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ABSTRACT 

Probabilistic Principal Component Analysis (PPCA) is a promising tool for validating tests and computational models by means 
of comparing the multivariate time histories they generate to available field data. Following PPCA by interval-based Bayesian 
hypothesis testing enables acceptance or rejection of the tests and models given the available field data. In this work, we 
investigate the robustness of this methodology and present sensitivity studies of validating hybrid powertrain models of a military 
vehicle simulated over different proving ground courses. 

 
INTRODUCTION 

Computer modeling and simulation are the cornerstones of 
product design and development in the ground vehicle 
industry. Computer‐aided engineering tools have improved 
to the extent that virtual testing may lead to significant 
reduction in prototype building and testing of vehicle 
designs. In order to make this a reality, the need exists to 
assess confidence in the predictive capabilities of simulation 
models. Therefore, validation of both experimental and 
simulation results is critical.  

Verification, validation and accreditation are very active 
areas of study in industry, academia, government, and 
professional societies [1-6]. Particular challenges arise with 
data associated with dynamic systems; such data are 
typically available in the form of multivariate time histories. 
One promising method for validating computational models, 
by means of comparing the multivariate time histories the 
models generate to available field or test data, is the 
application of Probabilistic Principal Component Analysis 
(PPCA) [7] for dealing with dimensionality, uncertainty and 
correlation issues, followed by interval-based Bayesian 
hypothesis testing (IBHT) [8] for accepting or rejecting the 
model based on a computed Bayes factor given the available 
test data. The attractiveness of this approach is that it 
potentially can be used to identify the amount of necessary 
test data to validate a computer model.  

In this work, we investigate the robustness of this method 
and present sensitivity studies of validating hybrid 

powertrain models of a military vehicle simulated over 
different proving ground courses. 

 
VALIDATION FRAMEWORK 

  For the purposes of exposition, we restrict attention to 
considering validation of a computational model, denoted as 
the CAE model, with the understanding that the framework 
presented is equally applicable to validating lab tests with 
respect to field data. Figure 1 presents a schematic of the 
model validation framework for dynamic systems. A brief 
outline of the framework is provided herein, for complete 
details, refer to [9].  

Field or test data, denoted as physical test, consists of time 
histories of one or more data channels. Each data channel 
time history is scaled (normalized), so that the maximum 
absolute values of the different data are similar in 
magnitude. This procedure avoids biasing the validation 
framework based upon the magnitude of the data responses. 
The scale factors used to scale each test data channel are 
used to scale each of the corresponding CAE model data 
sets.  

Probabilistic Principal Component Analysis [7] is applied 
to the normalized test data. PPCA produces a rank-ordered 
decomposition of the test data, based upon the percent of 
variability in the data. The user of the method can then 
choose the number of principal components to retain in the 
test data reduction, based upon the amount of variability, or 
percent of information, desired to be retained in the 
validation process.  The transformation matrix obtained by 
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PPCA is applied to the CAE model data to obtain a reduced 
set of CAE data.   

 
 

Figure 1: Model validation framework for dynamic 
systems. 

 
With both the reduced test and CAE data sets, interval-

based Bayesian hypothesis testing is applied and the Bayes 
factor is calculated. Interval-based testing is employed as it 
enables a more robust validation test than more typical set-
point based Bayesian testing; see [8] for details. 

The choice of the interval does impact the Bayes factor 
value. In this study, we employed a calibration procedure 
that equates the confidence value computed with the percent 
of variability captured by the included principal components 
from the field test data. The calibration factor that produces 
this equivalence is then used for the model validation 
assessment. More details of the procedure can be found in 
[9]. 
 
APPLICATION 

The example application consists of a hybrid vehicle that 
was driven over two proving ground courses. For this 
vehicle, two different computational models were 
developed. Figure 2 depicts a comparison of four data 
channels of measured field data compared to the normalized 
CAE data channels computed using model 1, while Figure 3 
depicts the results from CAE model 2 compared to the 
course 1 test data. Figures 4-6 show the field test data 

reconstruction using one, two and three principal 
components obtained from the PPCA process applied to the 
field data. As the number of principal components increases, 
the percent of information captured by the principal 
components increases (62%, 86%, 99.9% respectively for 
one, two and three principal components).  
 

 

 
Figure 2: Comparison of field test and CAE model 1 time 

histories for course 1 (red=test, blue=CAE). 

 
Figure 3: Comparison of field test and CAE model 2 time 

histories for course 1 (red=test, blue=CAE). 
 

Figure 7 presents the parametric study of determining the 
appropriate value of the interval calibration parameter, b, 
following the procedure outlined above. Note that the 
calibration parameter does vary depending on the number of 
principal components employed. Using these calibration 
parameter values, Figure 8 provides the confidence values 
computed for both models, for one, two and three principal 
components. Note that the largest confidence value for the 
CAE models is obtained for 86% of information, that is, for 
two principal components. When three principal components 
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were considered, the noise associated with the third 
component resulted in a reduction in model confidence. It is 
important to note that in all cases the confidence value is 
below 50%, which suggests that the models should be 
rejected. In other words, the models need more refinement 
and adjustment to provide acceptable comparisons with the 
test data. 

 
Figure 4: Comparison of field test (red) and reconstructed 

test data from 1 principal component (black). 

  
Figure 5: Comparison of field test (red) and reconstructed 

test data from 2 principal components (black). 

 
Figure 6: Comparison of field test (red) and reconstructed 

test data from 3 principal components (black). 

 
 

 
Figure 7: Choosing calibration parameter, b, based upon 

setting percent of information equal to confidence value for 
number of principal components, p.  
 

 
 
Figure 8: Confidence measure, in percent, for course 1, 

model 1 (blue), model 2 (red), and number of principal 
components. 
 

The PPCA process and Bayesian interval-based testing 
were repeated for the course 2 test and computer 
simulations. The confidence values are summarized in 
Figure 9. As with course 1, the confidence values are less 
than 50%, which indicates the models should be rejected. In 
this case, however, the variation in confidence with number 
of principal components is much smaller.  

 
DISCUSSION 

The application presented in the previous section 
demonstrates that the confidence measure is dependent on 
the choice of the number of principal components and upon 
the selection of the interval calibration parameter. Further 
research is ongoing to provide engineers with guidelines on 
determining application-relevant calibration parameters and 
on assessing the information contained in the principal 
component analysis. The usefulness of the confidence metric 
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can be seen as it provides a quantitative measure of model 
validity. Equally important, it can help guide the modeler 
towards better models by capturing differences in models 
that are below the acceptance threshold. In conclusion, this 
work represents a first step towards providing a VV&A 
toolkit for Army engineers to assess not only M&S results, 
but also laboratory tests. 

 
 
 
 
 

 
Figure 9: Confidence measure, in percent, for course 2, 

model 1 (blue), model 2 (black), and number of principal 
components. 
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