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ABSTRACT 
This paper develops a linear closed form equation as required for automatic plowing depth control of a 

mine clearing combat vehicle.  The vehicle will be tasked with using its Mine Clearing Blade (MCB) to remove 

surface laid and buried land mines on undulating terrain so that other vehicles can follow its path without the 

threat of mines.  Blade control must be automatic to ensure that the target depth of the cleared path is achieved 

and all mines on the path are removed.  A closed form solution for real-time computing relating the MCB motion 

and hydraulic actuator movement is developed and implemented.  The equations are provided in symbolic form 

so that the dimensions of the mechanism can be directly substituted and/or modified without re-derivation.   

Results were verified with field measured data and implemented in the controller of a real vehicle to successfully 

achieve objective goal of Automatic Mine Clearing. 

 

INTRODUCTION 
An automatic plowing depth control requires the resulting 

controller integrates kinematics, soil mechanics, control 

algorithms, hydraulic power, and vehicle dynamics.  Owing 

to the interactive nature of the system, the control software 

must be efficient and run in real-time with a constant step 

size equal to the sample period of control system.   

Commercial software such as DADS / VL Motion or 

ADAMS are widely used for off-line simulation but are 

infeasible due to computational speed, availability of source 

or binary code for embedded targets, integration step size 

control for convergence does not meet real-time application, 

non-linear algebraic joint or driving constraint equations 

may require many iterations for convergence to satisfy 

specified error tolerance that require CPU time beyond the 

sampling period in a control loop, etc.  Therefore a closed 

form solution for real-time computing relating the MCB 

motion and hydraulic actuator movement is developed and 

implemented.   

 

GOALS AND ASSUMPTIONS 
  The equations developed in this paper are for Real-Time 

operation that has different goals compared with those of 

general purpose codes such as ADAMS or DADS as 

follows, 

1. It is intent to reduce depth plow error by providing 

good (not exact) kinematic relationship between blade 

geometry and hydraulic actuators with a minimum set 

of generalized coordinates.  Error is to be corrected 

via control loop with sensor feedbacks in real 

applications at the next sample step rather than current 

time step.  Computation must be completed within one 

sample period.   The goal is to reduce error and to 

meet real-time application.  Commercial codes use a 

larger set of generalized coordinates so the kinematic 

relationship can be more precisely formulated.  

However, computation is intensive since constraints 

must be satisfied with a specified tight error tolerance 

via iterations and in general can’t be completed within 

a sample real time step.  The goal is for accuracy but 

not Real-Time application. 

2. For joint constraints, computer models require 

iterations (e.g., Newton-Raphson) to check non-linear 

constraint equations for initial assembly and joint 

separation.  The physical blade in Real-Time 

operation is assumed well assembled and its joints are 

not broken or deformed during operation; therefore, 

iterations for checking joint separations are not 

required. 

3. For driving constraints, computer models use 

iterations to check nonlinear constraints.  In Real-

Time application, driving constraints are not explicitly 

implemented so iterations are not carried out.  A 

physical hydraulic system is controlled by pressure 
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(force) and flow (speed).  When a servo control valve 

is opened by a current command, the actuator is trying 

to move with a desired speed (by flow) rather than a 

desired length. Linear transducers are used to measure 

the length for error correction in the next time step.  

Therefore, the goal is to develop velocity relationship 

for valve command rather than imposing position or 

velocity driving constraints as used in the off-line 

simulations.  Variation method is used to meet this 

goal by developing the perturbation ratio between 

blade and actuator movements.  Given a sample 

frequency of control loops, the perturbation ratio is 

assumed to be a constant speed ratio within the time 

limit of the sample period at a given blade position. 

4. During plowing, the effective mass, in addition to the 

original blade weight, is increased with soil weight 

and plow force.  Since power (Pressure/Force or 

Flow/Speed) of hydraulic system is always limited, 

the natural frequency of blade system is reduced and 

system response to command slows down.  Trying to 

move the blade to satisfy driving constraints within 

the limited sample period requires significant power 

that is not feasible if not impossible.  Therefore for 

Real-Time application,  achieving stable plow control 

within an acceptable error tolerance for a long 

duration operation is more important than to strictly 

meet kinematic constrains via iterations in every time 

step.  The later might diverge due to computation time 

limit within sample period and cause unstable control.  

 

MOTION DESCRIPTION 
  The kinematic relationships between the Mine Clearing 

Blade (MCB) and the chassis, as shown in figure 1, are 

represented by six nonlinear constraint equations -- three 

joint constraints and three driving constraints.  The three 

joint constraints are not controllable and must be satisfied no 

matter how the hydraulic system performs.  They can be 

stated as follows: 

1. The length of left push beam is constant and can’t be 

changed with time. 

2. The length of right push beam is constant and can’t be 

changed with time. 

3. The length of the diagonal brace between the left push 

beam and the chassis can’t be changed with time, so 

that there is no side-to-side swing motion between the 

left push beam and the chassis. 

The remaining three driving constraints are controllable by 

changing the length of the three actuators which control the 

roll, pitch, and lift motion of the blade.  Combining the three 

joint constraints with the three driving constraints, the six 

generalized coordinates  q  [ , , , , , ]x y z T    of the MCB 

relative to the chassis frame are determined, i.e., the motion 

is kinematically driven. 
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Figure 1: Mine Clearing Blade of the Combat Vehicle 

 

KINEMATIC ANALYSIS 
  Since the relative motion between the blade and the 

chassis is our concern, all equations are derived in the 

chassis frame rather than the earth frame to avoid 

unnecessary transformations.  The transformation matrix 

from the blade frame to the chassis frame is simply denoted 

by "A  ".  Therefore, a constant vector on the blade frame 

can be represented in the chassis frame [3] as s As   

Refer to figure 1, the frames X-Y-Z and x-y-z represent the 

chassis and the blade frames, respectively.  Points P j (j=1..., 

12) denotes the joint attachment points.  The system consists 

of two rigid bodies, the chassis and the MCB, and its relative 

motion must be described with the generalized 

coordinatesq  [ , , , , , ]x y z T   .  The two tilt actuators 

are attached to the push beams that are modeled as distance 

linkages without introducing additional generalized 

coordinates.  Therefore, minor approximation is unavoidable 

in writing the equations for the two tilt actuators in terms of 

the only available generalized coordinates q  for the blade. 

 

Joint Constraint for the Left Push Beam 
Statement: The length of left push beam is constant and 

can’t be changed with time. 

The position vectors P1 and P2  in the chassis frame are  

 

 (1) 

and  

 

 (2) 

 

 T11 0d0 sP

2B2 sArP 
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respectively, where 

 

 (3) 

 

is a constant vector from the origin of the blade reference 

frame to the point P2  and is defined in the blade frame; rB  is 

the position vector from the origin of the chassis reference 

frame to the origin of the blade reference frame and is 

defined as 

 (4) 

 

The relative roll, pitch, and yaw angle of the blade with 

respect to the chassis frame are denoted by   , ,  

respectively.  Using roll-pitch-yaw rotational sequence, the 

transformation matrix A  can be derived as 

 

 

 

  

 

 

 

 

(5) 

 

The position vector on the left push beam from point P1 

to P2  is 

 (6) 

 

and its square length is 
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where 
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since all terms on the right side of equation (7) are scalar, 
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 (16) 

 

Equation (7) can then be expanded as  

 

 (17) 

 
 
 
Joint Constraint for the Right Push Beam 

Statement: The length of right push beam is constant 

and can’t be changed with time. 

The position vectors P5 and P6  for the right push beam 

are defined in the chassis frame as  

 (18) 

 

and 

 (19) 

 

respectively, where 

 (20) 

 

Following the same derivation described above, the 

distance constraint for the right push beam can be obtained 

as 

 (21) 

 

 
 
Joint Constraint for the diagonal brace 

Statement: The length of the diagonal brace between 

the left push beam and the chassis can’t be 

changed with time, so that there is no side-

to-side swing motion between the left push 

beam and the chassis. 

The diagonal brace prevents side-to-side swing motion 

of the left push beam, i.e., the position vector L  defined 

from point P1 to point P2  is always perpendicular to the 

chassis Y axis.  Any roll motion of the blade relative to the 
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chassis results in positive y deviation of the origin of the 

blade frame, as shown in figure 2.  This causes asymmetric 

motion of the blade because side-to-side swing motion of the 

right push beam must occur. 

Since yaw or pitch motion of the blade does not 

contribute y deviation of the origin, the kinematic 

relationship between y and roll  can be written as 

 (22) 

 

P2

Tr aj ect or y  of  t he

or igin of  blade f r ame

y



d

y

z

 
Figure 2: Roll Motion of the Blade 

 

Redundant Constraint 
In general, the joint constraints in equations (17), (21), 

and (22) define the relationship between the six generalized 

coordinatesx y z, , , , , and .  With three algebraic 

equations and six variables, the blade therefore has 3 degrees 

of freedom before the three actuators are attached.  

However, when the yaw and roll angles are zero, both 

equations (17) and (21) reduces to 

 

 (23) 

 

and one of the kinematic constraints is lost.  Equations (17) 

and (21) become redundant for this specific configuration.  

Redundant constraints will cause the constraint Jacobian 

matrix to be singular or ill-conditioned and should be 

avoided.  Therefore, an additional kinematic constraint must 

be imposed. 

Since yaw motion of the blade is not allowed due to the 

unchanged lengths of two push beams, the constraint  

 

 (24) 

 

can be used to replace the redundant one.  Equations 17 and 

21 can be summed up to represent a general constraint as 

 

  (25) 

 

With the joint constraint in equation (24) imposed, the 

system is reduced to contain 5 generalized coordinates 

q  [ , , , , ]x y z T   and two joint constraints, as shown in 

equations (22) and (25).  Note that the two constraints do not 

contain the variable .  It means the pitch motion must be 

controlled by actuators and will not be restricted by the joint 

constraints.  The transformation matrix A  is thus reduced to 
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Adjustment of Generalized Coordinates 

The five generalized coordinates q  [ , , , , ]x y z T   

are not independent and should be adjusted to satisfy the 

joint constraints.  Equations (22) and (25) can be rewritten as 

 

 (27) 

 

and 

 

 (28) 

 

respectively, where the superscript of  denotes the 

constraint equation number.. 
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is the Jacobian matrix associated with the two joint 

constraints, and  

 (31) 

 

is the variation of generalized coordinates. 

Taking the time derivatives of equations (27-28) yields 

the velocity constraints as 

  

 

 

 

(32) 

 

 

 

or 

 (33) 

and 

 (34) 

 

During the operation of the blade, the variables y, z, and 

 might become zero, however, x is always greater than 

zero.  Therefore, the two rows of the Jacobian are linear 

independent, i.e., the two constraints are not redundant all 

the time.  The nonzero coefficients of Jacobian in the first 

row are corresponding to y while the second row is 

corresponding to x.  It means that y and x should be 

determined by these two joint constraints and the remaining 

variables z, , and  should be controlled by the three 

actuators. 

Algorithm:  Given the five generalized coordinates and 

their time derivatives, the coordinates x, y, 

and velocities x  and y should be adjusted 

as follows: 
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After the adjustment of generalized coordinates, the set 

q  [ , , , , ]x y z T   is a feasible solution that satisfies the 

two joint constraints.  The lengths and their time derivatives 

of actuators can therefore be obtained in terms of q and qas 

described in the following sections. 

 

Driving Constraint and Its Jacobian Matrix for the 
Left Actuator 

The attachment point of the left actuator on the left push 

beam can be represented by a position vector P7 , as shown 

in figure 3, as  
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and the attachment point P8 on the blade, as shown in figure 

1 is 
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Figure 3: Left Actuator and Push Beam Attachment Points 

 

The length vector L  can be computed as 

 

 (42) 
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Taking the time derivative of equation (43) yields 
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The desired length L  and velocity L  of the left 

actuator can be obtained from equations (43-44), 

respectively. 

A perturbation method is used here to determine the 

relationship between the lengths of the actuators and the 

generalized coordinates of the MCB, therefore, the Jacobian 

matrix associated with the left actuator should be 

constructed.  The length of the left actuator L  is a function 

of the generalized coordinates x, y, z, , and , as shown in 

equation (43), and can be represented as 

 

 (45) 

 

where yaw  is zero all the time. 

Taking the variation of equation (45) yields 
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are the Jacobian matrix for the left actuator and the 

variation of generalized coordinates, respectively. 

Replacing the time derivatives by variations in equation 

(44), the component of the Jacobian matrix can be obtained 
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(52) 

 

and 

 

  

 

 

 

 

 

(53) 

 

Driving Constraint and Its Jacobian Matrix for the 
Right Actuator 
 

The attachment point of the right actuator on the push 

beam is represented by a position vector P9  as 

  

 

 

 

 

 

 

(54) 

 

 

 

 

 

 

 

 

where the term 0 2 0y
g

T











  is the approximated 

variation on the attachment point due to the roll motion of 

the blade. 

The attachment point P10  on the blade, as shown in 

figure 1 is 

 (55) 

 

where s10 is a constant vector as 

 

 (56) 

 

Following the same procedure described above for left 

actuator, the desired length and its velocity of the right 

actuator can be derived in the same way. 

Since a perturbation method is used and evaluated at the 

nominal operating point where  = 0, the Jacobian matrix 

associated with the right tilt actuator can be obtained by 

simply replacing "d" in the equations (49-53) by "-d". 

 

 

Driving Constraint and Its Jacobian Matrix for the 
Center Lift Actuator 
 

The position vectors P12  and P4  on the chassis 

reference frame are 

 (57) 

 

and 

 (58) 

 

The position vector of the lift actuator can be computed 

as 

  

 

(59) 

 

 

 

 

and its square length is 

 

 (60) 

 

Taking the time derivative of equation (60) yields 
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or taking the variation of equation (60) to obtain 
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Equation (62) can be written as 

  

 

 

 

 

 

 

 

 

(63) 

 

 

The Jacobian matrix for the center lift actuator is 

therefore 

 

 

 

 (64) 

 

 

Construction of Jacobian Matrix MO2I 
 

The variation of actuator lengths and the variation of 

generalized coordinates can be constructed using equations 

(49-53) and (63) as 

 

 

  

 

(65) 

 

 

 

where the Jacobian matrix MO2I (Matrix from Outer to 

Inner  -- hydraulics actuators are in the inner loop while 

balde positions and velocities are in the outer loops of 

Control Block Diagram) that transfers the variations of 

generalized coordinates to the variations of actuators is 

  

 

 

 

 

 

 

 

 

 (66) 

 

 

 

 

The relationship between the velocities of actuators and 

blade can be obtained by simply replacing the variations 

with the time derivatives as 

 

 

 

 (67) 

 

 

 

The velocities of the actuators are used to compute 

desired valve commands in the control algorithm. 

 

Construction of Jacobian Matrix MI2O 
The displacements and velocities of actuators depend on 

the performance of the hydraulic system and the control 

algorithm and may not match the desired values 

commanded.  Therefore, the resulting motion of blade must 

be evaluated based on the actual movement of the actuators.  

In other words, the Jacobian matrix MI2O that transfers the 

variations of actuator lengths to the variations of generalized 

coordinates should be constructed. 

It is clear that three variations of actuator lengths can’t 

determine the five variations of generalized coordinates, 

because the actuators control only three degrees of freedom 

of the blade, while the remaining two are decided by the two 

joint constraints no matter how the hydraulic system 

performs.  Therefore, the joint constraints in equations (27-

28) must be satisfied and their Jacobian must be taken into 

account. 

Combining the Jacobian matrices for the actuators 

shown in equation (65) and for the joint constraints shown in 

equation (29) yields 
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The perturbations 




L  or 




L r  is observed from 

equation (53) to be non zero for operation range   900
, 

and the first and third row in equation (68) are linear 

independent.  Therefore, the coefficient matrix is 

nonsingular and its inverse exists.  Equation (68) can be 

rewritten as 

 

  

 

 

 

 

 

 

 

 

 

 

(69) 

 

or in compact form 

 

 

 

 

 

 

  

 

 

 

(70) 

where 

  

 

 

(71) 

 

 

 

is the Jacobian matrix MI2O. 

The relationship between the velocities of blade and 

actuators can be obtained by simply replacing the variations 

in equation (70) with the time derivatives as 

 

 

 

 (72) 

 

 

 

As described in the section GOAL AND 

ASSUMPTIONS, the goal of this derivation is to determine 

velocity relationship between the actuator and blade 

movements in order to issue valve commands for hydraulic 

system.  The controller design, hydraulic flow distribution 

among actuators, or insufficient flow issues are beyond the 

scope of this paper.  Assume the desired blade speed q is 

determined in the control loop, equations (67) computes the 

required actuator velocities L .  These velocities determine 

flow requirements and distributions and thus valve opening 

commands.  The Jacobian matrix 
I2MO

qΦ that transforms 

outer loop quantities q  to inner loop quantities L  is a 

function of position.  Depending on computational speed of 

microprocessor, it might be updated each sample time step, 

or held constant near nominal operation point. 

On the other hand, equation (72) predicts the blade 

moving velocities based on the commanded actuator 

velocities.  In the early stage of control algorithm 

development, it can be used to update the generalized 

coordinates of blade to predict the next time step position 

inside PLANT.  In the middle or final development stage, it 

may be replaced by  

(1) a multi-body dynamics software (e.g., DADS) that can 

be integrated with control/hydraulics for off-line simulation.  

In this case, the velocities and lengths of actuators can be 

directly feedback from the dynamics output.   

(2) linear transducers for actuators in Real-Time operation 

that provide lengths and derivatives (velocities) for control 

feedbacks. 

 

VALIDATION AND IMPLEMENTATION 
The formulation developed above has been 

implemented in the prototype vehicles and validated by 

comparing the results with field measured data as follows: 

The field measured data for the chassis frame, blade 

frame, and center tine tip position of the Combat Vehicle is 

shown in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Measured Data for MCB 
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when the tine tip is above ground by 0.089 m in the 

configuration of figure 4, 

 

 

 

 

with roll and pitch angles near zero, the lengths of three 

actuators are 

L mR  10183. , compared with 1.016 m from measured 

data. 

L mC  0 9783. , compared with 0.981 m from measured 

data. 

L mL  10183. , compared with 1.016 m from measured 

data. 

Figure 5 shows the length of center lift actuator as 

function of blade height.  The operation range is within the 

maximum and minimum actuator stroke. 

Figure 6 shows the length of left or right tilt actuator as 

function of blade height.  The operation range is within the 

maximum and minimum actuator stroke. 

Figure 7 shows the perturbation of Blade Z vs. lift 

actuator stroke at different blade heights.  For example, the 

perturbation ratio is -3.75 at blade height -0.1 meter means 

that one unit lift actuator extension will result in 3.75 units 

blade vertical downward displacement at the specified 

configuration. 

Figure 8 shows the perturbation of tilt vs. lift actuator 

stroke at different blade height.  For instance, the 

perturbation ratio is -1.49 at blade height -0.1 meter means 

that one unit lift actuator extension requires 1.49 units tilt 

actuator retract in order to maintain the pitch angle of blade 

equals to zero at the specified configuration.  This data is 

used in the flow distribution in the hydraulic system to 

control the blade angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5:  Center Lift Actuator Length as Function of 

Blade Height 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Left or Right Tilt Actuator Length  as 

Function of Blade Height 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Perturbation of Blade Z vs. Lift Actuator 

Stroke as Function of Blade Height 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Perturbation of Tilt vs. Lift Actuator Stroke as 

Function of Blade Height 
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CONCLUSION 
A kinematic analysis for automatic plowing depth 

control of a Mine Clearing Combat Vehicle has been 

developed and the formulation has been implemented in two 

prototypes.  The computational result is used in the control 

algorithm to issue valve commands for flow distribution in 

the hydraulic systems and has been validated by comparing 

with field measured data. 
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