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ABSTRACT 
The analysis and design of a novel active suspension system incorporating a negative stiffness spring 

are investigated in this paper. The suspension structure consists of the mechanism that employs a combination of 
ordinary and negative stiffness springs and damping element. The resulting system yields superior performance 
in terms of mobility, maneuverability, and stability, particularly in harsh terrains and/or off-road environment. 
However, its dynamics are highly nonlinear and cannot be handled directly by conventional design techniques 
and methodologies. In this paper, the formulation of the proposed active suspension system consists of two 
phases: analysis and synthesis. In the analysis phase, nonlinear controls based on the advanced feedback 
linearization methodologies of the differential geometric theory is considered. The approach renders the difficult 
task of developing nonlinear controls rather simple. In the synthesis phase, which is required for real-world 
implementation and mechanization, observer-based controls are conducted. Extensive simulation studies show 
that the system can effectively reject all the harsh road disturbances while stabilizing the vehicle platform 
remarkably well. Hence, not only the specific active suspension system can increase the vehicle mobility and 
maneuverability, provide a stable platform for weapon firings and improved target hit probabilities, but it can 
also lower the power consumption of the vehicle, reduce the absorbed power by the driver, and improve the 
overall fuel economy of the vehicle. 

 
INTRODUCTION 

Modern military vehicles require high performance in their 
mobility, maneuverability, and stability, particularly in harsh 
terrains and/or off-road environment. In such circumstances, 
a vehicle must be able to provide a good, or at least 
acceptable, ride quality and handling regardless of the 
presence of shock loads and random terrain disturbances. In 
addition, it must be able to keep its body and/or its gun-
turret steady in order to provide a stable platform for weapon 
firings and improved target hit probabilities. It is well-
known that any vehicle equipped with an active suspension 
system can provide and, in certain circumstances, fulfill such 
requirements. However, most active suspension systems are 
known to require substantial amount of energy to produce 
the control forces, for instance, in racing cars where up to 
40% of the engine power may be consumed by the active 
suspension mechanism [1]. 

Recent research in the area of active suspension platforms 
has focused on low power consumption required to stabilize 

a vehicle. A novel active suspension system that offers such 
low power consumption originated in [2] has been carefully 
studied in [2-7], and some of its aspects in [8-10]. The vital 
component of this particular system is a mass moving on a 
rail under the influence of a compressed spring, thereby 
transforming a positive stiffness spring into a negative 
stiffness spring. This mechanism is placed on a carrier which 
is connected to a set of ordinary springs and dampers to form 
an active suspension structure (see details in the next 
section). It was shown in [2,3] that the system resulted in 
low power consumption by the vehicle actuators over the 
relevant range of its displacements. In references [4,5,7], the 
unforced dynamics or open-loop system and stability of the 
equilibrium points have been analyzed thoroughly. They 
showed that the system behaved similar to that of the 
Duffing oscillator [7,11,12]. The comprehensive analyses 
and extensive simulations demonstrated that the system can 
have up to three equilibrium points depending on the system 
parameters; in particular, in [7], Dumont et al. extended the 
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analysis of the unforced, i.e., no control, system by taking 
into account the friction between the moving mass and the 
rail. It was shown that, with friction, there exist three 
separate stick zones centered on the critical points such that 
the moving mass may remain at rest or stuck if it is in any 
one of these zones. However, in contrast to the open-loop 
stability studies, not much has been done in the area of 
closed-loop control, except in [2]. In [2], the linear quadratic 
regulator (LQR) control scheme using a linearized model 
obtained by a first-order Taylor series approximation was 
investigated. The closed-loop performance resulting from 
the Taylor series linearization approach may not be the best 
that could be achieved. Inspired by the works of [4,5,7], and 
in view of the fact that the active suspension system 
incorporating a negative stiffness spring considered here is a 
minimum-phase nonlinear system which is well suited for 
nonlinear control designs, we will employ the feedback 
linearization methodologies and techniques [13-16] for the 
analysis and design of nonlinear controls for this particular 
system. Furthermore, a Luenberger observer [17] for the 
system is constructed for the synthesis and leads to the 
design of an observer-based nonlinear control system. 

The paper is organized as follows. The mathematical 
modeling and nonlinear control problem formulation for the 
negative stiffness element as well as the active suspension 
system are described in the next section, followed by the 
designs of the tracking nonlinear controls and observer.  
Next, extensive simulations demonstrate the effectiveness of 
the proposed observer-based nonlinear closed-loop control 
system, including the results of power consumptions and the 
absorbed power by drivers. Finally, some concluding 
remarks are presented in the last section. 

 
THE MODEL 

In this section, we introduce the mathematical model of the 
negative stiffness spring element, and incorporate it into the 
overall active suspension system. We know that the force 
associated with a conventional spring of nominal length oL , 
and spring constant ok  with displacement ( )p t  is given by 

( ) ( )oF t k p t= . For the negative stiffness spring element, the 
conventional spring is compressed to the length of L, one 
end is fixed and the other end is attached to a small movable 
mass as shown in figure 1(a).  

In this setup, the mass can move away from its equilibrium 
at the center in both directions as the compressed spring 
always tries to extract itself to its nominal length. The 
associated horizontal force ( )TF t  when the mass moves to 
the right as in figure 1(b) is given by [2-7] 

 

 
2 2

1 o
TF

x L

L
kx ⎛ ⎞= −

+
− ⎜ ⎟

⎝ ⎠
, (1) 

where ( )x x t=  is the distance of the mass away from the 
center, and k the normalized spring stiffness given by /ok m  
[7]. The force FT  in (1) behaves as a force generated by the 
spring with a stiffness coefficient that is negative [4,7]. It is 
remarked here that the operating range in this setup is 
confined to 2 2

ox L L< + . Defining ( ) Tx FΨ , we obtain 
the nonlinear force function as a function of the 
displacement x that represents the negative stiffness spring 
element. Details of the stability analysis of equation (1) can 
be found in [2,4,5,7]. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Negative stiffness spring element diagram. 
 

This negative stiffness spring element is incorporated into 
the active suspension system by turning the diagram in 
figure 1 clockwise by 90 degrees so that the force TF  is in 
the vertical direction. A mass-spring-damper diagram of the 
resulting quarter-vehicle active suspension system is 
depicted in figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Active suspension incorporating a nonlinear 

negative stiffness spring. 

ψ

2m

3m

( )R t

2 ( )p t

3 ( )p t

1( )p t

Actuator
  ( )AF t

( )DF t

Sc

Tc

Sk

Rk

Tk

1m

x− x0

L oL

TF
θ

F
NF(a) (b) 

L

x− x0

m

ok



Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Analysis and Design of a Nonlinear Active Suspension System Incorporating a Negative Stiffness Spring. 
 

Page 3 of 10 

Let 1( )p t , 2 ( )p t  and 3 ( )p t  be the displacement of each 
mass; the unsprung mass 1m  represents the mass of the 
wheel/tire and the suspension structure, the sprung mass 2m  
acts as the body of a quarter vehicle, and the unsprung mass 

3m  forms an active control mechanism. The constant 
parameters k and c characterize the stiffness and damping 
coefficients of the springs and dampers, respectively; the 
subscript T denotes wheel/tire, S and R denote suspension 
and the control mechanism, accordingly. The negative 
stiffness spring is represented by Ψ = 3 2( )p pΨ − . The 
actuator ( )AF t  provides the reaction force required to 
overcome the deflection of the vehicle platform; ( )DF t  
represents the force resulted from the driver acting on the 
suspension system; and ( )R R t=  represents the road profile. 
A more detailed description of the overall system can be 
found in [2-5].  

With the definitions above, it can easily be shown that the 
model of the system is given by 

 

 
( ) ( ) ( )

( ) ( )
1 1 1 1 2 1

2 1 3 1 1 ,
T T S

S R

m p k R p c R p k p p

c p p k p p m g

⎫= − + − + − + ⎪
⎬

− + − − ⎪⎭
 (2) 

  

 
( ) ( ) ( )2 2 1 2 1 2 3 2

2 ,
S S

D A

m p k p p c p p p p
F F m g

= − + − −Ψ − + ⎫⎪
⎬

+ − ⎪⎭
 (3) 

   
 ( ) ( )3 3 1 3 3 2 3R Am p k p p p p F m g= − +Ψ − − − . (4) 

 
The nonlinear spring function ( )3 2p pΨ −  in equations 

(3)-(4) is given by, from equation (1), 
 

 ( ) ( )
( )

3 2 3 2 2 2
3 2

1 oL
p p k p p

p p L
Ψ − = − − −

− +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

, (5) 

  
where oL  is the nominal length of the spring, L the 
compressed length of the spring, and k the normalized spring 
stiffness. 

The stability of the equilibrium points of the system given 
by equations (2)-(4) has been investigated thoroughly in 
[4,5,7]. The system has three possible steady states 
depending on the system parameters, including the 
parameters of the negative stiffness spring structure. It was 
shown that in the case of one steady state, the single 
equilibrium point is stable. However, the characteristic of 
the overall system was similar to the case of using an 
ordinary spring, thus diminishing the importance and all the 

contributions of a negative stiffness spring. In the case of 
two steady states, the system was structurally unstable and 
therefore impractical. In the last case of three steady states, 
the equilibrium nearest the origin was found to be unstable 
while the others two were stable. The results in [4] 
concluded that the three-steady state case was suitable for 
active suspension control design that could result in low 
power consumption.  

To formulate the model given by equations (2)-(4) for a 
control analysis and synthesis, we define the state variables 
as [ ] [ ]1 2 3 4 5 6 1 1 2 2 3 3                   ;T Tx x x x x x p p p p p p=  the 
control input ( ) ( )Au t F t= ; and the measured output 

( )y t = 3 ( )x t . A nonlinear state-space model can then be 
written in the following general form: 

 
 ( ) ( )u= +x f x g x , (6) 
 
     3( )y h x= =x , (7) 
   

where f(x) and g(x) are given by, respectively, 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2
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D

R

x
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x
k cx x x x x x g F
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x
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m m

=

⎡ ⎤
⎢ ⎥
⎛ ⎞⎢ ⎥− − + − + − + − −⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥+ +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + − − Ψ − − +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− + Ψ − −⎢ ⎥
⎢ ⎥⎣ ⎦

f x

, (8) 

 
and 

 

 
2 3

1 10 0 0 0
T

m m
⎡ ⎤= −⎢ ⎥
⎣ ⎦

g(x) . (9) 

 
Examination of equations (6)-(9) reveals that the nonlinear 

term ( )5 3x xΨ −  and the gravitational constant g  can be 
cancelled by feedback linearization through both of the 
input-state channels. In addition, the terms consisting of the 
road profile R(t), its time derivative ( )R t , and the force 
resulting from the driver ( )DF t  in equation (8) can be 
considered as disturbance inputs. In this study, we assume 
that all disturbances are measurable and/or computable. It 
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will be shown in the next section through the design of the 
nonlinear controller that the driver disturbance ( )DF t  can be 
handled by a feed-forward/feedback control law, and the 
road disturbance R(t) and ( )R t , by themselves, are 
completely decoupled from the output of interested and 
therefore will not affect the output. 

 
NONLINEAR CONTROL DESIGN 

The nonlinear control design based on the input-output 
feedback linearization technique [13-16] can be applied to 
overcome the nonlinearity of the active suspension system 
described in equations (6)-(9).  

Consider a general single-input single-output (SISO) 
nonlinear system described by 

 
 ( ) ( )u= +x f x g x ,    , : n nD ⊂ →f g , (10) 
 
     ( )y h= x ,              : nh D ⊂ → , (11) 

 
where , : n nD ⊂ →f g  are smooth vector fields,  

: nh D ⊂ →  a smooth function (output measurement), 
and D is an open set. Briefly, the input-output feedback 
linearization methodology is to find a transformation 
function ( )=z T x  that transforms the original nonlinear 
system in the x-coordinates to a linear system in the z-
coordinates by differentiating the output function ρ  times 

with respect to t, i.e., ( ) ( )y tρ , until the input ( )u t  appears. 
The differentiation process is then terminated and ρ  is 
called the relative degree of the system. 

In the present case, ( )f x  and ( )g x  are as given in 
equations (8) and (9), respectively, while 3( )y h x= =x . We 
proceed by differentiating the output 3( ) ( )y t x t=  twice to 
obtain 
 

 ( ) ( ) ( )
4

1 3 2 4 5 3
2 2 2

2 2

,
1

1 1 ,

S S

D

y x
k c

x x x x x x
m m m

g F u
m m

y

= ⎫
⎪
⎪= − + − − Ψ − −⎪
⎬
⎪
⎪+ +
⎪⎭

 (12) 

               
where the input u(t) appears in the second equation in 
equation (12), implying that the relative degree is two, i.e., 

2ρ = . Also, the driver disturbance ( )DF t  shows up in the 
same equation, thus it can be cancelled by the feed-forward 
control signal as it is measurable [18,19]. It is worth noting 
here that the road disturbance R(t) and its derivative ( )R t  do 

not appear in equation (12) which implies that the output 
function 3( ) ( )y t x t=  is totally decoupled from the road 
disturbances [16,18]. 

The fact that the relative degree is 2ρ =  implies that the 
original nonlinear system can only be partially linearized. It 
is not difficult to show that the transformation or 
diffeomorphism ( )=z T x  associated with equations (6)-(9)  
is given by 
 

 

3

4

1

2

5

2 4 3 6

  
( )

x
x
x
x
x

m x m x

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥= =⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
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ξ
z T x η , (13) 

 
where ( )tξ  and ( )tη  represent, respectively, the external 
dynamic states which are controllable and observable, and 
the internal dynamic states which are not.  

Equation (13) yields 
 

 [ ]( ) ( ) ( ) ( )u
⎡ ⎤ ∂ ∂

= = +⎢ ⎥ ∂ ∂⎣ ⎦

ξ T x T xx f x g x
x xη

.   (14) 

 
From equations (6) and (14), we obtain the normal form 
 

 vξ ξ+ξ = A ξ B , (15) 
 
 , )oη = f (ξ η ,      (16) 
 

 y ξ= C ξ , (17) 
 

where ( )v t  is called the transformed input, 
0 1

,
0 0ξ
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0
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Note that ξA , ξB , and ξC  are in controllable canonical 
form and the Jacobian matrix in equation (14) has the form 

 

 

2 3

0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0( )
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0m m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∂

= ⎢ ⎥
∂ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T x
x

, (19) 

 
which is nonsingular for all 6∈x . Therefore T(x) is a 
global diffeomorphism for the system described by equation 
(6).  

The external dynamics of the subsystem described by 
equation (15) can be controlled by the transformed input v(t) 
using any well-known linear control design, such as pole 
placement, proportional-integral-derivative (PID) control, 
and linear quadratic regulator (LQR). The internal dynamics 
of the subsystem described by equation (16) cannot be 
controlled, and also do not affect the output responses 
irrespective whether ( )tη  is stable or unstable. However, for 
a partially linearizable system, the stability of equation (16) 
is crucial in designing feedback controllers for the overall 
system. It follows that the stability of the internal dynamics 
can be analyzed by the zero dynamics obtained by setting 
ξ = 0  in equation (16) 

 
       , )oη = f (0 η . (20) 
  
Furthermore, since all the disturbances in equation (20) act 
as inputs to the zero dynamics and are not a function of 

( )tη , the stability of the zero dynamics can be analyzed by 
the unforced equation, 

 
 = ηη A η , (21) 

 
where 

 

 
( ) ( )

1 1 1

3

0 1 0 0
1 1 0

.
10 0 0

0

R
T S R T S

S R S R

k
k k k c c

m m m

m
k k c k

⎡ ⎤
⎢ ⎥
⎢ ⎥− + + − +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ −⎢ ⎥⎣ ⎦

ηA (22) 

 
Using the numerical values provided in the next section, 

all the eigenvalues of ηA  are located on the left-half 

complex plane. We conclude that the zero dynamics are 
stable and the system in equation (6) is minimum phase. 
Therefore, the overall system can be partially linearized by 
the linearizing control law 

 

 
( )

2 1 2 3 4

5 3 2 .
S S S S

D

u m k x c x k x c x
x x m F

v
g

= − − + + + ⎫⎪
⎬Ψ − + − ⎪⎭

 (23) 

 
Asymptotic Output Tracking 

Let the control objective be steering the position 
3( ) ( )y t x t=  of the vehicle body or mass 2m  to a desirable 

position (reference output) ry ,  i.e., 3 ( ) rx t y→  as t →∞ ; 
this gives rise to a tracking control problem. A suitable 
control law for the transformed input ( )v t  in equations (15) 
and (23) is given by 

  
 1 3 2 4r r r rv K y K x K x K yξ= − + = − − +K ξ , (24) 
  
where the constant feedback gain matrix [ ]1 2K K=ξK  is 

determined such that clA ξ ξ ξA - B K  is Hurwitz, that is, all 
eigenvalues of clξA  lie in the open left-half complex plane.  
Numerous design methods from the powerful linear control 
theory can be used to determine the gain ξK , such as the 
pole placement, PID, and LQR techniques; while the 
gain rK  in equation (24) is a scalar constant tracking gain 
determined by 

 ( )( ) 11
cr lK ξ ξ

−−= −C A B .             (25) 
 

OBSERVER DESIGN 
It is seen from the transformed control law of equation 

(24) and the linearizing control law of equation (23) that 
online knowledge of all states is required to compute both 
control laws. In this section, we present the estimation of the 
external dynamic states, that is, 3 ( )x t  and 4 ( )x t . However, 
the estimation of the internal dynamic states 1( ),x t  2 ( ),x t  

5 ( )x t  and 6 ( )x t  is not possible and thus we assume that all 
knowledge of the internal dynamic states is available.  

Consider again the external dynamics of equation (15) and 
the output equation (17). Since the pair ,ξ ξ⎡ ⎤⎣ ⎦A C  is 

observable, that is, 2T T Trank ξ ξ ξ⎡ ⎤ =⎣ ⎦C A C ,  it follows that a 
Luenberger observer [17] for equation (15) can be 
constructed as 

 

 ˆˆ
cl v yξ ξ ξ+= +ξ BA Lξ , (26) 
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where clξ ξ ξ ξ−A A L C  is the observer matrix, and the gain 

matrix 2 1
ξ

×∈L  is determined such that clξA  is Hurwitz. 

Defining the estimation error as ˆ= −ξ ξ ξ , it can be shown 
through an error analysis that  
 

 clξ=ξ A ξ . (27) 
 
Since clξA  is Hurwitz, it follows that the estimation error 

( ) 0t →ξ  ⇒  ˆ( ) ( )t tξ ξ→  as t →∞ . Using the estimated 
states obtained from equation (26), the observer-based 
control laws of equation (24) and (23) can be implemented 
as 
 1 3 2 4ˆ ˆ ˆ r rv K x K x K y= − − + , (28) 

 

 
( )

2 1 2 3 4

5 3 2

ˆ ˆ 
ˆ  .

ˆ S S S S

D

u m k x c x k x c x
x x m g F

v= − − + + +⎫⎪
⎬Ψ − + − ⎪⎭

 (29) 

 
Finally, substituting equation (29) into equation (6), we 

obtain the overall closed-loop nonlinear active suspension 
system with a negative stiffness spring in the x-coordinates 
as:  

 

   
( )

2 1 2 3 4

5 3 2

ˆ ˆ ˆ
ˆ       

( ) ( )
  .

S S S S

D

m k x c x k x c x
x x m F

v
g

− − + + +⎡ ⎤
⎢ ⎥Ψ − +

= +
−⎣ ⎦

x f x g x , (30) 

 
where ˆ( )v t  is given by equation (28). The next task is to 
conduct an extensive simulation studies; the main results are 
reported below. 

 
SIMULATION RESULTS 

MATLAB simulations were conducted to demonstrate the 
performances of the proposed observer-based controller and 
the overall closed-loop nonlinear control system given by 
equation (30). The system parameters were chosen for the 
three-equilibrium points case are shown in table 1. 

 
Table 1: System parameter values 

 

Symbol Description Value 

1m  Wheel/tire mass 50 kg 

2m  Quarter vehicle mass 400 kg 

3m  Active control mechanism mass 5 kg 

Tk  Wheel/tire stiffness coefficient 18,000  kg/s2 

Sk  Suspension spring stiffness 
coefficient 3,000  kg/s2 

Rk  Control mechanism spring 
stiffness coefficient 40,000  kg/s2 

Tc  Wheel/tire damping coefficient 100 kg/s 

Sc  Suspension damping coefficient 100 kg/s 

g Gravity 9.8 m/s2 

k Normalized negative stiffness 
spring coefficient 30,000  kg/s2 

L Compressed length of the 
negative stiffness spring 0.5 m 

L0 
Nominal length of the negative 

stiffness spring 1 m 

 
The control gain matrix [ ]17.5 6.75ξ =K  for the 

transformed control law of equation (24) was computed by 
placing the control poles at 3.5 3.57j− ±  of the complex 
plane, which corresponds to a closed-loop damping ratio of 
ζ = 0.7 and a natural frequency of nω = 5 rad/s. The 
tracking gain in equation (25) was found to be 25.rK =  
Similar to the control design, the observer gain matrix 

[ ]6 5 T
ξ =L  was obtained by placing the observer poles at 

-1 and -5 of the complex plane.  
Two cases of simulations were conducted: regulation and 

tracking. In the regulation case, the initial condition was 
{ }0 -0.24, 0, -0.1, 0, -0.35, 0=x  which is close to the 

equilibrium point of the unforced system. A step input for 
the driver disturbance was chosen as 75 ,DF g=  and a 
sinusoidal road profile ( ) 0.05sin(8 )R t t=  were activated at 
time 5t = s, and 10t = s, respectively. Figures 3-8 show the 
responses of 1 6( ) ( )x t x t− . It is observed that the 
displacement 3 ( )x t  of the vehicle body in figure 5 quickly 
converged to zero while the movement of the wheel in figure 
3 and the suspension in figure 7 converged to their steady 
states at slower rates. It is also seen clearly that the 
displacement of the wheel/tire, and the suspension reacted to 
the disturbances at the time 5t = s, and 10t = s but the 
control actuator force in figure 9 kept the vehicle body 
displacement unaffected from both disturbances which 
showed that the ride was smooth. Furthermore, the results in 
figure 5 and 6 show excellent convergences of the estimates 

3ˆ ( )x t  and 4ˆ ( )x t  to the external dynamic states 3 ( )x t  and 

4 ( )x t , respectively.  
Figure 10 provides a comparison of the control input ( )u t   

between using negative stiffness spring and ordinary spring. 
It is shown that the system incorporating the negative 
stiffness element requires much less actuator force to 
stabilize the vehicle than the system with ordinary spring. 
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Figure 3: Wheel displacement, regulator case. 
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Figure 4: Wheel velocity, regulator case. 
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Figure 5: Vehicle body displacement, regulator case. 
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Figure 6: Vehicle body velocity, regulator case. 
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Figure 7: Suspension displacement, regulator case. 
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Figure 8: Suspension velocity, regulator case. 
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Figure 9: Actuator control ( )u t , regulator case. 
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Figure 10: Comparison of the control ( )u t , regulator case. 

 
For the tracking case, the simulation results are shown in 

figures 11–18 in the same manner as the regulator case. The 
output reference in this case was set to ry = 0.1 and the 
initial condition was 0 =x 0 . Both disturbances were applied 
at the same time as before at 5 and 10 seconds but the driver 
disturbance was a sinusoidal signal ( )( ) 75 sin 2DF t g t=  
with a low frequency [6].  

Figure 13 shows that vehicle body quickly settled to the 
reference value ry = 0.1, and no interference from the 
disturbances. Figure 13 and 14 also show good convergences 
of the observer states 3ˆ ( )x t  and 4ˆ ( )x t . The actuator control 
input ( )u t  and a comparison of the control ( )u t  used in the 
active suspension system with/without the negative stiffness 
spring are shown in figure 17 and 18, respectively. Again, it 
shows that the system with the negative stiffness spring 
needed much less actuator force to stabilize the vehicle body 
which implies much less energy consumption. 
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         Figure 11: Wheel displacement, tracking case. 
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Figure 13: Vehicle body displacement, tracking case. 
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Figure 14: Vehicle body velocity, tracking case. 
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Figure 15: Suspension displacement, tracking case. 
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Figure 16: Suspension velocity, tracking case. 
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Figure 17: Actuator control ( )u t , tracking case 
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Figure 18: Comparison of the control ( )u t , tracking case 

 
Two cases of the simulation results presented show that the 

observer-based nonlinear controller can provide impressive 
performance in terms of stabilizing the vehicle body, 
rejecting all harsh disturbances, and ultimately resulting in 
significant improved driver’s ride comfort. In military 
vehicle applications, ride comfort is not an issue of luxury 
but safety. Drivers could be injured by exposing them to 
severe vibrations for an extended period of time. There are 
many criteria to quantify ride comfort or to assess human 
sensitivity to vibrations. Two criteria are presented here: the 
absorbed power of less than 6 W [20] and the vibration dose 
of less than 15 m4/s7 [21]. Table 2 displays the computation 
results of such measures for both cases: regulator and 
tracking. Both criteria are well below the maximum values 
allowed. 
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Table 2: Power consumption and absorbed power. 
 

Simulation case Absorbed power 
(W) 

Vibration dose 
(m4/s7) 

Regulator 43.35 10−×  116.02 10−×  
Tracking 31.2 10−×  108.63 10−×  

 
CONCLUSION 

The analysis and design of an observer-based nonlinear 
controller using the feedback linearization technique have 
been considered for an active suspension system 
incorporating a negative stiffness spring. The advantage of 
this system is that it consumes less energy for operation, 
thereby making it attractive not only to vehicle suspension 
applications but also to other platform stabilization 
problems. In this paper, we show that the two disturbances 
of the system: driver load and road profile can be completely 
decoupled from the output; in other words, the vehicle body 
displacement will not be affected by these disturbances. This 
directly translates into a greatly enhanced performance in 
ride comfort. The simulation results also show that the 
controller performs extremely well in the tracking task, 
regardless of the initial conditions. In addition, the computed 
results of the absorbed power and vibration dose show 
interesting and promising results. The technique and 
methodology developed in this paper are readily applicable 
to the automotive and defense industries, especially military 
vehicle systems. The design of a prototype system is under 
consideration. 
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