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ABSTRACT 
 

This research paper addresses the ground vehicle reliability prediction process based on a new integrated reliability 

prediction framework. The paper is an extension of the paper presented last year at the GVSETS symposium. The 

integrated stochastic framework combines the computational physics-based predictions with experimental testing 

information for assessing vehicle reliability. The integrated reliability prediction approach incorporates the 

following computational steps: i) simulation of stochastic operational environment, ii) vehicle multi-body dynamics 

analysis, iii) stress prediction in subsystems and components, iv) stochastic progressive damage analysis, and v) 

component life prediction, including the effects of maintenance and, finally, iv) reliability prediction at component 

and system level. To solve efficiently and accurately the challenges coming from large-size computational mechanics 

models and high-dimensional stochastic spaces, a HPC simulation-based approach to the reliability problem was 

implemented. The integrated HPC stochastic approach combines the computational stochastic mechanics 

predictions with available statistical experimental databases for assessing vehicle system reliability. The paper 

illustrates the application of the integrated approach to evaluate the relliability of the HMMWV front-left suspension 

system.  

 

 DISCLAIMER: The HMMWV dynamic model and the suspension system configuration used in this research are 

slightly different than the actual HMMWV hardware. Thus, the presented results do not reflect in detail the real 

HMMWV suspension system behavior. The intent of the paper is to discuss the integrated reliability methodology 

and to highlight qualitative aspects.   

 

INTRODUCTION 
 

An aspect of a key importance for accurate 

reliability prediction is the integration of various 

types of uncertain information sources and the 

incorporation of the lack of data effects. If 

modeling uncertainties are included, the 

stochastic dimensionality of the vehicle 

reliability problem increases from a single 

stochastic model to a set of stochastic prediction 

models that correspond to the stochastic model 

space. It should be noted that stochastic model 

space is usually a high-dimensional parameter 

space since it includes various model parameters 

that are considered random quantities. A 

flowchart of the computational reliability 

prediction process is shown in Figure 1 [3]. The 

paper focuses on the two upper-left blocks of the 

reliability chart that are drawn with dotted lines, 

that incorporate stochastic modeling and 

simulation of i) road profiles and ii) vehicle 

system dynamic behavior. However, for reader’s 

clarity, we briefly discuss other important aspects 

of the vehicle reliability prediction. The two 

lower-level blocks called “TAO RBDO” that are 

a specific part of the reliability-based 

optimization process using the TAO software 

developed by Argonne National Lab that is not 

addressed in this paper. 

 

The HMMWV suspension reliability analysis 

consisted in the following steps:  

 

1) Simulate stochastic road profile variations. 

The idealization of road profiles includes the 

superposition of two stochastic variations: i) the 

road surface variation (micro-scale continuous, 

including smooth variations and random bumps 
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or holes), and ii) the road topography variation 

(macro-scale continuous variations, including 

curves and slopes).  

 

2) Simulate the HMMWV suspension parameters 

using randomly distributed variables to modify 

the nominal values. Average vehicle speed was 

varied between 17 MPH and 30 MPH.  

 

3) Perform multibody dynamics simulations of 

the HMMWV system using as stochastic inputs 

the road profiles and vehicle suspension dynamic 

parameters (stiffness, damping). For each 

simulated road profile, a vehicle multibody 

dynamics analysis was run to get simulated 

forces and displacements at each joint of the 

suspension system.  

 

4) Perform finite element (FE) stress analysis of 

the selected subsystem. From each HMMWV 

dynamics simulation a number of local response 

variables were considerd as random inputs for the 

stochastic FE stress analysis of the Front-Left 

Suspension System (FLSS). An efficient high-

performance computing (HPC) stochastic finite-

element analysis (FEA) code is employed.  

 

5) Compute the local stresses refined using 

stochastic response surface approximation 

(SRSA) models. These SRSA models are based 

on high-order stochastic field models that are 

capable of handling non-Gaussian variations, and 

non-linear correlations between component 

variables.  

 

6) Perform durability analysis under random 

corrosion-fatigue damage using stochastic crack 

nucleation and crack propagation models based 

on the damage curve approach (DCA) and the 

modified Forman crack propagation models. For 

reliability prediction at each critical location, 

probabilistic models based on lognormal and 

Weibull distributions were applied.  

 

7) Incorporate the uncertainty effects due to the 

lack of data. 

 

8) Incorporate Bayesian updating models for 

including experimental evidence form test data 

(for stresses) and field data (field failures). 

 

The paper provides in next sections more details 

on the reliability prediction methodology and, 

also, illustrates HMMWV sensitivity analysis 

results. It should be noted that the presented 

results are based on a “modified” HMMWV 

vehicle model developed based on incomplete, 

limited information [2]. 
 

OPERATIONAL ENVIRONMENT 
 

This section briefly describes the stochastic 

models used for the simulation of the road 

profiles. 

 

The idealization of road profiles includes the 

superposition of two stochastic variations: i) the 

road surface variation (micro-scale continuous, 

including smooth variations and random bumps 

or holes), and ii) the road topography variation 

(macro-scale continuous variations, including 

curves and slopes).  

 

Vehicle suspension parameters were varied by 

using randomly distributed variables to modify 

the nominal values. Average vehicle speeds were 

varied between 17 MPH and 30 MPH for 

moderate roughness roads (road surface 

amplitude up to 0.5 ft above mean surface) and 

limited to 17 mph for high rounghness roads 

(road surface amplitude up to 0.5-1.0 ft above 

mean surface). Simulations were run using 

random combinations of the above mentioned 

variations. 

 

Specifically, we idealized the road surface 

profiles as non-Gaussian, non-stationary vector-

valued stochastic field models with complex 

spatial correlation structures. To simulate 

stochastic road profiles, we used two approaches: 

i) a stochastic field approach based on 

application of second-order cascaded filtered 

Gaussian white-noise processes and ii) stochastic 

field approach based on the Fourier convolution 

of the road profile with correlated Gaussian 

white-noise processes. We idealized the road 

profiles with non-Gaussian, non-stationary 

Markov vector processes. To handle non-

Gaussianity variation aspects we used translation 

processes, i.e. applied a probability 
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transformation of the real, non-Gaussian 

variations of the road surfaces and topography to 

virtual Gaussian spaces.  

 

Figure 2 shows simulated road surface segments 

with high spatial correlation (HC) and low spatial 

correlation (LC) in the transverse direction of the 

road. The longitudinal variation of the mid-line 

road surface profile is the same for both HC and 

LC simulated roads. The HC road corresponds to 

a situation when the wheel inputs are about the 

same for two parallel wheel lines, so that right-

side and left-side wheels see about the same road 

surface track lines. Thus, for the HC roads, there 

two different wheel road inputs, each input for a 

pair of front-rear wheels.  In contrast, the LC 

road assumes that the right-side and left-side 

wheel road inputs are different. Thus, for LC 

roads there are four different wheel inputs. Thus, 

it is expected that a LC road profile will produce 

slighly larger vehicle dynamic responses in all 

directions, especially in the lateral direction. 

 

Based on various road measurements we noted 

that the road surface variations are highly non-

Gaussian as shown in Figure 3. This is somehow 

surprising since in the current practice the road 

surface profiles have been always idealized by 

simple zero-mean Gaussian stationary stochastic 

processes. For Gaussian stochastic processes, the 

covariance function (CF), or, alternatively, the 

power spectral density function (PSD, fully 

describes the stochastic process variation. In 

practice, the RMS value (standard deviation) and 

the PSD estimate are often used. Unfortunately, 

the RMS and PSD estimates are not sufficient for 

describing the non-Gaussian road surface 

variations. Most of the times, the road surface 

variations are highly non-Gaussian variations  

with a highly skewed probability density function 

(PDF) as indicated in Figure 3. The non-Gaussian 

variation aspect has a significant impact on the 

vehicle fatigue reliability prediction. It should be 

noted that if the non-Gaussian variation aspects 

of road surfaces are neglected, then, the predicted 

vehicle fatigue life and reliability are much larger 

than in reality.  

 

Figure 4 shows simulated non-Gaussian 

stochastic road surface profiles (median line) 

with different road roughnesses and no 

topography included. These segments correspond 

to limited-size stationary segments of the road 

profiles.  

VEHICLE DYNAMIC MODEL 

Specifically, in this project the HMMWV model 

number M966 (TOW Missle Carrier, Basic 

Armor without weapons) was selected, since the 

values of the total vehicle inertia were available 

[2]. The HMMWV vehicle is designed for both 

on-road and off-road applications, and all models 

share a common chassis with 4x4 wheel drive 

that is powered by a 145-hp engine. Only the 

major subsystems which were included in the 

HMWWV dynamic model (Figure 5) including 

parallel link steering with a pitman arm, double 

A-arm suspension, chassis, roll stabilization bar, 

powertrain and tires. Subsystems for the brakes 

and wheels were also included in the multi-body 

dynamics model.  

 

A double Ackerman Arm type suspension unit is 

used on the HMMWV, one for each wheel. 

Dimensions and locations of the suspension 

elements differ between the front and rear 

subsystems; however, the topology remains the 

same. Both upper and lower control arms are 

connected to the upright arm with ball joints. The 

upright arm connects the wheel spindle to the 

suspension units. Rear radius rods are connected 

between the chassis to the rear suspension and 

control the rear wheel static toe angle. Front tie 

rods attach the steering subsystem with the front 

suspension and control the wheel steer angle. 

Front and rear suspensions both have a design 

Kingpin angle of 12 degrees and a kingpin offset 

of 2.14 inches. The front suspension has a caster 

angle of 3 degrees and a caster offset of 0.857 

inches. Topology of the suspension as modeled 

for vehicle dynamics analysis can be seen in 

Figure 6. 

 

Shock absorber units are located on each 

suspension unit, and are attached between the 

lower control arm and chassis. Each shock 

absorber is comprised of three elements: a spring, 

a damper and a bumpstop. At design load and 

height, the springs are assumed to have linear 
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behavior. The dampers on the other hand are 

meant to provide dissipative forces and are not 

linear. Dissipative forces are proportional to the 

relative velocity between the piston and cylinder 

of the shock. Both front and rear springs and 

dampers were modeled in a similar way, but 

using different data. The rear springs and 

dampers are designed for larger operating loads. 

Bumpstops are located on the end of the damper 

and provide an additional damping force in the 

shocks. They are engaged only after a certain 

amount of displacement occurs between the 

piston and cylinder of the shock absorber. Spring, 

damper and bumpstop parameters can be found in 

[2]. 

 

The vehicle body is modeled as a single rigid-

body component with mass-inertia properties as 

given in [2]. As stated earlier, both the vehicle 

mass-inertia properties and the masses of the 

individual subsystems are known. Simplified 

geometry like that in Figure 4 was used to 

calculate each subsystem’s respective moment of 

inertia values.  

 

Tires used for all simulations were the bias-type 

36x12.5. Front tire pressures of 20 pounds per 

square inch (psi) and rear tire pressures of 30 psi 

were maintained on the HMMWV. By using 

FTire’s template modeling scheme [1], only a 

select number of tire size, geometry and 

specification parameters were needed as input 

into the tire model; other characteristics such as 

carcass mass/damping/stiffness, tread and friction 

information were either inherited from the light 

truck tire template or could be calculated with a 

pre-processor routine.  
 

A more detailed description of the HMMWV 

vehicle model is provided elsewhere [7]. 

 
HMMWV BEHAVIOR SIMULATION 
 

In light of the importance of the tire/road 

interaction due to the stochastic modeling of the 

road profiles, a co-simulation environment was 

used to accurately capture the vehicle dynamics. 

A specialized code was used to simulate the 

multi-body dynamics of the HMMWV vehicle, 

and the tires and tire/road interaction are 

simulated by FTire. Road profiles of nearly a 

mile in length were used, and as such the 

computational model for determining the 

tire/road forces must be efficient and scalable.  

 

The modeling methodology divides a vehicle in 

subsystems that are modeled independently. 

Parameters are applied to the topology of a 

subsystem and a set of subsystems are invoked 

and integrated together at simulation time to 

represent the vehicle model. The subsystems 

present in our model include: a chassis, front and 

rear suspension, anti-roll bar, steering, brakes, a 

powertrain and four wheels. Note that only the 

wheels and not the tires are present in the vehicle 

model. Also, all the major subsystems (front/rear 

suspension, steering, roll bar and powertrain) are 

connected to the chassis with bushing elements. 

The HMMWV model is shown in Figure 5 

(chassis geometry is partially transparent). CAD 

geometry is applied to the chassis and tires to 

make the vehicle look realistic for animation 

purposes. The geometry has no bearing on the 

dynamic behavior of the vehicle. 

 

Driver controls were created in the event builder 

as a sequence of maneuvers. Maneuvers are 

defined by steering, throttle, brake, gear, and 

clutch parameters. In this set of simulations, a 

single maneuver is performed in which the 

vehicle attempts to follow the centerline of the 

road profile at a given vehicle speed. Static set-

up and gear shifting parameters are not modified; 

however, the drive authority is sometimes 

reduced when large obstacles and high vehicle 

speeds cause simulations to fail. Drive authority 

specifies how aggressively the vehicle steering 

torque is applied when the vehicle deviates off 

the specified path. As the wheelbase of the 

HMMWV is wide and long, the minimum 

preview distance was substantially increased 

from its default value. A number of about 500 

stochastic simulations were performed assuming 

as stochastic inputs different road profiles and 

vehicle suspension parameters. Figure 7 decribes 

different categories of stochastic road profiles.  

 

First, only the stochasticity associated to the road 

profile and vehicle speed were considered, 
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assuming a deterministic HMMWV model. These 

simulations utilized the same vehicle/tire models, 

and varied the operating environment by 

changing 1) road profiles 2) adding topology and 

3) modifying the average vehicle speed. Road 

profiles were either 5000 feet or 1500 feet in 

length, with both high and low correlation 

variations in the transverse direction. Topology 

on the road included rolling hills with short 

chicanes, long winding curves or no topology at 

all (straight road). The average vehicle speed was 

either 17 MPH or 30 MPH.  

 

Secondly, for selected road profiles, we 

considered that the HMMWV model suspension 

parameter variations are stochastic. Two types of 

simulated road profiles with and without 

topographic effects were employed. For each 

wheel suspension system there are 13 random 

variables. For four wheel suspensions there are 

52 variables. To handle these large numbers of 

variables we condensed them in three stochastic 

variation features: 1) BUSHINGS UCA (4 

variables), 2) BUSHINGS LCA (4 variables), 3) 

TIRE (3 variables) and 4) SPRING-SHOCK 

ABSORBER (2 variables).  

 

The stochastic variables are modeled by i) 

lognormal variables with 2% and 5% c.o.v. for 

the spring and damper properties, ii) lognormal 

variables with 2%  c.o.v. for bushing properties, 

iii)  lognormal variables with 5% c.o.v. for tire 

properties. Currently, we are still reviewing 

technical literature to find specific statistical 

information for HMMWV dynamic system 

parameters. Any specific information on 

HMMWV coming from TARDEC will be highly 

appreciated. 

 

To simulate the four stochastic variation features, 

we used Latin Hypercube Sampling (LHS) 

technique. Using LHS, stochastic input scenarios 

were created for each vehicle suspension 

stochastic feature.  For each of the four stochastic 

features we have simulated a number of 80 input 

scenarios that we run separately.  

 

For each simulated road profile, we performed a 

vehicle multibody dynamics analysis to get 

forces and displacements at each joint of the 

front suspension system. Stochastic variations in 

vehicle dynamic parameters (stiffness, damping) 

were included. From each the vehicle dynamics 

simulation, we saved 34 output variables with 1-3 

component time-histories for various front-left 

suspension joint forces and displacements, 

vehicle chassis motion, displacements at wheel 

tire/road interface. A number of 36 variables 

were used as random inputs in the stochastic FE 

stress analysis of FLSS.  Each joint force 

component was used to scale the local stress 

influence coefficients computed for unit forces in 

the joints. 

 
SUSPENSION SYSTEM STRESS 
ANALYSIS 

 

The stochastic subsystem stress analysis is based 

on an efficient high-performance computing 

(HPC) stochastic finite-element analysis (FEA) 

code developed by GP Technologies. Figure 8 

shows the FLSS model used for the HMMWV 

vehicle multi-body dynamics analysis and the 

stochastic FEA. 

 

The stochastic FEA code is a result of integrating 

a finite element with a number of modules used 

for stochastic modeling and simulation that run 

together in an efficient computing environment 

driven by advanced HPC numerical libraries 

available from national labs and top universities. 

In addition to the standard FEA and HPC 

algorithms, the developed code includes a unique 

suite of computational tools for stochastic 

modeling and simulation and stochastic 

preconditioning [3]. 

 

For stochastic FEA domain decomposition we 

used an efficient multilevel partitioner software. 

Multilevel partitioners rely on the notion of 

restricting the fine graph to a much smaller 

coarse graph, by using maximal independent set 

or maximal matching algorithms.  This process is 

applied recursively until the graph is small 

enough that a high quality partitioner, such as 

spectral bisection or k-way partitioners, can be 

applied. This partitioning of the coarse problem 

is then “interpolated” back to the finer graph – a 

local “smoothing” procedure is then used, at each 
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level, to locally improve the partitioning. These 

methods are poly-logarithmic in complexity 

though they have the advantage that they can 

produce more refined partitions and more easily 

accommodate vertex and edge weights in the 

graph.   

 

The main idea to build a flexible HPC 

implementation structure for stochastic parallel 

FEA has been to combine the parallel 

decomposition in the simulated sample data 

space with the parallel decomposition in the 

physical-model space. This combination of 

parallel data space decomposition with parallel 

physical space decomposition provides a very 

high numerical efficiency for handling large-size 

stochastic FE models. This HPC strategy 

provides an optimal approach for running large-

size stochastic FE models. We called this HPC 

implementation is called the Controlled Domain 

Decomposition (CDD) strategy. The CDD 

strategy can be applied for handling multiple FE 

models with different sizes that will be split on a 

different number of processors as shown Figure 

9.  

 

There is an optimum number of processors to be 

used for each FE model, so that the stochastic 

parallel FEA reaches the best scalability. The 

main advantage of the CDD implementation for 

HPC FEA is that large-size FE models can be 

partitioned into a number of FE submodels, each 

being solved on a single processor. Thus, each 

group of processors is dedicated to solve a large-

size FE model. CDD ensures dynamic load 

balancing after a group of processors has 

completed its allocated tasks and it becomes 

available for helping another group of processors.  

 

To be highly efficient for large-size FEA models, 

the stochastic FEA code incorporates an unique 

set of powerful stochastic preconditioning 

algorithms, including both global and local, 

sequential preconditioners. The role of 

preconditioning is of key significance for getting 

fast solutions for both linear and nonlinear 

stochastic FEA problems. It should be noted that 

the effects of stochastic preconditioning is larger 

for nonlinear stochastic FEA problems since it 

reduces both the number of Krylov iterations for 

linear solving and the number of Newton 

iterations for nonlinear solving. The expected 

speed up coming from stochastic preconditioning 

is at least 4-5 times for linear FEA problems and 

about 10-15 times for highly nonlinear FEA 

problems. The comparative FEA parallel run time 

results shown in Table 1 show a near ideal speed-

up when increasing the number of processors 

from 6 to18, if the computational size of the 

problem is large enough to overcome the 

communication overhead of the parallel FEA.   

 

To compute local stresses in subsystem 

components, we used traditional response surface 

models, but also more refined stochastic response 

surface approximation (SRSA) models. These 

SRSA models are based on high-order stochastic 

field models that are capable of handling non-

Gaussian variations [4, 5]. The SRSA 

implementations that are based on two and three 

level hierarchical density models as shown in 

Figure 10 for a highly nonlinear response.  

 

Two SRSA models are described herein: i) 3-

Level Hierarchical Model (3LHM) and ii) 

Meshless Fast Probability Integration Model 

(MPFI). 

 

3-Level Hierarchical Model (3LHM) 
 

The local JPDF models are expanded in two-

level of local JPDF models: 

∑
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The conditional-mean surface can be computed 
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The mixing probability coefficient vector now 

becomes a mixing probability partition matrix 

whose elements correspond to the conditional 

probabilities that i-th data point belongs to the j-

th basis function. 

The 3LHM models perform extremely well in 

comparison with other response surface meta-

models. The key aspect of the 3L HM 

implementation is how to optimally define the 

second-level JPDFs to best approximate 

stochastic response locally. Figure 11 shows that 

the 3L HM provides accurate stochastic response 

approximation for highly nonlinear relationships 

by using only a reduced number of local JPDF 

models. The key aspect of the 3L HM 

implementation is how to optimally define the 

second-level JPDFs to best approximate 

stochastic response locally. Figure 11 indicates 

that 3LHM provides accurate stochastic response 

approximation for highly nonlinear relationships. 

Only a reduced number of local JPDF models is 

required as shown in the left plot (Gaussian 

clusters).  

Stochastic Clustering:  

Assuming that local JPDF components are 

multivariate Gaussians, their analytical 

expression is given by: 
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where x is the mean vector and a ΣΣΣΣ is the local 

component (or cluster) covariance matrix.  

 

For a local component i the covariance matrix is 

computed by: 
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where the factor 
ik

µ that is the conditional 

probability that data point k belongs to local 

Gaussian model.  

It should be noted that in order to completely 

define a local Gaussian PDF model i, we need to 

compute the Mahalanobis distance (the inner 

product in the above equations), ),(D
i

xx that is 

( ) ( )
i

1T

ii
),(D xxxxxx −−= ∑ −

 
for a Gaussian 

with an arbitrary orientation. 

For arbitrary orientation of the local Gaussian 

JPDF (clusters), the local covariance is a full 

matrix, while for parallel orientation is diagonal 

matrix with the directional variances along 

diagonal. The principal directions of the 

covariance matrix define the zero correlation 

directions. The local Gaussian (cluster) model is 

elongated along the direction on minimum 

variance that is defined by the eigenvector of 

covariance matrix with the smallest eigenvalue.   

Fuzzy Clustering:  

As an alternate to statistical clustering, we used 

also fuzzy clustering. As an alternate to the 

stochastic cluster covariance matrix, we also 
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used the fuzzy cluster covariance matrix 
i

F  

defined by  
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Usually, the parameter m is equal to 2. The 

correspondent quantity of the conditional 

probability is replaced by its fuzzy version that is 

often called the partition function defined by: 
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In the above equations, the generalized fuzzy 

distance ),(D
i

xx  has a modified from stochastic 

version ( ) ( ) ( )
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T
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= FFA , p is input dimensionality. 

These clustering analysis techniques are powerful 

statistical tools for building soft partitions 

(clusters) in the sample data space. These 

techniques have large applications in system 

control and robot applications.  

 

Meshless Fast Probability Integration (MFPI) 

Model  

 

The MFPI models are based on two-level 

hierarchical models. The probability-level 

response, p
y is computed by solving the one-

dimension integral: 
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The particularity of the MFPI models is than the 

high-dimensional response surface is never 

computed on a rectangular grid. If the analyst 

desires to compute a probability-level response 

surface or to simulate stochastic response using 

MFPI models the calculations are done extremely 

fast using the mixtures of local density models. 

First, we need to build the JPDF volume of the 

input-response vector and, then, we need to 

perform fast integration for to compute the 

conditional response PDF at each point of 

interest in stochastic space.  

The MFPI surface models can be easily 

integrated for different probability-levels as 

desired. Figure 12 shows the application of the 

3LHM and MFPI response surface models to the 

HMMWV LCA stresses at a critical location.  

The 3LHM response surface is computed for the 

conditional mean value of the response. The 

MFPI response surfaces are computed for 50% 

and 90% probability of non-exceedance. For 

local density models we used equal-volume fuzzy 

GK clusters that provide smooth estimated 

surfaces. It should be noted that for noisy 

response surfaces the MFPI model behaves better 

than the 3LHM model as indicated in Figure 12. 

PROGRESSIVE DAMAGE MODELS 

For fatigue damage modeling, the following 

models are considered: 
 

Crack Initiation: Stochastic Cumulative Damage 

Models Using Strain-Life Approach: 

 

1) Linear Damage Rule (Miner’s Rule) 

2) Damage Curve Approach (NASA Glenn) 

3) Double Damage Curve Approach (NASA  

    Glenn)  

 

Crack Propagation: Stochastic Linear Fracture 

Mechanics-based Models:  

                    

1) Modified Forman Model (NASA JPC) 
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Both the constitutive stress-strain equation and 

strain-life curve are considered to be uncertain. 

The two Ramberg-Osgood model parameters and 

the four strain-life curve (SLC) parameters are 

modeled as random variables with selected 

probability distributions, means and covariance 

deviations.  

 

The strain-life curve including the mean stress 

effect 
m

σ  on the alternating strain is described 

by the equation: 

( ) ( )c

f
'
f

b

f'
f

m
'
f

a N2N21
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
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
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
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

σ

σ
−

σ
=ε  (10) 

We also included correlations between different 

parameters of SLC. This correlation can 

significantly affect the predicted fatigue life 

estimates as shown in case studies section.   

 

We combined rainflow cycle counting with the 

Neuber’s rule for local plasticity modeling for 

any irregular stress-strain history. For a sequence 

of cycles with constant alternating stress and 

mean stress the Damage Curve Approach (DCA) 

and Double Damage Curve Approach (DDCA) 

were implemented.  

The total damage is computed using a 

generalized interaction curve between corrosion 

and fatigue damages: 
m

p

init

pit
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Where p, q and m are material parameters that 

depend on the cumulative damage rules that is 

applied (please see references for more details).  

To compute pit depth two pit growth models 

were used: i) Power Law and ii) Wei Model. 

There are described as follows: 

Power Law Model:     

              

For a boldly exposed surface, the depth of the 

deepest pit, a, as a function of exposure time, t, is 

typically described by a power law, 

n/1Ata =     (12) 

where A and n are empirically determined 

parameters with n usually having a value between 

2 and 4. The above power law relationship does 

not mean that any one pit grows at this rate. This 

equation represents how the maximum of the 

distribution of pit depth changes with time.   

 

Wei Model:  

A spatial pit growth model was proposed by Wei 

[8]. This pit growth model assumes that the pit 

shape is a hemispherical shape and its size grows 

at a constant volumetric rate dV/dt given by 
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By integrating the above equation, the pit depth a 

at a given time t is given by 
3/1
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Where a0 is the initial pit radius, M is the 

molecular weight of the material, n is the 

valence, F=96514 C/mole is Faraday’s constant, 

ρ is density of the material, ∆H is the activation 

energy, R=8.314 J/mole-K is the universal gas 

constant, T is the absolute temperature, and IP0 is 

the pitting current coefficient. 

 

In comparison with the linear damage rule (LDR) 

or Miner’s rule, these two damage models predict 

the crack initiation life much more accurately. 

The shortcoming of the popular LDR or Miner’s 

rule is its stress-independence, or load sequence 

independence. LDR is incapable of taking into 

account the interaction of different load levels, 

and therefore interaction between different 

damage mechanisms or failure modes.  

 

There is substantial experimental evidence that 

shows that LDR is conservative under completely 

reversed loading condition for low-to-high 

loading sequences, and severely under 

conservative for high-to-low loading sequence. 

For intermittent low-high-low-high-…cyclic 

loading, the LDR severely underestimates the 

predicted life. The nonlinear damage models, 

DCA and DDCA, were implemented to 

adequately capture the effects of the HCF-LCF 

interaction and corrosion-fatigue damage for 

vehicle subsystem components.  
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Crack propagation was implemented using a 

stochastic modified Forman model. Both the 

stress intensity threshold and material toughness 

are considered as random variables. The 

stochastic crack growth model considers all the 

parameters as random quantities, but will include 

also two additional random factors for modeling 

uncertainties in the regions of low and high 

values of the rate da/dN in Regions I and III [9]: 

 

q

CKc

p

thKth

nm

K)]K)R1[(

)KK(K)R1(C

dN

da

∆−λ−

∆λ−∆∆−
=  (15) 

The threshold random factor can be adjusted to 

simulate the uncertain small-crack growth. 

Corrosion–fatigue damage effects due to pitting 

growth were considered by implementing a 

simultaneous corrosion-fatigue (SCF) model [4]. 

The total corrosion-fatigue damage in the crack 

nucleation stage is computed using a generalized 

interaction curve between corrosion and fatigue 

damages, while the in crack propagation stage is 

computed by linear fracture mechanic models 

(Forman model) for which the stress intensity 

factors are adjusted based on local crack size 

including both the fracture crack and the pit 

depth. 

 

The crack propagation stage is computed by 

linear fracture mechanics models (Forman 

model) for which the stress intensity factors are 

adjusted based on local crack size including both 

the fracture crack and the pit depth. To include 

corrosion pit effects the stress intensity range, 

∆K, is amplified by a corrosion pitting factor, as 

follows:  

 

K)t(K CF ∆Ψ=∆   (16) 

The pitting factor )t(Ψ  depends on both the pit 

size and the crack size as follows:  

)t(a

)t(a
1)t(

crack

pit
+=ψ   (17) 

PROBABILISTIC LIFE AND 
RELIABILITY PREDICTION 
 

For probablistic life and reliability prediction we 

considered probabilistic life models based on 

Lognormal and Weibull probability distributions.  

 

Typically, reliability is quantified by probability 

of failure (Figure 13). The failure is defined by 

either reaching the ultimate crack length or 

reaching the stress intensity crack stability limit. 

If maintenance effects are considered (Figure 14), 

then, the reliability metric of interest is the 

hazard failure rate (HFR) instead of the 

probability of failure that is defined as the 

probability of failure per unit time. Average HFR 

are computed for each maintenance interval 

between two scheduled maintenance events. A 

probabilistic mixture model with lognormally 

distributed components is used for reliability 

prediction when maintenance is considered.  

 

The instantaneous hazard failure rate at time t is 

defined as ratio between the time to failure (life) 

probability density function at time t, f(t), over 

the reliability function at time t, R(t). Hazard 

failure rate can be also defined as a function of 

reliability function or instantaneous risk 

incremental change: 
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(18) 

For a given interval [0, t], the average hazard 

failure rate can be computed by:  
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−
=    (19) 

Other reliability engineering metrics that are 

popular in practice, such as MTBF (mean time 

between failures) that are required by many 

maintenance cost analysis software can be 

computed by integrating the reliability function 

(defined by unity minus the failure probability):   

∫
∞

−=
0

f dt)]t(P1[MTBF     (20) 
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To include the effect of the limited number of 

stochastic FEA simulation runs on the FLSS 

reliability we used both parametric and non-

parametric bootstrapping techniques.  

 

We also considered the effect of maintenance 

activities on predicted reliability including 

uncertainties related to the maintenance schedule, 

crack detection and sizing (Figure 14), and also 

the damage repair efficiency.  We considered the 

uncertainties in the maintenance activities that 

are related to the prediction accuracy of non-

destructive inspection (NDI) techniques and 

component repairs. By developing physics-based 

stochastic models for idealizing the operating 

environment, force loading, structural behavior 

and material progressive corrosion-fatigue 

damage under variable loading, we approached 

the maintenance engineering analysis from an 

advanced physics-based modeling and 

understanding. Based on physics-based stochastic 

models, the overall life cycle cost process can be 

adequately addressed.  The actual approaches to 

risk-based maintenance analysis that are based 

solely on simple Weibull life models developed 

for limited tests or field data, that suffer severely 

from having a weak foundation by neglecting the 

stochastic physics of failures.  An important 

aspect that affects signficantly aging ground 

vehicle reliability is corrosion pitting. As shown 

by many field observations, the effects of pitting 

can speed up the corrosion-fatigue crack growth 

by as much as 10 (ten) times.  
 

The critical damage produced by corrosion-

fatigue that impacts vehicle reliability is 

produced by local cracking. The effects of 

inspections on failure risks were included by 

specific POD and the crack sizing error curves. 

To evaluate the NDI techniques, the following 

probabilities were considered:  (1) correctly 

placing the damage at or above the safety limit, 

(2) incorrectly placing the damage at or above the 

safety limit, (3) correctly placing the damage 

below the safety limit, and (4) incorrectly placing 

the damage below the safety limit. The second 

probability contributes to the probability of 

performing maintenance sooner than necessary.  

The fourth probability contributes to the risk of 

unexpected failure. 

 

Available POD and probability of sizing errors 

for corrosion-fatigue cracking were used in these 

calculations.  When the data for these curves is 

lacking, the curves were estimated. Sensitivities 

of the overall joint risk were also determined. In 

addition, options to add additional POD and 

probability of sizing error curves for future 

techniques and situations were implemented. At 

each inspection, the crack size rejection limit can 

be specified.  If the crack size is greater than the 

crack size rejection limit, maintenance occurs.  

Maintenance changes the crack size distribution 

by removing the identified cracks with sizes 

above the crack size rejection limit.  

BAYESIAN AND NON-BAYESIAN 
UPDATING  

The Bayesian updating procedure includes three 

basic assumptions: 
 

1) Assume that the PDF of predicted 

quantity X (called prior PDF) is a 

function of a set of selected parameters. 

Thus,  is assumed to be known, 

but the value of the vector  is not 

known exactly.  We used a non-analytical 

form for  based on local JPDF 

models without data clustering  

2) Our initial knowledge about  is 

assumed to be contained in a known prior 

density p ( ). We used the first two 

statistical moments of  as 

parameters.  

 

3) The rest of knowledge about  is 

contained in the set of data, set D of the n 

samples x1, , xn drawn independently 

from the unknown p(x).   

 

Bayesian updating problem is to compute the 

posterior density  

 

  (21) 

where 

(22) 
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and 

          (23) 

 

To solve Bayesian updating, we simulate 

  using MCMC with an energy function equal to 

the negative loglikelihood – log ( ).   

 

Based on the MCMC simulation, the conditional 

 could be estimated 

by simple statistical averaging. The first-order 

and second-order statistical moments are 

computed as follows: 

 

          (24) 

(25) 

 

Where the non-analytical conditional PDF of the 

quantity x is computed by a probablistic mixture 

model 

         (26) 

In addition to the classical Bayesian updating as 

decribed above that is a “soft” updating 

procedure based on a “weak form” solution of an 

integral weighting problem, we also implemented 

a novel stochastic model updating that couples 

the Bayesian updating (briefly BU) with a 

probability transformation (briefly PT) algorithm. 

The novel stocashtic model updating procedure is 

called Bayesian-Probability Transformation 

updating, or briefly the BPT updating. The 

probablity transformation aspect incorporates the 

stochastic bias function between the statistical 

predicted data and the experimental data. The 

novel stochastic model updating combines the 

“soft” evidence via Bayesian updating with the 

“hard” evidence via probability transformation. 

The improvement is exceptional as it is shown in 

the case studies section.   

MODELING UNCERTAINTIES 

The key categories of modeling uncertainties that 

are associated with stochastic modeling for 

computational reliability analyses are due to: (i) 

lack of sufficient collection of data (small sample 

size issue), (ii) non-representative collection of 

statistical data with respect to the entire 

statistical population characteristics or stochastic 

system physical behavior (non-representative 

data issue), (iii) lack of fitting of the stochastic 

model with respect to a given statistical dataset, 

i.e. a bias is typically introduced due to 

smoothing (model statistical-fitting issue) and 

(iv) lack of accuracy of the deterministic 

prediction model with respect to real system 

physical behavior for given input data points, i.e. 

a bias is introduced at each predicted data point 

due to prediction inaccuracy (model lack-of-

accuracy issue). It should be noted that the first 

two categories of modeling uncertainty are 

associated with uncertainties in statistical data 

collection, while the last two categories are 

related to modeling uncertainties in prediction 

models due to statistical smoothing and 

prediction error.  

 

For incorporating modeling uncertainties in our 

risk predictions, we need to build a stochastic 

model space assuming that the statistics of 

stochastic models are random variables. By 

randomizing the statistics (called also hyper 

parameters) of a given stochastic model we 

define a parametric stochastic model or 

equivalently a family of stochastic models or a 

stochastic model space. Since the risk predictions 

are conditioned on a given stochastic model, the 

model space and simulated data space are two 

nested spaces.  The outer loop is over the 

stochastic discrete model space (stochastic model 

space) and the inner loop is over the stochastic 

input parameter space (stochastic data space).  

 

A two-level nested simulation loop was 

implemented for including the effects of a limited 

number of statistical FEA simulations on 

predicted risks. It should be noted that the two-

nested simulation loop approach requires a 

number of computational FE analysis runs that is 

equal to the product of the simulation numbers of 

the inner loop (stochasticity effects) and outer 

loop (modeling uncertainty effects). To make 

numerically efficient the application of the two-

nested loop approach we implemented non-
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parametric bootstrapping techniques that can be 

applied either at the local stress level 

(intermediate level) to avoid performing a large 

number of FE analyses or at the life prediction 

level (end level). 

SENSITIVITY STUDY RESULTS 

 

In this section we present selected results of a 

series of sensitivity studies. The output variables 

are considered the vehicle dynamic response and 

the local stresses at critical locations, predicted 

lives and reliability of FLSS for different 

stochastic input scenarios. We also address the 

modeling uncertainty effects, stochastic model 

updating and the maintenance uncertainty effects. 

 

Firstly, we focus on the effect of the stochastic 

road profile non-Gaussianity. Figure 15 shows 

the FLSS responses for a Gaussian and a non-

Gaussian straight, moderate roughness road 

profiles for a vehicle speed of 30 mph. The 

Gaussian and non-Gaussian road profiles have 

the same second-order statistical moments or 

power spectral densities. It should be noted that 

the local stress cycles at a critical location in 

LCA have about twice larger maximum 

amplitudes for non-Gaussian profile than for 

Gaussian profile. For different critical locations 

within FLSS, the predicted life is about 4 to 40 

times shorter for non-Gaussian profile than for 

Gaussian profile. These results infirm the current 

practice that is based on the use of Gaussian 

process models for road profile idealization.  

 

Next, we considered the effect of the road profile 

topography on the FLSS stress and life. We 

considered three types of simulated road profiles: 

i) straight profile (S) with a bump, ii) 

horizontally curved profile (long turns, LT) and 

iii) sloped and curved profile (rolling hills, RH). 

Figure 16 shows the effect of topography for a 

moderate roughness road profile on the FLSS 

joint forces. It should be noted that the effect of 

topography is important. The FLSS joint forces 

have several times larger amplitudes if 

topography effects are included. 

 

Figures 17 and 18 show the FLSS LCA ball joint 

lateral force variation and, respectively, the local 

Von-Mises stress variations (history and stress 

range) and the associated rainflow matrix (in 

alternating strain and mean stress coordinates) at 

a critical location in the FLSS LCA system.  

 

It should be noted that the maximum stress 

variation at the selected critical location is about 

ten times larger for the road profile with 

topography variation than for the straight road 

profile, although the road surface roughess is 

high for the simulated segment considered. For 

the S profile the maximum stress range amplitude 

is about 0.50 units if the bump is excluded, while 

for the RH profile the maximum stress range 

amplitude is about 5.30 units, and for the LT 

profile is 3.60 units.   

 

Next, we show the predicted life sensitivity due 

to slight changes in the nonlinear statistical 

correlation between the strain-life model random 

parameters. Please note that the marginal 

probability distributions of the strain-life model 

parameters are maintained the same. Changes are 

only in the correlation structure between these 

random parameters. Herein, we consider the 

crack initiation life based on stochastic strain-life 

curve models. There are four stochastic 

parameters, 
f

σ ,
f

ε , b and c (equation 10) that 

are included in the probablistic strain-life model.  

 

To include the nonlinear correlation between 

different stochastic input parameters, we used a 

generalized marginal probability transformation 

(GMPT) approach to represent the non-Gaussian 

joint probability density of those variables by 

their Gaussian images (also called translational 

fields) applied in conjuction with statistical 

clustering for computing mixture-based joint 

PDFs. We believe that this GMPT approach is 

accurate, robust and efficient.  

 

Figures 19 and 20 show the effect on nonlinear 

correlation between the 4 parameters of the 

strain-life curve for two case studies. Figure 19 

shows the data points for the nonlinearly 

correlated parameters paired as X1(b) and X2 

(
f

σ ) and X3 (c) and X4 (
f

ε ) for two statistical 



Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

 

UNCLASSIFIED:  DISTRIBUTION STATEMENT A: Approved for Public Release 

Page 14 of 37 

 

databases, Database A (higher correlation) and 

Database B (lower correlation).   

 

Figure 20 compares the simulated strain-life 

curve obtained for the statistical Database A 

(higher correlation) and Database B (lower 

correlation).  It should be noted that the resulting 

scatter of the two simulated strain-life curve is 

very different. As an example, if we consider the 

lowest strain-life curve sample for a given strain 

range of 2.0E-3, then, the computed fatigue cycle 

life is only 100 cycles for Database B, but 50,000 

cycles for Database A.  This drastic change in the 

computed fatigue life is a solely result of 

changing the correlation patterns between the 

strain-life curve parameters (Figure 19). It should 

be noted that the marginal statistical moments 

and PDFs were preserved. The correlation pattern 

change was this only change that was made 

between Database A and Database B (the 

marginal PDFs are not modified at all).  

 

It is obvious that this very simple example shows 

how important is for an accurate life prediction to 

capture correctly the complex statistical 

dependences, i.e. nonlinear statistical correlation 

patterns, between the strain-life curve 

parameters. Same remarks could be extended to 

crack propagation models such as Paris Law or 

Forman linear-fracture mechanics-based models. 

This is an extremely important probabilistic 

modeling aspect that is most often ignored in 

practical applications. We hope that these results 

presented here in this paper will alert and will 

bring more awareness on this delicate modeling 

aspect to the non-deterministic engineering 

community.  

 

Figure 21 shows the effect the progressive 

damage modeling on the FLSS life prediction. 

The linear damage rule (LDR) provides a life that 

is twice as long as the predicted life using a 

nonlinear damage rule such the damage curve 

approach (DCA). These results show that the 

unconditional use of LDR for any fatigue damage 

modeling could produce crude reliability analysis 

results. It should be noted that the two 

progressive damage models LDR and DCA for 

crack nucleation were combined with the 

stochastic Forman model for crack propagation 

[4]. 

 

Figure 22 illustrates the effect of lack of data, for 

280 stochastic FEA simulations, on the 

probabilistic life prediction at a critical location 

of the FLSS LCA system. Both Weibull and 

lognormal life probabilistic models were 

considered. It should be noted that Weibull life 

model provides much shorter predicted lives for a 

given reliability level. For 99% reliability level, 

the mean Weibull life is 300 units in comparison 

with the mean lognormal life that is 750 units. 

The significant conservatism of the Weibull 

probablistic model is a main reason of the 

popularity of these models in engineering 

practice.  

 

Table 2 shows also the effect of modeling 

uncertainty on the FLSS predicted life due to the 

limited number of FEA simulations, only 250 

samples, for different selected reliability levels, 

including mean, 99% and 95% exceedance 

probabilities. It should be noted that the 99% 

reliability life is about half of the 95% reliability 

life. Also the 99% reliability life is about 15-20 

times shorter than the mean life. The effect of 

modeling uncertainty for the 95% confidence 

versus the 50% confidence is to reduce the 95% 

and 99% reliability lives by about 20-30%. 

Figure 23 shows graphically the results presented 

in Table 2.   

 

Further, we investigated the application of the 

Bayesian updating for computing the updated 

bivariate fatigue stress probability distribution 

based on available experimental data. The 

bivariate fatigue stress distribution includes both 

the quasi-static stress component (in X direction 

in the plots) and the vibratory stress component 

(in Y direction in the plots).  

 

We considered 5 random test data. The 5 

experimental test data were considered by 

randomly selecting 5 predicted data. This imply 

that the test data and simulated data are identical, 

or in other words that the prediction accuracy is 

perfect. The original and updated PDF of the 

bivariate stress using Bayesian updating (BU) is 

shown in the Figure 24 left plot. It should be 
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noted that the updated PDF departs from original 

PDF even the prediction accuracy is perfect. Next 

we consider 25 random test data in the same way. 

Thus, the prediction accuracy was again perfect. 

The Bayesian updating result is still poor as 

shown in the Figure 25 left plot. Comparatively 

we used the BPT updating that incorporates the 

test data bias information. The results are shown 

in the right plots of the two investigated cases 

with 5 and 25 random test data. As expected, 

BPT provides an updated PDF that overlapps 

practically with original PDF since prediction 

accuracy is perfect.  

 

The above results show a very serious pitfall of 

the classical Bayesian updating that is currently 

extremely popular and widely applied by 

engineers as a black box. This paper pulls a 

serious alarm for the Bayesian updating 

application to typical engineering reliability 

problems. 

 

Figures 26 through 29 show results of selected 

FLSS sensitivity studies that investigated the 

effects of i) road surface roughness, ii) road 

topography, iii) corrosion pitting, and iv) FE 

modeling uncertainty of local stresses. Each of 

these effects is signficant. However, road surface 

roughness and topography have much larger 

influence of predicted life than corrosion and 

local stress uncertainty (assuming a 15% c.o.v.). 

 

Finally, we discuss the effects of maintenance 

uncertainties on the FLSS reliability. The 

maintenance sensitivity study results are shown 

in Figures 30 through 33. First, we investigated 

the case of when the target reliability level or 

POF is given and the schedule of maintenance 

events needs to be determined.  Results are 

presented in Table 3 and Figure 30. Three cases 

were considered for the POF equals to         1.0E-

05, 1.0E-04 and 1.0E-03.  

 

Using the developed integrated reliability 

framework, we determined the required 

maintenance schedule, the number of scheduled 

maintence events (SME), the maintenance 

intervals, the cumulative number of repairs, the 

instantaneous failure probabilities (POF) and the 

mean hazard failure rates (MHFR) per 

maintenance intervals.  It should be noted that for 

the 1.0 E-05 target POF, the numbers of 

scheduled maintenance events and the number of 

repairs are both about twice than the number of 

maintenace events and the number of repairs 

needed for the 1.0 E-03 target POF. This 

indicates a scheduled maintenance cost of 4 times 

higher for the 1.0 E-05 POF than the 1.0 E-03 

POF. However, the real risks are shown by the 

MHFR results not instantaneus POF. The MHFR 

show a risk ratio over time that is about 50 times 

larger for the 1.0 E-03 target POF case.  

 

It should be noted that the maintenance intervals 

are in days that include 24 hours of continuous 

driving of the HMMWV on moderate roughness 

profiles. If we assume that HMMWV is driven 

only 10 hours per day on rough roads, then, the 

maintenance intervals in real time are much 

longer as shown in the 4
th
 column of Table 3.   

 

We also studied the effects of the maintenance 

interval, inspection technique, inspection 

operator skills and crack size rejection limit 

criterion on the FLSS reliability as shown in 

Table 4. The largest impact on reliability is 

produced by the maintenance scheduling and the 

inspection operator skills. An unskilled operator 

could increase the fatigue failure risks by tens of 

times comparing with a highly skilled operator. 

Training and environment control are key factors 

to ensure skilled operators.  

 

The effect of the selected inspection technique on 

the FLSS reliability is important. We considered 

Eddy Current inspection versus Visual inspection 

for cracking detection. All maintenace intervals 

are 185 days,  each day including 24 hour driving 

on moderate roughness roads. Results show that 

the Eddy Current inspection is 6-7 times safer 

than Visual inspection at twice cost (based on the 

cumulative number of repairs).    

 

Figures 31, 32 and 33 show the effects of 

inspection technique, operator skills and crack 

size rejection limit on the computed POF and 

MHFR. The plotted results are the same with 

those included in Table 4. 
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CONCLUSIONS 
 

An integrated HPC reliability framework has 

been developed to address the many challenges 

of the ground vehicle reliability prediction 

problem. The integrated reliability framework 

includes innovative computational tools that 

provided a great efficiency to the overall HPC 

implementation. These innovative tools include 

advanced stochastic models for road profiles, 

stochastic FE techniques including stochastic 

domain decomposition and stochastic 

preconditioning, three-level hierarchical (3LHM) 

and meshless fast probability integration (MFPI) 

models for stochastic response approximation, 

stochastic progressive damage models for fatigue 

and corrison fatigue. Both Bayesian and non-

Bayesian updating schemes are applied for 

aggregating the information from predicted data 

and test data. An efficient two-nested loop 

simulation algorithm is implemented for 

incorporating modeling uncertainty effects due to 

lack of data using bootstrapping or MC 

simulation. Including modeling uncertainties, 

variation bounds (confidence intervals) of the 

predicted risks are determined.  

 

The integrated vehicle fatigue reliability 

prediction approach incorporates the following 

steps: 

 

i) simulation of the stochastic operational 

environment,  

ii) stochastic vehicle multi-body 

dynamics analysis,  

iii) stress prediction in subsystems and 

components,  

iv) stochastic progressive damage 

analysis, and  

v) component life prediction, including 

off-line maintenance and on-line monitoring 

vi) reliability prediction at vehicle 

subsystem level.  

 

The integrated HPC reliability framework is 

demonstratively applied to the HMMWV front 

suspension system. The paper shows that the road 

surface roughness and the road topography 

variations impact severely on the HMMWV 

suspension system reliability. The road surface 

variations are highly non-Gaussian, being rightly-

skewed toward larger amplitudes. The non-

Gaussian variation aspects of the road profiles 

have a significant impact on the predicted vehicle 

fatigue reliability. This is a very important 

modeling aspect that was ignored in practice over 

a long period of time. The paper also shows that 

including the appropriate statistical nonlinear 

correlation between the stochastic life model 

parameters, and the effect of the limited number 

of FEA simulations impacts significantly on the 

HMMWV suspension reliability. prediction  

 

A variety of sensitivity studies are shown to 

highlight qualitative aspects of the HMMWV 

reliability analysis and indicate the governing 

life parameters for the front suspension 

reliability, including also the uncertainties in 

maintenace activities.  
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Table 1: Scalabillity Study Run Time Results (sec.) for 3D Elastic Problem with Variable Sizes  

From 100K to 20M DOFs Using From 6 to 24 Processors 

 

 

Table 2. Modeling Uncertainty Effects on FLSS Probablistic Life for                                              

Different Reliability Levels Using Lognormal PDF Model 

 
 

 

Table 3. Required Maintenance for FLSS for Different Target Failure Probability (POF) Levels for 

Moderate Roughness Roads Including Topography Effects with Operating Speeds up to 30 mph 

(No Additional Armour Weight Included) 
 

Target 

Probability 

of Failure 

(POF) 

Computed 

Probability 

of Failure 

(POF) 

Number of 

Scheduled 

Maintenance 

Events 

Mean 

Maintenance 

Interval  

(days) 

Cumulative 

Number of 

Repairs per 

Component 

Mean Hazard 

Failure Rate 

For Entire Period 

(per day) 

1.0 E-05 1.1 E-05 23 155 (372) 

(1.02 years) 

18 7.5 E-08 

1.0 E-04 1.1 E-04 17 205 (492) 

(1.35 years) 

15 5.3 E-07 

1.0 E-03 1.0 E-03 12 285 (684) 

(1.87 years) 

11 3.5 E-06 
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Table 4. Maintenance Analysis Sensitivity Studies for FLSS Reliability for Moderate                                 

Roughness Roads Including Topography Effects with Operating Speeds up to 30 mph  

(No Additional Armour Weight Included) 
 

 
                     

           NOTE: * Constant maintenance intervals of 185 days were considered. 
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Figure 1 Vehicle reliability prediction flowchart [3] 

 

 

 

 

 
 

Figure 2 Simulated road surfaces with high (left) and low (right) transverse spatial correlations 
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Figure 3 Simulated (blue) and measured (red) road profiles (left plot) and their PDF (right plot) 

 
Figure 4 Simulated road profiles (stationary segments) for different road roughnesses  

 

     
 

   Figure 5 HMMWV Dynamic Model      Figure 6 Front Suspension System Model 
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a) Flat road with no topography Effects; Passing a Random Bump 

    
b) With topography Effects; Smooth and Rough Stochastic Roads 

 

Figure 7 HMMWV Simulations with Stochastic Road Profiles 

 
 

Figure 8: Front-Left Suspension System (FLSS); Vehicle model (left), and FEA model (right) 
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Figure 9 HPC CDD Implementation 

    
 

       

 
 

Figure 10 Stochastic Response Surface Approximation (SRSA) Model 
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Figure 11 Stochastic Highly Nonlinear Response Surface Approximation Using 3L HM;  

local JPDF models (left) and conditional mean response surface (right) 

 

 

Figure 12 3LHM and MFPI Response Approximation Models for the HMMWV LCA LC#14 Stress 
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Figure 13 Time-Variant Reliability Analysis Metrics 
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Figure 14 Reliability Prediction Including Uncertainty Effects of Maintenance Activities 
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a) Measured and Simulated Road Profiles, Gaussian and Non-Gaussian, and Associated LCA 

Bushing Torque Moment Histories and PDF Estimates 

 
b) Simulated Local Stress Histories and Rainflow Matrices at A Critical Location in LCA  

 

Figure 15 Vehicle FLSS Response for Gaussian and Non-Gaussian Road Profiles at 30 mph 
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Figure 16 Joint Force Histories for S Profile (no topography) and RH Profile (with topography) 
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Figure 17 Joint Force Variations (Histories and PDF) in the LCA Ball Joint for Straight Road (upper), 

Horizontally Curved Road – Long Turns (middle) and Sloped and Curved Road – Rolling Hills (lower) 

 
Figure 18 FLSS Stress at A Critical Location in LCA for Straight Road (upper), Horizontally 

Curved Road – Long Turns (middle) and Sloped and Curved Road – Rolling Hills (lower) 
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Figure 19 Strain-Life Parameter Data with High (Database A – upper plots) and Low (Database B 

–lower plots) Nonlinear Correlations; Shown for Parameter Pairs (b, Sigma) & (c, Epsilon) 
 

 
Database A       Database B 

 

Figure 20 Simulated Strain-Life Curve Including Nonlinear Correlation Between Parameters 
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Figure 21 Predicted FLSS Life Usind LDR and DCA Progressive Damage Models  

 

 
Figure 22 Effect of Lack of Data (280 Simulations) on Predicted Life for Given Reliability Levels  

of  90%, 95%, 99% and 99.99% 
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Figure 23 Model Uncertainty Effects on 99% & 95% Reliability Life for Moderate (left) and High (right) Roughness    

 

Figure 24 Prior & Posterior JPDF Using BU (left) versus BPT (right) for 5 Tests Assuming No Prediction Error 

 
Figure 25 Prior & Posterior JPDF Using BU (left) versus BPT (right) for 25 Tests Assuming No Prediction Error 
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Figure 26 Effects of Road Surface Roughness on the Predicted Life PDF for the FLSS Governing Critical Location 

(left) and Other Critical Location (right); Both Critical Locations Are in the FLSS LCA Component 

 

 

 
 

Figure 27 Effects of Road Topography on the Predicted Life PDF for the FLSS Governing Critical Location (left) 

and Other Critical Location (right) for Moderate Roughness; Both Critical Locations Are in FLSS LCA 
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Figure 28 Effects of Corrosion on the Predicted Fatigue Life PDF for the FLSS Governing Critical Location for 

Moderate Road Surface Roughness (left) and High Road Surface Roughness (right) 

 

 

   
 

Figure 29 Effects of the FE Stress Prediction Uncertainty on the Predicted Fatigue Life PDF for the FLSS Governing 

Critical Location for Moderate Road Surface Roughness (left) and High Road Surface Roughness (right) 
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Figure 30 Computed Probability of Failure (POF – upper plots) and Mean Hazard Failure Rates 

(HFR – lower plots) Versus Time Given the Target Risks of 1.0 E-05 (left) and 1.0 E-03 (right) 
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Figure 31 Effects of Inspection Techniques on Computed Probability of Failure (POF – upper plots) 

and Mean Hazard Failure Rates (HFR – lower plots); Eddy Current (left) and Visual (right) 
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Figure 32 Effects of Eddy Current Operator Skills on Computed Probability of Failure (POF – upper 

plots) and Mean Hazard Failure Rates (HFR – lower plots); Worst Skills (left) and Best Skills (right) 
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Figure 33 Effects of Crack Size Rejection Limit on Computed Probability of Failure (POF – upper 

plots) and Mean Hazard Failure Rates (HFR – lower plots); Crack Size Limit = 0 (left) and Crack Size 

Limit = 0.15 in (right) 

 


