
2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM

AUGUST 17-19 DEARBORN, MICHIGAN

NOVEL HPC CONSIDERATIONS FOR ADVANCED CFD

Stan Posey
NVIDIA Corporation

Santa Clara, CA

ABSTRACT
This paper examines the current state of scalable CFD for high-performance computing (HPC) clusters

at industry-scale, and provides a review of novel technologies that can enable additional levels of CFD

parallelism beyond today’s conventional approach. Recent trends in HPC offer opportunities for CFD solution

performance increases from the use of parallel file systems for parallel I/O, and a second level of solver

parallelism through hybrid CPU-GPU co-processing.

INTRODUCTION
Parallel efficiency and overall simulation turn-around

times continue to be important factors behind scientific and

engineering decisions to develop CFD models at higher

fidelity. While the return-on-investment for several years of

CFD verses physical experiments has been remarkable, the

maturity of parallel CFD solvers and availability of

inexpensive scalable HPC clusters has not been enough to

advance most CFD practice beyond steady state modeling.

Fluids are inherently time dependent, yet to model such

complexity at a practical HPC scale for industry, requires

parallel efficiency for all levels of the CFD solution.

A capability of rapid simulation turn-around and multi-job

throughput has potential to transform current practices in

engineering analysis and design optimization procedures.

This presentation will examine the current state of scalable

CFD for HPC clusters at industry-scale, and provide a

review of novel HPC technologies that can enable additional

levels of CFD solution parallelism beyond a conventional

approach.

Recent trends in HPC offer opportunities for substantial

CFD solution performance increases from (i) the use of

parallel file systems for parallel I/O, and (ii) a second level

of solver parallelism through hybrid CPU-GPU co-

processing. GPUs or graphics processing units, are now

developed to share computational tasks with the CPU, in

particular tasks that benefit from massively-parallel

numerical operations. As more numerical operations are

processed by GPUs, which lower the time spent in solvers,

data I/O becomes a larger percentage of the overall solution

processing time. This requires the need for parallel data I/O

in order to benefit from an overall CFD time-to-solution.

HPC REQUIREMENTS FOR CFD
 Parallel processing in HPC environments has enabled

increasingly complex CFD problems to be addressed. From

a processor viewpoint, CFD requires a balance of memory

bandwidth and floating point performance, but benefits most

from parallel scalability. More and more affordable parallel

computing has enabled: higher resolution for multi-scale

phenomena of a flow field induced by complex physical and

geometrical features; transient simulation, unsteady effects;

advanced turbulence modeling, such as the combination of

RANS and LES; multiphase and non-equilibrium chemical

reactions; multidiscipline analysis and design optimization

accounting for the interaction of fluid flow with other

disciplines including structures, thermal, and controls.

It is noteworthy that while HPC has indeed facilitated

advanced CFD simulations and the growth of CFD, direct

numerical simulations (DNS) of the Navier-Stokes equations

for industry standard vehicle configurations with typical

operating conditions are still beyond today’s computing

capability and therefore, still intractable. However, more

practical intermediate approaches like RANS (Reynolds

Averaged Navier Stokes), unsteady RANS, LES (Large-

eddy Simulation) and other sophisticated turbulence

modeling have received much attention in recent years.

Despite recent gains in such models, most industry CFD

applications remain at a limiting level of steady state RANS

owing to the relative cost-performance benefits of advanced

CFD. A schematic of CFD complexity hierarchy is provided

in figure 1 with requirements of computational capability.

As industry addresses much larger and more complex CFD

applications it naturally leads to a requirement of even

higher levels of parallelism that in turn brings the important

elements that make up HPC systems to immediate attention.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Page 2 of 6

Commodity clusters are limited in their ability to provide

scalable systems with very low latency and high bandwidth

between potentially thousands of processing cores, as well as

a limited in the support of tools for code profiling and

optimization, parallel debugging, and cluster management.

In addition the maintenance costs associated with such

commodity clusters grows exponentially owing to:

• the physical space required to house and operate a large

scale cluster of commodity servers is prohibitively high

• the power consumption and cooling challenges that data

centers face housing a large scale cluster of commodity

servers involving many power panels full of circuits, many,

many power cables behind and below the racks potentially

impacting airflow, performance, are indeed significant.

Some of the computational challenges associated with high

fidelity advanced CFD simulations that impact requirements

of HPC systems include parallel I/O for collective operations

related to transient CFD, and hybrid parallel models of

distributed and shared memory utilizing GPU acceleration of

CPUs for improved scalability.

PARALLEL FILE SYSTEMS
As the HPC community continues an aggressive platform

migration from proprietary supercomputers and Unix servers

to Linux-based clusters, expectations grow for clusters to

meet the I/O demands of increasing fidelity in CFD

modeling. Cluster deployment has increased as organizations

seek ways to cost-effectively grow compute resources for

CAE applications. During this migration, many of these

same organizations also implemented network attached

storage (NAS) architectures to simplify administration and

further reduce costs.

While NAS implementations offer several advantages of

shared file systems, many are too limited in the scalability

required to effectively manage the I/O demands of parallel

CAE applications. As such, a new storage migration is

underway to replace legacy serial NAS with parallel NAS

architectures and parallel file systems. For example, the use

of legacy file systems such as NFS on serial NAS for CFD

I/O requirements can actually increase overall job time as

more compute cores are added, rather than provide the

desired effect of faster job turn-around through parallelism.

A new class of parallel file system and shared storage

technology has developed that scales I/O in order to extend

overall scalability of CFD simulations on clusters. For most

implementations, entirely new storage architectures were

introduced that combine key advantages of legacy shared

storage systems, yet eliminate the drawbacks that have made

them unsuitable for large distributed cluster deployments.

Parallel NAS can achieve both the high-performance

benefits of direct access to disk, as well as the data-sharing

benefits of files and metadata that HPC clusters require for

CFD scalability. One implementation from Panasas [2]

provides an object-based storage architecture that can

eliminate serial I/O bottlenecks. Object-based storage

enables two primary technological breakthroughs vs.

conventional block-based storage.

First, since an object contains a combination of user data

and metadata attributes, the object architecture is able to

offload I/O directly to the storage device instead of going

through a central file server to deliver parallel I/O capability.

That is, just as a cluster spreads the work evenly across

compute nodes, the object-based storage architecture allows

data to be spread across objects for parallel access directly

from disk. Secondly, since each object has metadata

attributes in addition to user-data, the object can be managed

intelligently within large shared volumes under a single

namespace. This eliminates the need for administrators to

focus on LUN management as those operations are

automatically handled by intelligent storage blades.

Object-based storage architectures provide virtually

unlimited growth in capacity and bandwidth, making them

well-suited for handling CFD run-time I/O operations and

large files for post-processing and data management. With

object-based storage, the cluster has parallel and direct

access to all data spread across the shared storage system.

This means a large volume of data can be accessed in one

simple step by the cluster for computation and visualization

to improve speed in the movement of data between storage

and other tasks in the CFD workflow.

Panasas provides this architecture by offering tuned

hardware components that optimize the parallel file system

software architecture capabilities.

Transient CFD with Parallel I/O
The benefits of parallel I/O for transient CFD were

investigated with a production case of an ANSYS FLUENT

Release 12 [3] aerodynamics model of 111M cells, provided

by an industrial truck vehicle manufacturer. Figure 2

illustrates the I/O schematic of the performance tests that

were conducted, which comprised a case file read, a

Figure 1: Schematic of relative HPC requirements for CFD

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Page 3 of 6

compute solve of 5 time steps with 100 iterations, and a

write of the data file. In a full transient simulation the solve

and write tasks would be repeated to a much larger number

of time steps and iterations, and with roughly the same

amount of computational work for each of these repeatable

tasks.

Details of the CFD model, the cluster and storage

configuration and the results of solver plus write times are

provided in figure 3. (Note: the case-read are one-time tasks

in full simulations and were therefore omitted in the results).

 In this case study, ANSYS FLUENT R12 with parallel

I/O conducted concurrent writes of the local (partition)

solutions directly to the global solution data file on PanFS,

unlike the case for v6.3 that writes the local solutions one-

by-one to a global solution data file. The results demonstrate

that R12 on the Panasas parallel file system demonstrated a

more than 2 times reduction in total time vs. v6.3 on NFS

and the NAS system. The total time improvement due to the

write time advantage for R12 over v6.3, demonstrated up to

39 times higher data transfer rates measured in MB/s.

In the case of 64 cores, the solver advantage of R12 over

v6.3 was only 4% with the total time benefit of 1.8 fold

shown in Figure 3 attributed to the parallel I/O speed-up.

The R12 solver advantage grows to 9% at 128 cores, and

24% at 256 cores, which contribute to the growing benefits

in total time improvements of 2.0 fold on 128 and 2.3 fold

on 256 cores for R12 on PanFS vs. v6.3 on NFS.

It is important to note that the performance of CFD solvers

and numerical operations are not affected by the choice of

file system, which only improves I/O operations. That is, a

CFD solver will perform the same on a given cluster

regardless of whether a parallel or serial NFS file system is

used. The advantage of parallel I/O is best illustrated in a

comparison of the computational profiles of each scheme.

R12 on PanFS keeps the I/O percent of the total job time in

the range of 3% at 64 cores to 8% at 256 cores, whereas v6.3

and NFS spend as much as 50% of the total job time in I/O.

An ANSYS FLUENT license is too valuable to spend a

high percentage of operations in I/O relative to numerical

operations. The high efficiency of a parallel I/O solution

equates to ~2 times more ANSYS FLUENT 12 utilization

that can be achieved within the same license cost structure as

the v6.3 serial I/O solution under similar conditions.

GPU-PARALLEL CFD
 The continual increase in CPU speeds has limits due to

power and thermal constraints with processors now having

multiple cores. To achieve boosts in performance without

increasing clock speeds parallelism must be developed. This

parallelism can come in the form of task parallelism, data

parallelism, or perhaps a combination of the two. Common

methods for implementing parallelism are explicit message-

passing using an MPI library for either distributed or shared

memory systems, and OpenMP for shared memory systems.

A hybrid method is also possible with OpenMP used on

multi-core and multiprocessor nodes and MPI used among

the nodes.

Although parallel applications that use multiple cores are a

well established technology in computational science and

engineering (CSE), a recent trend towards the use of

Graphics Processing Units (GPUs) to accelerate CPU

computations is emerging. In this heterogeneous computing

model the GPU serves as a co-processor to the CPU. The

need for high performance and the parallel nature of CSE

problems has led GPU designers to create current designs

with hundreds of cores. Today GPUs and software

development tools are available for implementing more

general applications that use the GPU not for graphics but

for applications such as CFD and others where computations

are needed to be completed as fast as possible.

Figure 2: Schematic of truck aerodynamic transient CFD

simulation and I/O scheme

Figure 3: Comparison of ANSYS FLUENT R12 using a

PanFS parallel storage file system vs. v6.3 using NFS

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Page 4 of 6

Much work has recently been focused on GPUs as devices

that can be used in general-purpose computing. A GPU can

produce a very high FLOPS (floating-point operations per

second) rate if an algorithm is well-suited for the device.

There have been several studies illustrating the acceleration

of scientific computing codes that is possible by using GPUs

[4 - 6]. Despite the tremendous performance gains possible

with GPUs, relatively few commercial CFD software has yet

to make use of them, and those that have demonstrate

nominal overall gains of 2x over a multi-core CPU. This is

mostly due to current GPU focus on iterative linear equation

solvers rather than complete CFD code implementations.

GPU Considerations for CFD
The GPU was originally designed for graphics and the

majority of this computation involves computing the

individual color for each pixel on a screen. If we think of

each pixel as being like a quadrilateral CFD cell, computing

the pixel colors will be similar to the computations on a

structured mesh. There is a very regular, orderly data access

pattern with neighbors easily computed by simple offsets of

indices. However, the majority of commercial CFD use

some form of an unstructured mesh often with triangles in

2D or tetrahedral in 3D. These meshes lead to an irregular

and somewhat disorderly data access pattern which is not

particularly well suited to the memory system of a GPU.

Through a careful process of analyzing the relation

between cells or elements and vertices, and taking advantage

of the large amount of available processor performance on a

GPU, techniques can be applied that partitions and sorts the

mesh in such a way that the data access pattern becomes

much more regular and orderly. The preprocessing of the

mesh connectivity is a one-time step performed just before

the main computation begins and can require a negligible

amount of compute time while significantly increasing the

performance of the equation solver.

Shared memory is an important feature of the GPU and is

used to avoid redundant global memory access among

threads within a block. The GPU does not automatically

make use of shared memory, and it is up to the software to

explicitly specify how shared memory should be used. Thus,

information must be made available to specify which global

memory access can be shared by multiple threads within a

block. For structured grid based solvers, this information is

known up-front due to the fixed memory access pattern of

such solvers, whereas the memory access pattern of

unstructured grid based solvers is data-dependent.

Algorithm design for optimizing memory access is further

complicated by the number of different memory spaces the

developer must take into consideration. Unlike a CPU the

memory accesses are under the full and manual control of

the developer. There are several memory spaces on the GPU

which in turn is connected to the CPU memory. Different

memory spaces have different scope and access

characteristics: some are read-only, some are optimized for

particular access patterns. Significant gains (or losses) in

performance are possible depending on the choice of

memory usage.

Another issue to be considered for GPU implementation is

that of data transfers across the PCI-Express bus which

bridges the CPU and GPU memory spaces. The PCI-Express

bus has a theoretical maximum bandwidth of 4 or 8 GB/s

depending on whether it is of generation 1 or 2. When this

number is compared to the bandwidth between the GPU’s

on-board GDDR3 memory and the GPU multi-processors

(up to 141.7 GB/s), it becomes clear that an algorithm that

requires a large amount of continuous data transfer between

the CPU and GPU will unlikely achieve good performance.

For a CFD solver, the obvious solution is to limit the size

of the domain that can be calculated so that all of the

necessary data can be stored in the GPU’s main memory.

Using this approach, it is only necessary to perform large

transfers across the PCI-Express bus at the start of the

computation (geometry) and at the end (final flow solution).

High-end NVIDIA GPUs will offer up to 6 GB of main

memory by the end of 2010, sufficient to store all the data

needed by most commercial parallel CFD software, so this

restriction is not a significant limitation.
Over the past 10 years, CFD has become increasingly

reliant on clusters of multiprocessors to enable more detailed

simulations within design time frames. For this reason, the

scalability of a solver across multiple processors can be

equally important as its single-processor performance. A

potential problem with increasing the single-processor

performance by an order of magnitude is then that the multi-

processor performance suffers since the time required to

exchange boundary information remains roughly constant.

When operating in parallel across multiple GPUs, some

boundary information must be transferred across the PCI-

Express bus at the end of each time step. However, with

implementation of a low surface-to-volume ratio in mesh

partitioning, this data transfer need not be a bottle-neck.

A well suited memory access pattern and GPU-parallel

considerations are not sufficient to achieve compelling

performance gains. Many commercial CFD codes use an

iterative method for the equation solver that typically

includes linearization because they are relatively fast and

easy to develop and maintain. Most often these are

conjugate-gradient based methods with pre-conditioning

schemes, and operate on sparse matrices. While these

methods are simpler for development they are not as well

suited to the GPU due to the fact that they access memory

often and conduct a rather low amount of actual computation

with each data access. This metric is typically referred to as

arithmetic intensity and GPUs are particularly well suited to

algorithms with high arithmetic intensity.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Page 5 of 6

The relative performance of processors vs. memory over

the past few decades has extended to more than 3 orders of

magnitude. CPUs have gone to great lengths to bridge the

gap between processor and memory performance by

introducing instruction and data caches, instruction level

parallelism, and so forth. And although GPUs offer a

different approach in terms of hiding memory latency

because of their specialization to inherently parallel

problems, the fact remains that processor performance will

continue to advance at a much greater rate than memory

performance. If we extrapolate out, without any fundamental

changes in memory, processors will become infinitely fast

relative to memory, and performance optimization will

become solely an exercise in optimizing data movement.

Example: AcuSolve Commercial CFD
An example is provided with AcuSolve, a commercial

CFD software based on the finite element method and

developed by ACUSIM [9], with headquarters in Mountain

View, CA. AcuSolve is based on the Galerkin/Least-Squares

(GLS) finite element method. GLS is a higher-order

accurate, yet stable formulation that uses equal order nodal

interpolation for all variables, including pressure. The

method is specifically designed to maintain local and global

conservation of relevant quantities under all operating

conditions and for all unstructured mesh types. AcuSolve

utilizes an efficient iterative solver for fully coupled

pressure/velocity equation systems which like most

commercial CFD solvers has sparse matrix-vector multiply

as its primary operations.

Sparse matrix-vector multiplication (SpMV) is of singular

importance in sparse linear algebra. In contrast to the

uniform regularity of dense linear algebra, sparse operations

encounter a broad spectrum of matrices ranging from the

regular to the highly irregular. Exploiting the tremendous

potential of throughput-oriented GPU processors for sparse

operations requires that a solver expose substantial fine-

grained parallelism and impose sufficient regularity on

execution paths and memory access patterns. Optimizing

SpMV for GPUs is qualitatively different than SpMV on

latency-oriented multi-cores. Whereas a multi-core SpMV

kernel needs to develop 4 or more threads of execution, a

many-core implementation must distribute work among

thousands or tens of thousands of threads. Many-core GPUs

will often demand a high degree of fine-grained parallelism

because, instead of using large sophisticated caches to avoid

memory latency, they use hardware multithreading to hide

the latency of memory accesses.

The linear equation solver in AcuSolve was examined for

GPU acceleration for a relatively simple case of 80,000

elements for an S-Duct geometry. AcuSolve utilizes a hybrid

parallel MPI/OpenMP approach with an iterative GMRES

solver. An execution profile of AcuSolve for the S-Duct case

appears in figure 4 and demonstrates the dominant feature of

SpMV operations as 57% of the total execution time. As

described in a previous section, even a complete port of

SpMV to the GPU will still leave 43% of execution time on

the CPU and limit the overall effective speed-up to ~2x.

Results for the S-Duct case are shown in figure 5 and

feature a comparison between a quad-core Xeon 5500 series

CPU (Nehalem) and a single NVIDIA Tesla C2050 (Fermi).

The speed-up of the 1 core + GPU is ~2x and this improves

to 3.3x with the use of 2 GPUs owing to the distributed

memory parallel implementation in AcuSolve. ACUSIM has

additional GPU development projects underway to improve

the performance of future releases.

SUMMARY

 Increased levels of CFD parallel processing by utilizing

parallel file systems and GPUs in an HPC environment has

enabled much larger and complex CFD simulations to be

addressed in product development workflows. As CFD

simulation requirements continue to grow such as the need

for transients, high-resolution LES, and multidiscipline

Figure 4: Execution profile of AcuSolve and S-Duct case

Figure 5: AcuSolve 1.8 results for multi-GPU NVIDIA

Tesla C2050 results vs. 4 Core Xeon Nehalem CPU

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Page 6 of 6

simulation that are heavy in I/O operations relative to

numerical operations, parallel file systems and parallel NAS

will be essential technologies. The heterogeneous nature of

such high fidelity simulations and their HPC resource usage

will continue to grow the requirements for balanced and

GPU co-processing HPC environments involving large

GPU-based servers within distributed memory clusters. It

was demonstrated that substantial performance gains can be

achieved by using the latest novel HPC technologies. Based

on these trends, we can expect that HPC will be a powerful

tool in the future of scientific computing and advanced CFD

modeling and practice.

REFERENCES

[1] Kodiyalam, S., Kremenetsky M., Posey S., “Balanced

HPC Infrastructure for CFD and Associated

Multidiscipline Simulations of Engineering Systems,”

Proceedings, 7th Asia CFD Conference 2007, Bangalore,

India, November 26 – 30, 2007.

[2] Gibson, G.A., Van Meter, R., “Network Attached

Storage Architecture,” Communications of the ACM,

Vol. 43, No. 11, November 2000.

[3] ANSYS FLUENT: www.fluent.com/software/fluent

[4] Andrew C., Fernando C., Rainald L., John W., 19th

AIAA Computational Fluid Dynamics, June 22-25,San

Antonio, Texas.

[5] Brandvik, T., Pullan, G., “An Accelerated 3D Navier-

Stokes Solver for Flows in Turbomachines,” Proceedings

of GT2009 ASME Turbo Expo 2009: Power for Land,

Sea and Air June 8-12, 2009, Orlando, USA.

[6] Michalakes, J. and Vachharajani, M., “GPU Acceleration

of Numerical Weather Prediction,” Parallel Processing

Letters, 18(4):531-548. 2008.

[7] Palix Technologies, LLC. http://www.palixtech.com.

Advanced Numerical Design Solver ANDSolver White

Paper.

[8] NVIDIA Corporation, NVIDIA CUDA Compute Unified

Device Architecture 2.0 Programming Guide, 2008.

[9] ACUSIM Corporation and AcuSolve: www.acusim.com

