or perturbing
communication [14]. In this work, we inject stale
data into our simulation at a software level using a
Simulink module.

3 METHODOLOGY
3.1 Model Introduction

Xuan and Naghnaeian [15] present a
mathematical formulation of a 1D platooning model
that includes a lead vehicle and a variable number of
follower vehicles. The model updates continuously,
relaying information from each vehicle throughout
the system. Figure 2 displays the vehicle features
for the follower and lead vehicles: relative distance,
position, velocity, throttle input, and acceleration.
All of these features are logged at runtime and stored
for analysis subsequent analysis. These values are
used in the governing mathematical equations to
calculate the current states of the other vehicles
in the model. The updated information is integral
in allowing each vehicle to see the vehicle to its
anterior, as the results of these equations control the
simulation’s trajectory.

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 4 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 2: Vehicle features of 1D platooning model
from [15].

3.2 Stale Data Injection
The model simulates vehicles traveling down

a road in 1D with a fixed distance between each
vehicle. Each vehicle communicates with the vehicle
to its immediate anterior. As discussed before, it
is possible that data will be communicated late or
not at all. At any juncture, and for any duration,
the model can experience a disruption. In the
occurrence of a lapse in data, the model relays
stale data. In order to inject stale data into the
model, we implement a custom Simulink block
written in MATLAB. This Simulink block is placed
on the input signals of our platooning model [16].
This allows us to simulate stale data injections
by essentially turning off the model’s input for a
specified duration. This method is portable within
the MATLAB and Simulink environments and can
be applied to other simulations. Observing the
perturbed model output allows us to quantify the
effect of specific stale data injections that occur at
any time-step and for any duration.

Understanding the error propagation associated
with different stale data injected at various locations
and times allows us to understand not only sensitive
model variables, but also important injection
junctures and durations. Error propagation impacts
the future states of the vehicles; therefore, it is critical
we determine when error propagates through the

system and when it attenuates. For example, if the
acceleration of follower vehicle two is perturbed,
and stale data is introduced, the model calculates
incorrect values for connected model features. The
model sustains the same acceleration value instead
of the model calculated next step acceleration value.
The relative distance, velocity, and throttle input
displays values complimentary to the incorrect,
repeated acceleration value. Errors are likely to
propagate within the other features of the same
vehicle. In most cases, the error is likely to be passed
on to the following vehicles as they adjust themselves
to perturbed feature values.

3.3 Evaluation Metrics
In order to properly analyze the output of a

simulation instance, we must define what constitutes
a simulation’s success or failure. To classify a
simulation as a success or failure, we determine
whether there has been a crash between any vehicle.
A successful simulation features no crashes, while
a failed simulation features one or more crashes.
In order to determine the presence of a crash, we
identify relative distance between vehicles as our
evaluation metric. Relative distance is a variable
unique to each follower vehicle that represents the
distance in meters a vehicle trails the vehicle to its
immediate anterior. If at any point in a simulation,
the relative distance of a vehicle falls is zero or less,
that vehicle has crashed into the vehicle in front of it.

The goal of injecting stale data into the model
is to determine what variables are most sensitive.
This means which variables, if perturbed, result
in the most model failure. To determine which
model variables are most sensitive, we observe the
frequency of crashes for each variable. This allows
us to quantify which variables have a significant
effect on the success or failure of the simulation.
Relative distance is considered over other metrics
because it is an all-encompassing metric for our
purposes. Variations in other metric results in a
zero relative distance if the changes are significant

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 5 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

enough. For example, if vehicle acceleration is
perturbed drastically but does not result in a vehicle
crash, the model eventually returns to a steady state.

As explained above, the most important
evaluation metric we consider is relative distance.
As we discover sensitive model variables, we are
essentially defining which model variables have the
most effect on relative distance. Another method of
quantifying a variable’s effect on relative distance
is to observe the magnitude of error introduced
into the relative distance after a perturbation. We
calculate the difference in relative distance values
in a perturbed simulation to the baseline fault-free
simulation.

3.4 Defining Perturbations
We perturb simulations of the model to

understand which model parameters are the most
sensitive. In order to simulate perturbations,
we inject stale data into the model. There are
three perturbation parameters we use to determine
the location and duration of the perturbation:
Perturbation Juncture (PJ), Perturbation Duration
(PD), and Perturbation Variable (PV).

• Perturbation Juncture (PJ): represents a
time-step where the perturbation begins.

• Perturbation Duration (PD): determines how
long the perturbation lasts.

• Perturbation Variable (PV): signifies the
model feature that is perturbed.

At a random time (PJ) in the model, the values
for a feature (PV) will not update for an arbitrary
duration (PD). Throughout that duration, the value
of that variable remains constant until the injection is
complete.

Figure 2 states the significant vehicle features
that are recorded and updated continuously over the
course of the simulation. The lead vehicle records
its absolute position, velocity, and acceleration. The

following vehicles record their velocity, acceleration,
throttle input, and relative distance to its preceding
vehicle. This data is stored in a table that depicts the
changes in each feature for each time-step throughout
the simulation. We use the data in this table to
determine the success or failure of each simulation.
Moreover, we use it to determine precisely what
happened and/or went wrong in the simulations.

Each perturbation propagates error differently
throughout its own vehicle and to others. Figure 3
displays an example of how a perturbation introduces
stale data into the model (i.e. visible in near 40
seconds in the velocity graphic where the velocity
stays constant for a short amount of time). The
presence of stale data skews model values within
multiple model features as the error propagates
throughout the model. However, we see the noise
dampens as the model seeks to obtain its steady state
solution with the fixed following distance [16].

(a) Relative distance. (b) Velocity.

(c) Acceleration. (d) Throttle input.

Figure 3: The propagation of an error in the vehicle
features of follower vehicle 1 due to a perturbation.

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 6 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

4 EXPERIMENTAL RESULTS
4.1 Model Details

The 1D platooning model is run in a MATLAB
and Simulink environment. The model is a
simulation of a group of four vehicles driving
autonomously in a straight line on a road. The
model simulates the vehicles through arbitrary start
and end points, where the vehicles accelerate to
a designated speed, 20 meters per second, while
sustaining 20 meters of space between each other.
The four vehicles are categorized into two groups, a
leader and its followers. A follower vehicle receives
the variable settings from the car directly in front
of it. Then, considering those values and its own,
updates its variables in the next time-step in order to
sustain relative distance requirements.

In order to test for multiple perturbation
scenarios, we run 10,000 instances of the model. The
three perturbation parameters, selected at random,
define the unique fault injection. The PJ is a random
number from 1 to 102; this number represents the
time-step during the simulation that the perturbation
begins. The PD is a duration between 1 and 10
seconds, this is the number of time-steps where stale
data is entered into the model. The PV is a random
number between 1 and 15, each number representing
a different model feature to be perturbed. We run all
experiments on a Windows 11 workstation with an
Intel i9-12900K processor with 64.0 GB of RAM.
The platooning model runs in MATLAB version
9.12.0 and Simulink version R2022a Update 1.

4.2 Model Results
To understand how sensitive the 1D platooning

model is to stale data, we first examine high-level
observations from the fault injection campaign. At
a high level, we look for results that highlight
holistic model trends. After each run completes,
we classify it as success or not based on if any
collisions occur. Results show that 33.8% of runs
result in a failure. This information is pertinent
to understanding model trends, but lacks specificity.

To understand what causes model failures, we
look to attribute perturbation parameters to failures.
To understand which parameter settings influence
failures the most, we observe four metrics: (1)
Percentage of failures per instance, grouped by
vehicle feature; (2) Average number of crashes per
perturbation, grouped by vehicle feature; (3) Average
model time to failure, grouped by vehicle feature;
and (4) Error propagation patterns for the vehicle’s
position in response to a perturbation.

Figure 4: Percentage of failures by model feature.

4.2.1 Percentage of Failures

By summarizing our output data, we are able
to depict the count of failures per each perturbation
juncture. Figure 4 shows the percentage of runs
where at least one vehicle crashes when a specific
feature is perturbed. This information is important
because it allows us to pinpoint the most significant
model features that lead to failures. The common
trend among the followers is that acceleration and
throttle input are the most sensitive features, as stale
data in them leads to crashes nearly 50% of the
time, regardless of the vehicle perturbed. Follower
3 has very high fail rates due to its placement
in the platoon, resulting in possible corruption
when any vehicle suffers stale data. Knowing

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 7 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

each model feature’s failure percentage provides
important information about the sensitivity of each
feature. Understanding more model trends provides
another level of analysis to base conclusions off.
Each subsequent section includes results that make
it easier to classify feature sensitivity.

4.2.2 Average Number of Crashes

Not all failures are created the same. By
adding additional specificity to our definition of
sensitivity, it is possible to further differentiate model
features with similar model sensitivities. A failure
is characterized as at least one vehicle crashing
into another. However, there are several cases
where more than one vehicle crashes. Although
these cases result in the same outcome, a model
failure, it is important to differentiate between the
two situations. Furthermore, it is possible that two
variables have similar fail rates for single vehicle
crashes, but different fail rates for multiple vehicle
crash scenarios. A feature that causes more total
crashes is a more sensitive model feature.

Figure 5: Number of crashes by car feature.

Figure 5 displays the average number of crashes
per perturbed variable. Follower 1’s throttle input
is the most sensitive feature here by far, with 1.6

crashes on average. Other features are much less
sensitive. Moreover, stale data at the front of the
platoon is the most sensitive as it can propagate to all
vehicles, leading to the higher crash rate. Vehicles
at the end of the platoon see the lowest crash rate on
average.

4.2.3 Time to Failure

Time to failure is an important metric because
it gives further insight into the sensitivity of model
features. A failure that occurs after a long amount
of time may not occur if injected late enough
into a simulation. Additionally, that failure could
possibly be avoided if the perturbation duration
was decreased. Therefore, a feature with a short
time to failure is sensitive to the model. This
means that a feature with a short time to failure
effects the model significantly in a short time
frame. Furthermore, for certain features, the error
propagates throughout the model quickly. This
usually means the error is propagating quickly within
the original vehicle. It can also mean that error
is propagating quickly vehicle to vehicle, causing
errors in multiple vehicles, further shortening the
time for a crash to occur.

Figure 6: Average time to failure for car feature.

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 8 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 6 displays the average time to failure
values for each variable. Velocity, acceleration, and
throttle input are comparable in most cases, except
for Follower 3. We believe the large difference
in Follower 3 is due to it only neighboring one
other vehicle. Without error propagation to other
vehicles, the time to failure is extended. Excluding
those outliers, observing this graphic does not give a
clear, conclusive answer to the most sensitive model
feature in relation to average time to failure.

4.2.4 Error Propagation

In order to properly depict the sensitivity of each
variable, an understanding of the error propagation is
an integral means of comparing variable sensitivity.
The first three result metrics allow us to observe the
error propagation within the model. By observing
Figure 3, we see that a perturbation below a
certain threshold negatively affects the system, but
eventually, the system self-corrects and reverts to
normal. We define this threshold as the minimum
amount of error needed for model failure. Therefore,
Figure 4, the model features that propagate enough
error to cause a failure. Figure 5 displays the
magnitude of error introduced into the model for
each feature. A larger number of crashed vehicles
means that there is a large amount of error being
propagated throughout the system, enough to make
multiple vehicles crash. Figure 6 shows how fast
errors propagate through the system for each model
feature.

All model results are in some way related to the
patterns associated with error propagation; therefore,
the information provided by error propagation plots
is significant. By observing error propagation, we
compare exactly how each variable negatively affects
the model’s output. Figure 7 displays the propagation
of error through multiple vehicles when the Follower
1 has its throttle input perturbed. This is the average
error in relative distance for the time period after a
perturbation occurs. We see two patterns occur. The

pattern in Follower Vehicle 1 is how the error usually
propagates in the vehicle where the perturbation
occurs. The error spikes, then slowly returns to zero
after a couple peaks. The algorithm notices error
within the data and tries to adjust the relative distance
readings to their correct values. The peaks likely
represent the algorithm’s attempts to fix the relative
distance, while the values change in the opposite
direction. For example, the algorithm knows that
it needs to change data to depict true value, so it
may be decreasing relative distance values when the
algorithm would normally increase relative distance
at that time interval. This would cause a small
spike in error. The other followers have a single
peak of error that returns to zero after some time.
The absence of multiple peaks is likely because
the algorithm does not try to self-correct errors
passed onto other vehicles, it allows those vehicles
to fix themselves through additional calculations.
The most important aspect of the error propagation
graphics is the magnitude of the initial error peak.
The higher the error, the greater the chance of model
failure. Whichever feature generates the most error
should be the most sensitive model feature. After
comparing the magnitudes of all model features, we
have observed that throttle input in Follower Vehicle
1 has the greatest magnitude of error on average.
Therefore, this feature is the most sensitive.

5 DISCUSSION

Observing the model results, we make a couple of
conclusions about the most sensitive model variables.
Based on our results, we conclude that the most
sensitive model features is vehicle throttle input.
Regardless of vehicle, a perturbation in one of these
model features consistently returns the highest rates
of failures in the model and the highest number of
car failures per iteration. Additionally, observing the
error propagation graphics for these features convey
a consistently higher magnitude of error for their
perturbations.

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 9 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

(a) Follower Vehicle 1.

(b) Follower Vehicle 2.

(c) Follower Vehicle 3.

Figure 7: An example of the error propagation
through different vehicles.

6 RELATED WORKS
Lin et al. [17] provides a comprehensive

overview of the world of ITS. They introduce several
problems apparent in transportation now and how
ITS alleviates them. The work gives a synopsis on
the architecture of ITS, key technologies, and current
challenges and opportunities in the area. Deng [18]
observes the effects of heavy-duty vehicles (HDVs)
on traffic flow. His work focuses more on the
interaction of platooning vehicles to the surrounding
environment. The framework used is complex
and utilizes ACC/CACC algorithms. Applying
stale data injections to a complex model like this
would introduce additional factors to quantify model
failure. Now the vehicles would have to consider
other vehicles on the road, making a stale data
attack more significant. Jin et al. [19] observes the
macroscopic interactions between vehicle platoons
and background traffic at highway bottlenecks. This
work features multiple platoons operating at once. It
is interesting to consider the implications of stale data
on multiple communicating vehicle platoons.

7 CONCLUSION AND FUTURE WORK
This paper highlights the importance of

robust ITS platooning systems that have sufficient
situational awareness and fault tolerance. We
introduce a 1D platooning model, in which we
introduce perturbations into to simulate stale data.
The model is simulated tens of thousands of times,
introducing varying perturbation variables with each
run. Our analysis shows that the most sensitive
model features are vehicle acceleration and throttle
input.

Future work includes extending our work to
a 2D platooning model. The addition of a
multidimensional model provides a more complex
model equation. This will potentially change
the importance of some model features, and
subsequently their sensitivity to perturbations. In
addition, we will explore techniques to detect and
recover from stale data.

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 10 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ACKNOWLEDGMENTS
This work was supported by Clemson

University’s Virtual Prototyping of Autonomy
Enabled Ground Systems (VIPR-GS), under
Cooperative Agreement W56HZV-21-2-0001 with
the US Army DEVCOM Ground Vehicle Systems
Center (GVSC).

References
[1] V. Milanés, S. E. Shladover, J. Spring,

C. Nowakowski, H. Kawazoe, and
M. Nakamura, “Cooperative adaptive cruise
control in real traffic situations,” IEEE
Transactions on Intelligent Transportation
Systems, vol. 15, no. 1, pp. 296–305, 2014.

[2] R. Sengupta, S. Rezaei, S. E.
Shladover, D. Cody, S. Dickey, and
H. Krishnan, “Cooperative collision
warning systems: Concept definition and
experimental implementation,” Journal of
Intelligent Transportation Systems, vol. 11,
no. 3, pp. 143–155, 2007. [Online]. Available:
https://doi.org/10.1080/15472450701410452

[3] Y. Fraiji, L. Ben Azzouz, W. Trojet, and L. A.
Saidane, “Cyber security issues of internet
of electric vehicles,” in 2018 IEEE Wireless
Communications and Networking Conference
(WCNC), 2018, pp. 1–6.

[4] A. Farag, A. Hussein, O. M. Shehata, F. Garcı́a,
H. H. Tadjine, and E. Matthes, “Dynamics
platooning model and protocols for self-driving
vehicles,” in 2019 IEEE Intelligent Vehicles
Symposium (IV), 2019, pp. 1974–1980.

[5] B. van Arem, C. J. G. van Driel, and R. Visser,
“The impact of cooperative adaptive cruise
control on traffic-flow characteristics,” IEEE
Transactions on Intelligent Transportation
Systems, vol. 7, no. 4, pp. 429–436, 2006.

[6] Z. Ying, M. Ma, Z. Zhao, X. Liu, and J. Ma,
“A reputation-based leader election scheme
for opportunistic autonomous vehicle platoon,”
IEEE Transactions on Vehicular Technology,
vol. 71, no. 4, pp. 3519–3532, 2022.

[7] I. J. Rudas and J. Fodor, “Intelligent
systems,” International Journal of Computers,
Communications & Control, vol. 3, no. 3, pp.
132–138, 2008.

[8] M. Krotofil, A. Cárdenas, J. Larsen,
and D. Gollmann, “Vulnerabilities
of cyber-physical systems to stale
data—determining the optimal time to
launch attacks,” International Journal of
Critical Infrastructure Protection, vol. 7, no. 4,
pp. 213–232, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/
pii/S1874548214000638

[9] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr, “Basic concepts and taxonomy
of dependable and secure computing,” IEEE
Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[10] T. C. May and M. H. Woods,
“Alpha-particle-induced soft errors in
dynamic memories,” Electron Devices, IEEE
Transactions on, vol. 26, no. 1, pp.
2–9, Jan. 1979. [Online]. Available:
http://dx.doi.org/10.1109/T-ED.1979.19370

[11] R. Leveugle, A. Calvez, P. Maistri, and
P. Vanhauwaert, “Statistical fault injection:
Quantified error and confidence,” in 2009
Design, Automation & Test in Europe
Conference & Exhibition, 2009, pp. 502–506.

[12] D. Li, J. S. Vetter, and W. Yu, “Classifying
soft error vulnerabilities in extreme-scale
scientific applications using a binary
instrumentation tool,” in Proceedings

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 11 of 12



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

of the International Conference on High
Performance Computing, Networking, Storage
and Analysis, ser. SC ’12. Los Alamitos,
CA, USA: IEEE Computer Society Press,
2012, pp. 57:1–57:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389074

[13] J. Calhoun, L. Olson, and M. Snir, “Flipit: An
llvm based fault injector for hpc,” in European
Conference on Parallel Processing. Springer,
2014, pp. 547–558.

[14] D. Fiala, F. Mueller, C. Engelmann,
R. Riesen, K. Ferreira, and R. Brightwell,
“Detection and correction of silent data
corruption for large-scale high-performance
computing,” in Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, ser.
SC ’12. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2012,
pp. 78:1–78:12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389102

[15] Y. Xuan and M. Naghnaeian, “Detection and
identification of cps attacks with application in
vehicle platooning: a generalized luenberger
approach,” in 2021 American Control
Conference (ACC), 2021, pp. 4013–4020.

[16] C. Holt and J. C. Calhoun, “Stale data
analysis in intelligent transportation platooning
models,” in 2022 IEEE 13th Annual
Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON),
2022, pp. 0313–0320.

[17] Y. Lin, P. Wang, and M. Ma, “Intelligent
transportation system(its): Concept, challenge
and opportunity,” in 2017 ieee 3rd international
conference on big data security on cloud
(bigdatasecurity), ieee international conference
on high performance and smart computing
(hpsc), and ieee international conference on

intelligent data and security (ids), 2017, pp.
167–172.

[18] Q. Deng, “A general simulation framework for
modeling and analysis of heavy-duty vehicle
platooning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 11, pp.
3252–3262, 2016.

[19] L. Jin, M. Čičić, S. Amin, and K. H.
Johansson, “Modeling the impact of vehicle
platooning on highway congestion: A
fluid queuing approach,” in Proceedings
of the 21st International Conference on Hybrid
Systems: Computation and Control (Part of
CPS Week), ser. HSCC ’18. New York, NY,
USA: Association for Computing Machinery,
2018, p. 237–246. [Online]. Available:
https://doi.org/10.1145/3178126.3178146

Exploring the Impact of Data Uncertainties in Autonomous Ground Vehicle Platooning, St. Louis, et al. Page 12 of 12


