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ABSTRACT 
In this paper we present an intelligent power controller for a vehicle power system that employs multiple power 

sources.  In particular we focus on a vehicle power system architecture that is used in vehicles such as Mine 
Resistant Ambush Protected (MRAP) vehicle. These vehicles are designed to survive IED (Improvised Explosive 
Devices) attacks and ambushes. The power system has the following major components:  a “clean” bus, a “dirty” 
bus, an engine, a hydraulic system and a switch between the clean and the dirty bus.  We developed algorithms for 
intelligent energy management for this type of vehicle power system including DP (Dynamic Programming) 
optimization, DP online control and a machine learning technique that combines neural networks with DP to train 
an intelligent power controller. We present experiments conducted through modeling and simulation using a generic 
commercial software tool and a lab hardware setup. 
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INTRODUCTION 
The automotive industry is facing increased challenges of 

producing affordable vehicles with increased 
electrical/electronic components in vehicles to satisfy 
consumers’ needs. At the same time these vehicles should 
have improved fuel economy and reduced emission without 
sacrificing vehicle performance, safety, and reliability. In 
order to meet these challenges, it is very important to 
optimize the architecture and various devices and components 
of the vehicle system, as well as the energy management 
strategy that is used to efficiently control the energy flow 
through a vehicle system [1, 2].  Our research focuses on the 
later [3 ~ 5]. Vehicle power management has been an active 
research area in the past decade. The traditional power 
management approaches were developed based on 
mathematical models or human expertise based on efficiency 
maps or knowledge derived from simulation data. Those 
traditional approaches have been applied to commercial 
vehicles [6].  

Unlike conventional vehicles, military vehicles have 
characteristics such as multiple power sources, complex 
configuration and operation modes. In addition, most military 
vehicles are heavy weight, and have more functions like 
engaging weapons, turning on sensors, silent watch, etc., 
resulting in bigger load fluctuations which require a more 
advanced power control strategy. Therefore, the power 
control strategies in conventional vehicles do not meet the 
requirements for the power control of military vehicles.  

We are conducting research in Cognitive Intelligent Vehicle 
Power Management, which is a power management approach 
that provides intelligent power control based on machine 
learning, optimization, and human intelligence. This approach 
provides the potential of fuel efficiency and high reliability in 
vehicle operation resulting in higher probability of mission 
success.  

In this paper we present an intelligent power controller 
developed for a vehicle power system that employs multiple 
power sources.  In particular we focus on a vehicle power 
system architecture, Mine Resistant Ambush Protected 
(MRAP) vehicle [7]. These vehicles are designed to survive 
IED (Improvised Explosive Devices) attacks and ambushes.  

The power system has the following major components:  a 
“clean” bus, a “dirty” bus, an engine, a hydraulic system and 
a switch between the clean and the dirty bus.  The clean bus 
may contain loads like electronic equipments that require 
more precisely controlled power source, when compared to 
the dirty load, which may have motor loads, not requiring 
very precise power source control. Both buses have the same 
topology.   

We developed power flow control algorithms that 
intelligently control the battery power in the dirty bus. Three 
algorithms are presented in this paper, Dynamic 
Programming (DP), DP online control, and an intelligent 
controller, which is a machine learning technique that 
combines neural networks with a DP power optimization. The 
experiments have been conducted through modeling and 
simulation using a generic commercial software tool and a lab 
hardware setup to test our power management algorithms. 

 
Based on the power flow shown in Fig. 1, we developed 

three algorithms for intelligent energy management for this 
type of vehicle power system, DP (Dynamic Programming) 
optimization, DP online control and a machine learning 
technique that combines neural networks with DP to train an 
intelligent power controller. We present experiments 
conducted through modeling and simulation using a generic 
commercial software tool and a lab hardware setup.   

This paper is organized as follows. Section 2 presents the 
vehicle power system in a two power-bus model.  Section 3 
introduces the intelligent power management algorithms used 
in the vehicle systems, Section 4 presents our experiment 
results and Section 5 concludes the paper. 
 
A vehicle power system in a two power-bus model 
(MRAP model) 

  In this paper, we focus on the energy optimization in the 
vehicle systems that have the power system shown in Fig. 1.  
The power system has the following major components:  
clean bus, dirty bus, engine, hydraulic system and a switch 
between the clean bus and dirty bus.  This type of power 
system has been proposed in some military armored fighting 
vehicles such as MRAP vehicles that are designed to survive 
IED attacks and ambushes.   

The clean bus may contain loads that are steady but small 
in power consumption when compared to the dirty load, 
which may have inductive loads. Both buses have the same 
topology. The clean bus is connected to the alternator run by 
a hydraulic pump/motor system.  The dirty bus is with the 
alternator directly connected to the engine.  The clean and 
dirty buses do not communicate to each other.  Only when the 
dirty bus battery is running low, the driver can connect the 
dirty bus manually to the clean bus battery by turning on the 
switch, which is meant to help the start of the starter motor 
(which is connected to the dirty bus).   

The clean and the dirty buses are just left on their respective 
alternators for charging.  The alternators have regulators 
which are set at certain values.  Regulators try to maintain the 
voltage, and in the process the batteries can get charged or 
not.  The hydraulic system keeps its speed fixed over the wide 
range of engine speed fluctuation, both from idle to higher 
engine speeds. 
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Fig. 1. Power system in a two power-bus model  

 

 
Fig. 2: Power flow in a two power-bus system. 

 
Intelligent power management in vehicle systems of 
two power buses 

We model the power management problem as an 
optimization process based on the power flow shown in Fig. 
2.  For a given drive cycle, DC(k), k = 1, …, N, the objective 
function for optimizing fuel consumption is defined as 
follows: 
 
                                                                              (1) 

 
where Pe is the engine power, Ps (i.e. Ps1 in Fig. 2) is  the 
battery power in dirty bus, fuel_rate is the rate of fuel 
consumed during the given drive cycle DC(k), and is a 
function of engine speed and engine power requested during 
the drive cycle.  A drive cycle, DC(k) is a vehicle speed 
function at discrete time steps.  For the power system shown 
in Fig. 2, the control variable is the battery power, Ps1, in the 
dirty bus.  Once the optimal points of Ps1 are obtained, 
optimal engine power can be obtained through the power 
flow shown in Fig. 2.     

We developed three algorithms for intelligent power 
management. First, we applied the dynamic programming 
algorithm (DP) to training drive cycles to find the optimal 
values of the control variable, Ps1 , while satisfying all system 
constraints.  The second algorithm is to apply the optimal 
power setting found by DP to a vehicle model to evaluate the 
online performance.  This process is referred as online open 
loop DP. Ideally, the open-loop DP should have the same 
performances as the offline DP.  However, due to the vehicle 
dynamics, the open-loop DP often does not perform as good 
as the offline DP program.  Third, we developed an intelligent 
power control that contains neural networks (NNs) that are 
trained to (1) predict roadway types in real world driving, and 
(2) generalize the optimal power settings generated by DP, so 
the online intelligent controller with these neural networks 
can generate optimal power settings during real time vehicle 
drive cycles.  

The online intelligent controller has two major 
computational steps.   At every time instance during a real 
time drive cycle, the intelligent controller first calls the 
roadway prediction neural network to obtain the current 
roadway type.  It then calls the power neural networks trained 
for the current roadway type to generate the optimal power 
for Ps1.   

In order to evaluate the intelligent controller performances 
for a MRAP vehicle, we constructed a special drive cycle that 
is close to its operational environments.  The drive cycle 
consists of three types of roadways, typical for heavy trucks, 
WVU_City, WVU_Suburban and WVU_Interstate (West 
Virginia University Cycles) and 70% of it is in the silent 
mode, i.e. speed is zero.  The entire cycle, illustrated in Fig. 
3, has 2000 seconds.   A neural network, NNrt, is trained to 
predict the current roadway types based on the vehicle’s 
recent speed.  Dynamic Programming is applied to each of 
the three roadway types to generate optimal power settings. 
Three power neural networks, one for each roadway type, 
were trained to generate optimal battery power settings based 
on the DP output.  

 
Fig. 3. A test drive cycle 

  
Experiments 

Based on the specification of the vehicle model shown in 
Fig. 1, we built a simulation program to study energy 
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optimization in multi-power vehicle systems.  We also 
implemented the power system of MRAP in hardware in a lab 
setting to demonstrate the effectiveness of the proposed 
energy management algorithms.    

For simulation we build a full scale system model using a 
tool which is a high fidelity simulation software developed by 
Argonne National Laboratory with contributions from various 
automotive manufacturers. We developed the vehicle model 
by constructing the power components with the same sizes as 
in the specifications. Fig. 4 illustrated the full simulation 
model.  We applied all three algorithms, the DP offline, open 
loop DP, and the intelligent controller to the simulated 
vehicle model for power control in the test drive cycle, and 
the performances are shown in Table 1.  We can see the 
intelligent controller online control obtained really good 
performance, which is 5% saving compared to benchmark 
simulation.  

The hardware MRAP power system, illustrated in Fig. 5, 
was built at the academia authors’ Power Electronics Lab.  It 
is a scaled-down version and is designed to demonstrate the 
effectiveness of the proposed intelligent controller.  The 
system is constructed based on an electric machine 
subsystem, and a data control and acquiring system.  In this 
hardware implementation, we used a motor to track the speed 
profile of engine, replaced the alternator with the DC field 

excited generator, and use the Lithium-ion battery module.  
The control algorithms implemented here are based on a 
generic software control algorithm, the offline DP, and the 
intelligent controller algorithm.    

The components of the dirty bus branch are the dc power 
supply, power inverter, induction motor, field controlled dc 
generator, batteries, electronic load, and sensors. In the clean 
bus branch, the subsystem contains same components as the 
dirty bus branch except for the replacement of hydraulic 
system is the Permanent Magnetic DC Motor. All the data 
acquisition and control algorithm implementation are realized 
using the lab bench real time environment. 

In our experiments, the engine speed is strictly controlled 
according to the drive cycle demand, and based on the 
vehicle's default control algorithm and DP algorithm. 
Different experiments were carried out to validate our control 
algorithm. And all the data and control algorithm are realized 
through the lab bench real time environment. 

The fuel consumptions of these controllers are shown in 
Table 2.  The online intelligent controller was able to save 
3.24% fuels, which is close to the upper bound of energy 
saving, 5.14%, which was generated by offline DP 
optimization program. 

  

 
Fig. 4 MRAP Power System using commercial software tool. 
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Table 1. Performances of DP and Intelligent Power Controller (IPC, developed by the authors) 

controller  Fuel 
Consumed 
(kg)  

Fuel w/ 
SOC 
correction  

Savings 
(%)  

Generic 
simulation 
tool based 
controller  

1.6920  1.6920  baseline 

DP offline 1.5614  1.5614  7.72  
Open-loop 

DP  
1.6030  1.6100  4.85  

Online IPC  1.5961  1.6074 5.0 

 
Table 2. Fuel Consumption Comparison in a lab hardware setup 

 

Algorithm Fuel 
Consumption Saving 

Generic software tool 
based control algorithm 3.5336kg baseline 

DP offline Control 3.352kg 5.14% 

Online IPC control 3.419kg 3.24% 
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Conclusions 

Simulation and scaled down models are excellent tools to 
develop and demonstrate the functionality of a vehicular 
power management system controller.  This has been clearly 
shown through the work reported here.  In particular, the 
work presented here showed the functionality of an 
intelligent power controller for a two power-bus system in 
vehicle systems.  Based on the simulations, and 
experimental results implemented in the lab setup, it can be 
concluded that the intelligent controller developed by the 
authors can improve fuel consumption through online 
vehicular power management in a real time environment. In 
the simulated vehicular system, this controller saved about 
5% fuel.  In a lab setup environment, the controller saved 
about 3.2% fuel.  The tools developed by the authors and 
reported in this paper can be used to save significant cost 
and development efforts by the manufacturers prior to any 
production level activities involving such vehicular systems. 
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