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ABSTRACT 
This paper examines the current state of scalable CFD for high-performance computing (HPC) clusters 

at industry-scale, and provides a review of novel technologies that can enable additional levels of CFD 

parallelism beyond today’s conventional approach. Recent trends in HPC offer opportunities for CFD solution 

performance increases from the use of parallel file systems for parallel I/O, and a second level of solver 

parallelism through hybrid CPU-GPU co-processing. 

 

INTRODUCTION 
Parallel efficiency and overall simulation turn-around 

times continue to be important factors behind scientific and 

engineering decisions to develop CFD models at higher 

fidelity. While the return-on-investment for several years of 

CFD verses physical experiments has been remarkable, the 

maturity of parallel CFD solvers and availability of 

inexpensive scalable HPC clusters has not been enough to 

advance most CFD practice beyond steady state modeling. 

Fluids are inherently time dependent, yet to model such 

complexity at a practical HPC scale for industry, requires 

parallel efficiency for all levels of the CFD solution.  

A capability of rapid simulation turn-around and multi-job 

throughput has potential to transform current practices in 

engineering analysis and design optimization procedures. 

This presentation will examine the current state of scalable 

CFD for HPC clusters at industry-scale, and provide a 

review of novel HPC technologies that can enable additional 

levels of CFD solution parallelism beyond a conventional 

approach. 

Recent trends in HPC offer opportunities for substantial 

CFD solution performance increases from (i) the use of 

parallel file systems for parallel I/O, and (ii) a second level 

of solver parallelism through hybrid CPU-GPU co-

processing. GPUs or graphics processing units, are now 

developed to share computational tasks with the CPU, in 

particular tasks that benefit from massively-parallel 

numerical operations. As more numerical operations are 

processed by GPUs, which lower the time spent in solvers, 

data I/O becomes a larger percentage of the overall solution 

processing time. This requires the need for parallel data I/O 

in order to benefit from an overall CFD time-to-solution. 

 

HPC REQUIREMENTS FOR CFD 
  Parallel processing in HPC environments has enabled 

increasingly complex CFD problems to be addressed. From 

a processor viewpoint, CFD requires a balance of memory 

bandwidth and floating point performance, but benefits most 

from parallel scalability. More and more affordable parallel 

computing has enabled: higher resolution for multi-scale 

phenomena of a flow field induced by complex physical and 

geometrical features; transient simulation, unsteady effects; 

advanced turbulence modeling, such as the combination of 

RANS and LES; multiphase and non-equilibrium chemical 

reactions; multidiscipline analysis and design optimization 

accounting for the interaction of fluid flow with other 

disciplines including structures, thermal, and controls. 

It is noteworthy that while HPC has indeed facilitated 

advanced CFD simulations and the growth of CFD, direct 

numerical simulations (DNS) of the Navier-Stokes equations 

for industry standard vehicle configurations with typical 

operating conditions are still beyond today’s computing 

capability and therefore, still intractable. However, more 

practical intermediate approaches like RANS (Reynolds 

Averaged Navier Stokes), unsteady RANS, LES (Large-

eddy Simulation) and other sophisticated turbulence 

modeling have received much attention in recent years. 

Despite recent gains in such models, most industry CFD 

applications remain at a limiting level of steady state RANS 

owing to the relative cost-performance benefits of advanced 

CFD. A schematic of CFD complexity hierarchy is provided 

in figure 1 with requirements of computational capability.  

As industry addresses much larger and more complex CFD 

applications it naturally leads to a requirement of even 

higher levels of parallelism that in turn brings the important 

elements that make up HPC systems to immediate attention. 
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Commodity clusters are limited in their ability to provide 

scalable systems with very low latency and high bandwidth 

between potentially thousands of processing cores, as well as 

a limited in the support of tools for code profiling and 

optimization, parallel debugging, and cluster management. 

In addition the maintenance costs associated with such 

commodity clusters grows exponentially owing to: 

• the physical space required to house and operate a large 

scale cluster of commodity servers is prohibitively high 

• the power consumption and cooling challenges that data 

centers face housing a large scale cluster of commodity 

servers involving many power panels full of circuits, many, 

many power cables behind and below the racks potentially 

impacting airflow, performance, are indeed significant. 

Some of the computational challenges associated with high 

fidelity advanced CFD simulations that impact requirements 

of HPC systems include parallel I/O for collective operations 

related to transient CFD, and hybrid parallel models of 

distributed and shared memory utilizing GPU acceleration of 

CPUs for improved scalability. 

  

PARALLEL FILE SYSTEMS 
As the HPC community continues an aggressive platform 

migration from proprietary supercomputers and Unix servers 

to Linux-based clusters, expectations grow for clusters to 

meet the I/O demands of increasing fidelity in CFD 

modeling. Cluster deployment has increased as organizations 

seek ways to cost-effectively grow compute resources for 

CAE applications. During this migration, many of these 

same organizations also implemented network attached 

storage (NAS) architectures to simplify administration and 

further reduce costs. 

While NAS implementations offer several advantages of 

shared file systems, many are too limited in the scalability 

required to effectively manage the I/O demands of parallel 

CAE applications. As such, a new storage migration is 

underway to replace legacy serial NAS with parallel NAS 

architectures and parallel file systems. For example, the use 

of legacy file systems such as NFS on serial NAS for CFD 

I/O requirements can actually increase overall job time as 

more compute cores are added, rather than provide the 

desired effect of faster job turn-around through parallelism. 

A new class of parallel file system and shared storage 

technology has developed that scales I/O in order to extend 

overall scalability of CFD simulations on clusters. For most 

implementations, entirely new storage architectures were 

introduced that combine key advantages of legacy shared 

storage systems, yet eliminate the drawbacks that have made 

them unsuitable for large distributed cluster deployments. 

Parallel NAS can achieve both the high-performance 

benefits of direct access to disk, as well as the data-sharing 

benefits of files and metadata that HPC clusters require for 

CFD scalability. One implementation from Panasas [2] 

provides an object-based storage architecture that can 

eliminate serial I/O bottlenecks. Object-based storage 

enables two primary technological breakthroughs vs. 

conventional block-based storage.  

First, since an object contains a combination of user data 

and metadata attributes, the object architecture is able to 

offload I/O directly to the storage device instead of going 

through a central file server to deliver parallel I/O capability. 

That is, just as a cluster spreads the work evenly across 

compute nodes, the object-based storage architecture allows 

data to be spread across objects for parallel access directly 

from disk. Secondly, since each object has metadata 

attributes in addition to user-data, the object can be managed 

intelligently within large shared volumes under a single 

namespace. This eliminates the need for administrators to 

focus on LUN management as those operations are 

automatically handled by intelligent storage blades. 

Object-based storage architectures provide virtually 

unlimited growth in capacity and bandwidth, making them 

well-suited for handling CFD run-time I/O operations and 

large files for post-processing and data management. With 

object-based storage, the cluster has parallel and direct 

access to all data spread across the shared storage system. 

This means a large volume of data can be accessed in one 

simple step by the cluster for computation and visualization 

to improve speed in the movement of data between storage 

and other tasks in the CFD workflow.  

Panasas provides this architecture by offering tuned 

hardware components that optimize the parallel file system 

software architecture capabilities. 

 

Transient CFD with Parallel I/O 
The benefits of parallel I/O for transient CFD were 

investigated with a production case of an ANSYS FLUENT 

Release 12 [3] aerodynamics model of 111M cells, provided 

by an industrial truck vehicle manufacturer. Figure 2 

illustrates the I/O schematic of the performance tests that 

were conducted, which comprised a case file read, a 

Figure 1:  Schematic of relative HPC requirements for CFD 
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compute solve of 5 time steps with 100 iterations, and a 

write of the data file. In a full transient simulation the solve 

and write tasks would be repeated to a much larger number 

of time steps and iterations, and with roughly the same 

amount of computational work for each of these repeatable 

tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

Details of the CFD model, the cluster and storage 

configuration and the results of solver plus write times are 

provided in figure 3. (Note: the case-read are one-time tasks 

in full simulations and were therefore omitted in the results).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In this case study, ANSYS FLUENT R12 with parallel 

I/O conducted concurrent writes of the local (partition) 

solutions directly to the global solution data file on PanFS, 

unlike the case for v6.3 that writes the local solutions one-

by-one to a global solution data file. The results demonstrate 

that R12 on the Panasas parallel file system demonstrated a 

more than 2 times reduction in total time vs. v6.3 on NFS 

and the NAS system. The total time improvement due to the 

write time advantage for R12 over v6.3, demonstrated up to 

39 times higher data transfer rates measured in MB/s. 

In the case of 64 cores, the solver advantage of R12 over 

v6.3 was only 4% with the total time benefit of 1.8 fold 

shown in Figure 3 attributed to the parallel I/O speed-up. 

The R12 solver advantage grows to 9% at 128 cores, and 

24% at 256 cores, which contribute to the growing benefits 

in total time improvements of 2.0 fold on 128 and 2.3 fold 

on 256 cores for R12 on PanFS vs. v6.3 on NFS.  

It is important to note that the performance of CFD solvers 

and numerical operations are not affected by the choice of 

file system, which only improves I/O operations. That is, a 

CFD solver will perform the same on a given cluster 

regardless of whether a parallel or serial NFS file system is 

used. The advantage of parallel I/O is best illustrated in a 

comparison of the computational profiles of each scheme. 

R12 on PanFS keeps the I/O percent of the total job time in 

the range of 3% at 64 cores to 8% at 256 cores, whereas v6.3 

and NFS spend as much as 50% of the total job time in I/O. 

An ANSYS FLUENT license is too valuable to spend a 

high percentage of operations in I/O relative to numerical 

operations. The high efficiency of a parallel I/O solution 

equates to ~2 times more ANSYS FLUENT 12 utilization 

that can be achieved within the same license cost structure as 

the v6.3 serial I/O solution under similar conditions.  

 

GPU-PARALLEL CFD 
  The continual increase in CPU speeds has limits due to 

power and thermal constraints with processors now having 

multiple cores. To achieve boosts in performance without 

increasing clock speeds parallelism must be developed. This 

parallelism can come in the form of task parallelism, data 

parallelism, or perhaps a combination of the two. Common 

methods for implementing parallelism are explicit message-

passing using an MPI library for either distributed or shared 

memory systems, and OpenMP for shared memory systems. 

A hybrid method is also possible with OpenMP used on 

multi-core and multiprocessor nodes and MPI used among 

the nodes. 

Although parallel applications that use multiple cores are a 

well established technology in computational science and 

engineering (CSE), a recent trend towards the use of 

Graphics Processing Units (GPUs) to accelerate CPU 

computations is emerging. In this heterogeneous computing 

model the GPU serves as a co-processor to the CPU. The 

need for high performance and the parallel nature of CSE 

problems has led GPU designers to create current designs 

with hundreds of cores. Today GPUs and software 

development tools are available for implementing more 

general applications that use the GPU not for graphics but 

for applications such as CFD and others where computations 

are needed to be completed as fast as possible.  

Figure 2:  Schematic of truck aerodynamic transient CFD 

simulation and I/O scheme 

Figure 3:  Comparison of ANSYS FLUENT R12 using a 

PanFS parallel storage file system vs. v6.3 using NFS 
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Much work has recently been focused on GPUs as devices 

that can be used in general-purpose computing. A GPU can 

produce a very high FLOPS (floating-point operations per 

second) rate if an algorithm is well-suited for the device. 

There have been several studies illustrating the acceleration 

of scientific computing codes that is possible by using GPUs 

[4 - 6]. Despite the tremendous performance gains possible 

with GPUs, relatively few commercial CFD software has yet 

to make use of them, and those that have demonstrate 

nominal overall gains of 2x over a multi-core CPU. This is 

mostly due to current GPU focus on iterative linear equation 

solvers rather than complete CFD code implementations. 

 

GPU Considerations for CFD 
The GPU was originally designed for graphics and the 

majority of this computation involves computing the 

individual color for each pixel on a screen. If we think of 

each pixel as being like a quadrilateral CFD cell, computing 

the pixel colors will be similar to the computations on a 

structured mesh. There is a very regular, orderly data access 

pattern with neighbors easily computed by simple offsets of 

indices. However, the majority of commercial CFD use 

some form of an unstructured mesh often with triangles in 

2D or tetrahedral in 3D. These meshes lead to an irregular 

and somewhat disorderly data access pattern which is not 

particularly well suited to the memory system of a GPU.  

Through a careful process of analyzing the relation 

between cells or elements and vertices, and taking advantage 

of the large amount of available processor performance on a 

GPU, techniques can be applied that partitions and sorts the 

mesh in such a way that the data access pattern becomes 

much more regular and orderly. The preprocessing of the 

mesh connectivity is a one-time step performed just before 

the main computation begins and can require a negligible 

amount of compute time while significantly increasing the 

performance of the equation solver. 

Shared memory is an important feature of the GPU and is 

used to avoid redundant global memory access among 

threads within a block. The GPU does not automatically 

make use of shared memory, and it is up to the software to 

explicitly specify how shared memory should be used. Thus, 

information must be made available to specify which global 

memory access can be shared by multiple threads within a 

block. For structured grid based solvers, this information is 

known up-front due to the fixed memory access pattern of 

such solvers, whereas the memory access pattern of 

unstructured grid based solvers is data-dependent. 

Algorithm design for optimizing memory access is further 

complicated by the number of different memory spaces the 

developer must take into consideration. Unlike a CPU the 

memory accesses are under the full and manual control of 

the developer. There are several memory spaces on the GPU 

which in turn is connected to the CPU memory. Different 

memory spaces have different scope and access 

characteristics: some are read-only, some are optimized for 

particular access patterns. Significant gains (or losses) in 

performance are possible depending on the choice of 

memory usage. 

Another issue to be considered for GPU implementation is 

that of data transfers across the PCI-Express bus which 

bridges the CPU and GPU memory spaces. The PCI-Express 

bus has a theoretical maximum bandwidth of 4 or 8 GB/s 

depending on whether it is of generation 1 or 2. When this 

number is compared to the bandwidth between the GPU’s 

on-board GDDR3 memory and the GPU multi-processors 

(up to 141.7 GB/s), it becomes clear that an algorithm that 

requires a large amount of continuous data transfer between 

the CPU and GPU will unlikely achieve good performance. 

For a CFD solver, the obvious solution is to limit the size 

of the domain that can be calculated so that all of the 

necessary data can be stored in the GPU’s main memory. 

Using this approach, it is only necessary to perform large 

transfers across the PCI-Express bus at the start of the 

computation (geometry) and at the end (final flow solution). 

High-end NVIDIA GPUs will offer up to 6 GB of main 

memory by the end of 2010, sufficient to store all the data 

needed by most commercial parallel CFD software, so this 

restriction is not a significant limitation.  
Over the past 10 years, CFD has become increasingly 

reliant on clusters of multiprocessors to enable more detailed 

simulations within design time frames. For this reason, the 

scalability of a solver across multiple processors can be 

equally important as its single-processor performance. A 

potential problem with increasing the single-processor 

performance by an order of magnitude is then that the multi-

processor performance suffers since the time required to 

exchange boundary information remains roughly constant. 

When operating in parallel across multiple GPUs, some 

boundary information must be transferred across the PCI-

Express bus at the end of each time step. However, with 

implementation of a low surface-to-volume ratio in mesh 

partitioning, this data transfer need not be a bottle-neck. 

A well suited memory access pattern and GPU-parallel 

considerations are not sufficient to achieve compelling 

performance gains. Many commercial CFD codes use an 

iterative method for the equation solver that typically 

includes linearization because they are relatively fast and 

easy to develop and maintain. Most often these are 

conjugate-gradient based methods with pre-conditioning 

schemes, and operate on sparse matrices. While these 

methods are simpler for development they are not as well 

suited to the GPU due to the fact that they access memory 

often and conduct a rather low amount of actual computation 

with each data access. This metric is typically referred to as 

arithmetic intensity and GPUs are particularly well suited to 

algorithms with high arithmetic intensity. 
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The relative performance of processors vs. memory over 

the past few decades has extended to more than 3 orders of 

magnitude. CPUs have gone to great lengths to bridge the 

gap between processor and memory performance by 

introducing instruction and data caches, instruction level 

parallelism, and so forth. And although GPUs offer a 

different approach in terms of hiding memory latency 

because of their specialization to inherently parallel 

problems, the fact remains that processor performance will 

continue to advance at a much greater rate than memory 

performance. If we extrapolate out, without any fundamental 

changes in memory, processors will become infinitely fast 

relative to memory, and performance optimization will 

become solely an exercise in optimizing data movement. 

 

Example: AcuSolve Commercial CFD 
An example is provided with AcuSolve, a commercial 

CFD software based on the finite element method and 

developed by ACUSIM [9], with headquarters in Mountain 

View, CA. AcuSolve is based on the Galerkin/Least-Squares 

(GLS) finite element method. GLS is a higher-order 

accurate, yet stable formulation that uses equal order nodal 

interpolation for all variables, including pressure. The 

method is specifically designed to maintain local and global 

conservation of relevant quantities under all operating 

conditions and for all unstructured mesh types. AcuSolve 

utilizes an efficient iterative solver for fully coupled 

pressure/velocity equation systems which like most 

commercial CFD solvers has sparse matrix-vector multiply 

as its primary operations. 

Sparse matrix-vector multiplication (SpMV) is of singular 

importance in sparse linear algebra. In contrast to the 

uniform regularity of dense linear algebra, sparse operations 

encounter a broad spectrum of matrices ranging from the 

regular to the highly irregular. Exploiting the tremendous 

potential of throughput-oriented GPU processors for sparse 

operations requires that a solver expose substantial fine-

grained parallelism and impose sufficient regularity on 

execution paths and memory access patterns.  Optimizing 

SpMV for GPUs is qualitatively different than SpMV on 

latency-oriented multi-cores. Whereas a multi-core SpMV 

kernel needs to develop 4 or more threads of execution, a 

many-core implementation must distribute work among 

thousands or tens of thousands of threads. Many-core GPUs 

will often demand a high degree of fine-grained parallelism 

because, instead of using large sophisticated caches to avoid 

memory latency, they use hardware multithreading to hide 

the latency of memory accesses.  

The linear equation solver in AcuSolve was examined for 

GPU acceleration for a relatively simple case of 80,000 

elements for an S-Duct geometry. AcuSolve utilizes a hybrid 

parallel MPI/OpenMP approach with an iterative GMRES 

solver. An execution profile of AcuSolve for the S-Duct case 

appears in figure 4 and demonstrates the dominant feature of 

SpMV operations as 57% of the total execution time. As 

described in a previous section, even a complete port of 

SpMV to the GPU will still leave 43% of execution time on 

the CPU and limit the overall effective speed-up to ~2x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results for the S-Duct case are shown in figure 5 and 

feature a comparison between a quad-core Xeon 5500 series 

CPU (Nehalem) and a single NVIDIA Tesla C2050 (Fermi). 

The speed-up of the 1 core + GPU is ~2x and this improves 

to 3.3x with the use of 2 GPUs owing to the distributed 

memory parallel implementation in AcuSolve. ACUSIM has 

additional GPU development projects underway to improve 

the performance of future releases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
SUMMARY 

  Increased levels of CFD parallel processing by utilizing 

parallel file systems and GPUs in an HPC environment has 

enabled much larger and complex CFD simulations to be 

addressed in product development workflows. As CFD 

simulation requirements continue to grow such as the need 

for transients, high-resolution LES, and multidiscipline 

Figure 4:  Execution profile of AcuSolve and S-Duct case 

Figure 5:  AcuSolve 1.8 results for multi-GPU NVIDIA 

Tesla C2050 results vs. 4 Core Xeon Nehalem CPU 
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simulation that are heavy in I/O operations relative to 

numerical operations, parallel file systems and parallel NAS 

will be essential technologies. The heterogeneous nature of 

such high fidelity simulations and their HPC resource usage 

will continue to grow the requirements for balanced and 

GPU co-processing HPC environments involving large 

GPU-based servers within distributed memory clusters. It 

was demonstrated that substantial performance gains can be 

achieved by using the latest novel HPC technologies. Based 

on these trends, we can expect that HPC will be a powerful 

tool in the future of scientific computing and advanced CFD 

modeling and practice. 
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