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ABSTRACT

This paper is focused on the dynamic formulation of mechanical joints using different
approaches that lead to different models with different numbers of degrees of freedom. Some of
these formulations allow for capturing the joint deformations using discrete elastic model while
the others are continuum-based and capture joint deformation modes that cannot be captured
using the discrete elastic joint models. Specifically, three types of joint formulations are
considered in this investigation; the ideal, compliant discrete element, and compliant continuum-
based joint models. The ideal joint formulation, which does not allow for deformation degrees of
freedom in the case of rigid body or small deformation analysis, requires introducing a set of
algebraic constraint equations that can be handled in computational multibody system (MBS)
algorithms using two fundamentally different approaches: constrained dynamics approach and
penalty method. When the constrained dynamics approach is used the constraint equations must
be satisfied at the position, velocity, and acceleration levels. The penalty method, on the other
hand, cannot ensure that the algebraic equations are satisfied at the acceleration level. In the
compliant discrete element joint formulation, no constraint conditions are used; instead the
connectivity conditions between bodies are enforced using forces that can be defined in their
most general form in MBS algorithms using bushing elements that allow for the definition of
general nonlinear forces and moments. The new compliant continuum-based joint formulation,
which is based on the finite element (FE) absolute nodal coordinate formulation (ANCF), has
several advantages: (1) It captures modes of joint deformations that cannot be captured using
the compliant discrete joint models; (2) It leads to linear connectivity conditions, thereby
allowing for the elimination of the dependent variables at a preprocessing stage; (3) It leads to a
constant inertia matrix in the case of chain like structure; and (4) It automatically captures the
deformation of the bodies using distributed inertia and elasticity. The formulations of these three
different joint models are compared in order to shed light on the fundamental differences
between them. Numerical results of a detailed tracked vehicle model are presented in order to
demonstrate the implementation of some of the formulations discussed in this investigation.
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PROBLEM DEFINITION

Accurate formulation of mechanical joints is
necessary in the computer simulation of
multibody system (MBS) that represent
many technological and industrial
applications. An example of these MBS
applications, in which accurate modeling of
joint compliance is necessary, is the tracked
vehicle shown in figure 1. The links of the
track chains of this vehicle are connected by
pin joints that can be subjected to significant
stresses during the vehicle functional
operations. Nonetheless, there are different
joint formulations that can lead to different
dynamic models which have different
numbers of degrees of freedom. This study
investigates the use of three different
methods for formulating mechanical joints
in MBS applications. These three methods
are the ideal, the compliant discrete element,
and the compliant continuum-based joint
formulations. These three different methods
are described below.

Figure 1: M113 tracked vehicle model in
SAMS/2000

Ideal Joint Formulation

The ideal joint formulation is based on a set
of algebraic equations that do not account
for the joint flexibility; this is regardless of
whether or not the body is flexible. The
algebraic joint equations are expressed in
terms of the coordinates of the two bodies
connected by the joint. These algebraic
equations are considered as constraint
equations which can be enforced using two
fundamentally different methods; the
constrained dynamics approach and the
penalty method. In the constrained dynamics
approach, the technique of Lagrange
multipliers or a recursive method is used. In
this case, the joint constraint equations must
be satisfied at the position, velocity, and
acceleration levels. The number of degrees
of freedom of the model in this case is equal
to the number of the system coordinates
minus the number of the algebraic joint
constraint equations. In the penalty method,
on the other hand, the number of degrees of
freedom of the model is not affected by the
number of joint constraint equations. These
joint algebraic equations are enforced using
high stiffness penalty coefficients that
ensure that the algebraic constraint
equations are satisfied at the position level.
The penalty method does not ensure that the
constraint equations are satisfied at the
acceleration level.
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Compliant Discrete Element Joint
Formulation

In this approach, no algebraic equations are
used to describe the joints between bodies in
the system. The connectivity between bodies
is described using force elements that have
forms defined by the user of the MBS code.
MBS system codes have bushing elements
that can be used to define general linear or
nonlinear force and moment expressions.
The stiffness and damping coefficients in the
force and moment expressions can be
selected by the user. The busing elements
can be used to model the joint compliance in
the case of rigid and flexible body dynamics.
It is important, however, to point out that
adding bushing elements has no effect on
the number of degrees of freedom of the
model. Unlike the penalty method, the use
of bushing element does not require the
formulation of algebraic joint equations.
Bushing elements allow for systematically
introducing three force components and
three moment components.

Compliant Continuum-Based Joint
Formulation

The new finite element (FE) absolute nodal
coordinate formulation (ANCF) allows for
systematically developing new joint
formulations that capture modes of
deformation that cannot be captured using
the discrete joint models. It also allows for
modeling body flexibility using new FE
meshes that have constant inertia and linear
connectivity conditions. Specifically, the
compliant ANCF continuum-based joint
formulation has the following advantages:

1. ANCF finite elements allow for
developing new joint formulations that

capture deformation modes that cannot be
captured using compliant discrete joint
formulations. The use of the ANCF
gradient coordinates allows for
developing different joint models with
different numbers of degrees of freedom
that allow for different strain modes.

2. The use of the ANCF gradient coordinates
allows for developing linear joint
constraint equations. These linear
algebraic equations can be used to
eliminate dependent variables at a
preprocessing stage, thereby significantly
reducing the model dimensionality.

3. ANCF finite elements can also be used to
model the body deformation in addition
to the joint compliance. Distributed
inertia and elasticity are used for both
body flexibility and joint compliance.

4. ANCF finite elements lead to new types
of FE meshes that have constant inertia, a
feature that can be exploited to develop a
sparse matrix structure of the MBS
dynamic equations.

It is the objective of this investigation to
provide a comprehensive study of different
joint formulations and demonstrate the
fundamental differences between them when
applied to the analysis of complex tracked
vehicle system models. Simulation models
of the M113 tracked vehicle will be used to
compare the numerical results obtained
using the joint formulations discussed in this
paper. These results are obtained using the
general purpose MBS computer code
SAMS/2000 [17] which allows for
systematically modeling MBS applications
using the augmented formulation, penalty
method, bushing elements, and ANCF finite
elements. In the augmented formulation, the
technique of Lagrange multipliers is used.
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The computational algorithm used in
SAMS/2000 ensures that the algebraic
constraint equations are satisfied at the
position, velocity, and acceleration levels.

TRACKED VEHICLES:
BACKGROUND

High mobility tracked vehicle such as
military battle tanks and armored personal
carriers are designed for the mobility over
rough and off-road terrains. Investigations
on the dynamic analysis of such tracked
vehicles shown in figure 1 have been limited
because of the complexity of the forces
resulting from interaction between the
vehicle components. These forces are
impulsive in nature, and their dynamic
modeling requires sophisticated
computational capabilities. Several two
dimensional models for the analysis of
tracked vehicle have been developed.
Galitsis [3] demonstrated that the dynamic
track tension and suspension loads in high
speed tracked vehicles developed by
analytical methods are useful in evaluating
the dynamic characteristics of the tracked
vehicle components. Bando et al. [1]
outlined a procedure for the design and
analysis of rubber tracked small-size
bulldozers, and presented a computer
simulation which was used in the evaluation
of the vehicle performance. Both steel and
continuous rubber tracks are modeled by
discretizing them into several rigid bodies
connected by compliant elements.  The
simulation results indicate that the vehicle
has favorable characteristics, such as less
damage to the road surface, and reduced
vibration and noise. Murray and Canfield [7]
used general purpose multibody computer
codes to model a simple track link and
sprocket system. The behavior of the

interaction between the track link and the
sprocket was illustrated graphically and it
was found that the computer time can be
significantly reduced by using
supercomputers. Nakanishi et al. [8]
developed a two dimensional contact force
model for planar analysis of multibody
tracked vehicle systems. Modal parameters
(modal mass, modal stiffness, modal
damping, and mode shapes), which are
determined experimentally, are employed to
simulate the nonlinear dynamic behavior of
a multibody tracked vehicle which consists
of interconnected rigid and flexible
components. The equations of motion of the
vehicle are formulated in terms of a set of
modal and reference generalized
coordinates, and the theoretical basis for
extracting the component modal parameters
of the chassis from the modal parameters of
the assembled vehicle is described.

A number of approaches have been
proposed in the literature for developing
three-dimensional MBS models. Choi et al.
[2] developed the nonlinear dynamic
equations of motion of the three-
dimensional multibody tracked vehicle
systems, taking into consideration the
degrees of freedom of the track chains. To
avoid the solution of a system of differential
and algebraic equations, the recursive
kinematic equations of the vehicle are
expressed in terms of the independent joint
coordinates. In order to take advantage of
sparse matrix algorithms, the independent
differential equations of the three-
dimensional tracked vehicles are obtained
using the velocity transformation method.
Three-dimensional nonlinear contact force
models that describe the interaction between
the track links and the vehicle components
such as the rollers, sprockets, and idlers as
well as the interaction between the track
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links and the ground are developed and used
to define the generalized contact forces
associated with the vehicle generalized
coordinates. A computer simulation of a
tracked vehicle in which the track is
assumed to consist of track links connected
by a single degree of freedom revolute joint
is presented in order to demonstrate the use
of the formulations presented in their study.
Ryu et al. [13] developed compliant track
link models and investigated the use of these
models in the dynamic analysis of high-
speed, high-mobility tracked vehicles. The
characteristics of the compliant elements
used in this investigation to describe the
track joints are measured experimentally. A
numerical integration method having a
relatively large stability region is employed
in order to maintain the solution accuracy,
and a variable step size integration algorithm
is used in order to improve the efficiency.
The dimensionality problem is solved by
decoupling the equations of motion of the
chassis and track subsystems. Recursive
methods are used to obtain a minimum set of
equations for the chassis subsystem. Several
simulations scenarios including an
accelerated motion, high-speed motion,
braking, and turning motion of the high-
mobility vehicle are tested in order to
demonstrate the effectiveness and validity of
the methods proposed. Ozaki and Shabana
[9-10] evaluated the performance of
different formulations using a tracked
vehicle model that is subjected to impulsive
forces. They developed models for joint
constraints and the impulsive contact forces
that result from the interaction between the
track chains and the vehicle components as
well as the interaction between these chains
and the ground. The nonlinear contact force
models used in their numerical study were
developed, and the formulations of the
generalized forces associated with the

generalized coordinates used in each of the
formulations were presented. Ryu et al [14]
investigated the nonlinear dynamic
modeling methods for the virtual design of
tracked vehicles by using MBS dynamic
simulation techniques. The results include
high oscillatory signals resulting from the
impulsive contact forces and the use of stiff
compliant elements to represent the joints
between the track links. Each track link is
modeled as a body which has six degrees of
freedom, and two compliant bushing
elements are used to connect track links.
Efficient contact search and kinematics
algorithms in the context of the compliance
contact model are developed to detect the
interactions between track links, rollers,
sprockets, and ground for the sake of speedy
and robust solutions. Rubinstein and Hitron
[12] developed a three-dimensional multi-
body simulation model for simulating the
dynamic behavior of tracked off-road
vehicles using the LMS-DADS simulation
program. Each track link is considered a
rigid body and is connected to its
neighboring track link via a revolute joint.
The road-wheel track-link interaction is
described using three-dimensional contact
force elements, and the track-link terrain
interaction is modeled using a pressure-
sinkage relationship.

SCOPE AND OBJECTIVES OF THIS
INVESTIGATION

While some of the formulations used in the
analysis of tracked vehicles require the use
of MBS algorithms that are designed for
solving systems of differential/algebraic
equations arising from kinematic joint
constraints, other formulations do not
require the use of such algorithms but use
penalty forces or complaint elements to



Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Page 6 of 22

CHAIN DYNAMIC FORMULATIONS FOR MULTIBODY SYSTEM TRACKED VEHICLES

UNCLASSIFIED

model the chain dynamics. The track links
are subjected to high contact forces that
produce high stress levels, which often
cause damage to the track links during the
functional operation of the vehicle. The
objective of this paper is to present and
compare between different joint
formulations that can be used in the dynamic
modeling of complex tracked vehicle
systems. Better understanding of these
formulations can lead to more accurate, and
possibly faster, computer simulations that
can be the basis for more reliable
performance evaluation of the vehicles. The
tracked vehicles considered in this
investigation are assumed to consist of
interconnected bodies that can have arbitrary
displacements. In the first chain formulation,
referred to in this paper as the ideal joint
chain model, kinematic joints between the
track links are described using nonlinear
constraint equations that lead to significant
reduction in the number of vehicle degrees
of freedom. This joint model does not
require assuming stiffness and damping for
the track link connectivity, and therefore,
does not allow for flexibility between the
tack links; it requires, however, the solution
of a system of differential and algebraic
equations if redundant coordinate
formulations are used. Redundant coordinate
algorithms based on the Lagrangian
augmented form of the equations of motion
require the use of Newton-Raphson method
in order to ensure that the constraint
equations are satisfied at the position level.
Recursive and joint variables methods can
also be used instead of redundant coordinate
formulations in order to avoid Newton-
Raphson algorithm. Another approach that
can be used to enforce the constraint
equations at the position level is the penalty
method. This model does not lead to

reduction in the number of the system
degrees of freedom.

Two other approaches that capture the joint
compliance will also be considered in this
study. The first is the compliant discrete
element method that employs MBS bushing
elements to define the connectivity between
the track links. This approach as in the case
of the penalty method requires assuming
stiffness and damping coefficients at the
connection, and therefore, it allows for the
flexibility between the track links. In the
second, the compliant continuum-based joint
formulation that employs ANCF finite
elements is used. This approach, which
captures new joint deformation modes, leads
to linear connectivity conditions which can
be applied at a preprocessing stage allowing
for an efficient elimination of the dependent
variables, this leads to a constant inertia
matrix and zero Coriolis and centrifugal
forces [18]. This approach leads to new
types of FE chain meshes that have desirable
characteristics.

ALGEBRAIC CONSTRAINT
EQUATIONS

In the methods of constrained dynamics,
there are two approaches that are often used
to model ideal mechanical joints that do not
account for the effect of elasticity and
damping. These two methods are the
augmented formulation that employs the
technique of Lagrange multipliers or the
recursive formulation which allows for
systematic elimination of the dependent
variables using the algebraic equations.
These two formulations are briefly discussed
in this section.
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Augmented Formulation

In the augmented formulation, the constraint
forces explicitly appear in the dynamic
equations which are expressed in terms of
redundant coordinates. The constraint
relationships are used with the differential
equations of motion to solve for the
unknown accelerations and constraint
forces. While this approach leads to a sparse
matrix structure, it has the drawback of
increasing the problem dimensionality and it
requires more sophisticated numerical
algorithms to solve the resulting system of
differential and algebraic equations (DAE).
Using the generalized coordinates, the
equations of motion of a body i can be
written as [11, 15]

ii
c

i
e

ii
QQQqM  (1)

where iM is the mass matrix of the body,
Ti iT iT   q R θ is the vector of the

accelerations of the body with iR defining
the body translation and iθ defining the
body orientation, i

eQ is the vector of

external forces, i
cQ is the vector of the

constraint forces which can be written in
terms of Lagrange multipliers λ as

i

i T
c   q

Q C λ , iq
C is the constraint Jacobian

matrix associated with the coordinates of
body i , and i

Q is the vector of the inertia

forces that absorb terms that are quadratic in
the velocities. The constraint equations at
the acceleration level can be written as

i

i i
d

q
C q Q , where i

dQ is a vector that

absorbs first derivatives of the coordinates.
Using equation (1) with the constraint
equations at the acceleration level, one
obtains

T
e

d

    
    

      

q

q

Q QM C q

QC 0 λ


(2)

The matrices and vectors that appear in this
equation are the system matrices and vectors
that are obtained by assembling the body
matrices and vectors. The preceding matrix
equation, which ensures that the constraint
equations are satisfied at the acceleration
level, can be solved for the accelerations and
Lagrange multipliers. In order to ensure that
the algebraic kinematic constraint equations
are satisfied at the position and velocity
levels, the independent accelerations iq are

identified and integrated forward in time in
order to determine the independent
velocities iq and independent coordinates

iq .  Knowing the independent coordinates

from the numerical integration, the
dependent coordinates dq can be

determined from the nonlinear constraint
equations using an iterative Newton-
Raphson algorithm that requires the solution
of the system

d d  qC q C , where dq is

the vector of Newton differences, and
dqC

is the constraint Jacobian matrix associated
with the dependent coordinates. Knowing
the system coordinates and the independent
velocities, the dependent velocities dq can

be determined by solving a linear system of
algebraic equations that represents the
constraint equations at the velocity level.
This linear system of equations in the
velocities can be written as

d id i t  q qC q C q C  ; where
iqC is the

constraint Jacobian matrix associated with
the independent coordinates, and

t t  C C is the partial derivative of the

constraint functions with respect to time.
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Lagrange multipliers, on the other hand, can
be used to determine the constraint forces.
For a given joint k , the generalized
constraint forces acting on body i ,
connected by this joint, can be obtained
from the equation

    i

TTi iT iT
c k k k kk

     q
Q C λ F T (3)

where i
kF and i

kT are the generalized joint

forces associated, respectively, with the
translation and orientation coordinates of
body i . Using the results of equation (3), the
reaction forces at the joint definition point
can be determined using the concept of the
equipollent systems of forces.

Recursive Formulation

Figure 2: Revolute joint

Another alternate approach for formulating
the equations of motion of constrained
mechanical systems is the recursive method,
wherein the equations of motion are
formulated in terms of the joint degrees of
freedom. This formulation leads to a

minimum set of differential equations from
which the workless constraint forces are
automatically eliminated [11, 17]. The
numerical procedure used in solving these
differential equations is much simpler than
the procedure used in the solution of the
mixed system of differential and algebraic
equations resulting from the use of the
augmented formulation. In the recursive
formulation, the equations of motion are
formulated in terms of joint degrees of
freedom. In this formulation, the multibody
system is assumed to consist of subsystems,
as in the case of the track chains shown in
figure 2 where body j corresponding to

body 1i . The absolute coordinates and
velocities of an arbitrary body i in a
subsystem are expressed in terms of the
independent joint variables as well as the
absolute coordinates and velocities of body

1i . If body i is connected to body 1i
through a revolute joint, which is the case in
this subsystem, the relative rotation is the
only degree of freedom represented between
the bodies. The connectivity between bodies
i and body 1i can then be described using
the kinematic relationships

1 1 1

1 , 1

i i i i i i
P P

i i i i

  

 

    


  

R A u R A u 0

ω ω ω
(4)

where iR is the global position vector of the
origin of body i; iA is the transformation
matrix that defines the body orientation and
can be expressed in terms of Euler
parameters; i

Pu and 1i
P
u are the local

position vectors of point P defined in the
coordinate systems of body i and i-1,
respectively, iω and 1iω are, respectively,
the absolute angular velocity vectors of
bodies i and 1i , and , 1i iω is the angular
velocity vector of body i with respect to
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body i-1 which can be defined as
, 1 1i i i i ω v , with 1 1 1i i i  v A v where
1iv is a unit vector along the axis of

rotation defined in the coordinate system of
body 1i , and i is the angle of relative
rotation. By differentiating the first equation
in equation (4) twice and the second once
with respect to time, one obtains

iiiiiii

i
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ii
P

iii

i
P

ii
P

iii
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
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



vωvαα
uαuωωR

uαuωωR
(5)

In this equation, kα is the absolute angular
acceleration vector of body k . Using the
kinematic equations obtained in this section,
one can systematically eliminate the
dependent variables in order to obtain a
number of differential equations of motion
equal to the number of the system degrees of
freedom. Using this approach, one obtains a
dense inertia matrix in a system of dynamic
equations that does not have constraint
forces. A second, alternative approach is to
use the kinematic equations developed in
this section to determine all the system
absolute coordinates and velocities. One can
then construct equation (2), which can be
solved for the accelerations and Lagrange
multipliers. Using the absolute acceleration
relationships of equation (5), one can
determine the relative joint accelerations.
The joint accelerations can be integrated
forward in time in order to determine the
joint coordinates and velocities.

GENERALIZED FORCES

In defining the joint forces between the track
links, it is important to understand the
relationship and differences between the

generalized and the Cartesian moments [11,
17]. This is important in interpreting the
reaction forces of the ideal joints and also
important in the implementation of the
penalty method and bushing elements. Let

iF be a force vector that acts at a point iP
on a rigid body i. If this force vector is
assumed to be defined in the global
coordinate system, then the virtual work of
this force vector can be written as

Ti i i
e PW  F r , where i

Pr can be found

using the virtual change in the position
vector of an arbitrary point on rigid body i
as

i
i i i i
P P i






 
     

 

R
r I A u G

θ
 (6)

In this equation, iA is the transformation
matrix that defines the body orientation, i

Pu
~

is the skew symmetric matrix associated
with the vector i

Pu that defines the local

coordinates of the point iP , and
iG is the

matrix that relates the angular velocity

vector
iω defined in the body coordinate

system to the time derivatives of the

orientation coordinates, that is
i i iω G θ .

Note that since
Tii

P
ii

P AuAu
~~  , equation (6)

can be written as i i i i i
P P   r R u G θ .

Using this equation in the virtual work
expression, one obtains

T Ti i i i i i i
e PW   F R F u G θ , which can be

written as

T Ti i i i i
e RW    F R F θ (7)

where i i
R F F , and

T Ti i i i
P  F G u F . These

equations imply that a force that acts at an
arbitrary point on the rigid body i is
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equipollent to another system defined at the
reference point that consists of the same
force and a set of generalized forces, defined

by
T Ti i i i

P  F G u F associated with the

orientation coordinates of the body [11, 17].

Since i
Pu is a skew-symmetric matrix, it

follows that
Ti i

P P u u  . Using this identity,

one can show that the generalized moment

can be written as ( )
Ti i i i

P  F G u F , where
i i i
a P M u F is the Cartesian moment

resulting from the application of the force
iF , and iG is the matrix that relates the

angular velocity vector iω defined in the
global coordinate system to the time
derivatives of the orientation coordinates,
that is i i iω G θ . It follows that the
relationship between the generalized and

Cartesian moment is i
a

ii T

MGF  . If the

components of the moment vector are
defined in the body coordinate system, one

has i
a

ii T

MGF  , where i
a

ii
a

T

MAM  .

Relationships developed in this section will
be used in the formulation of the joint forces
in the case of the penalty method. These
relationships will also be used in the
computer implementation of the bushing
element in general MBS algorithms.

JOINT FORMULATIONS

In this paper, four different joint models are
considered; two models are based on
algebraic equations that require the use of
the methods of constrained dynamics or the
penalty method. In the case of constrained
dynamics, an alternative to the use of
Lagrange multipliers is the use of the

recursive methods, as previously discussed.
When Lagrange multiplier technique or the
recursive methods are used the constraint
equations must be satisfied at the position,
velocity, and acceleration levels. The
penalty method, on the other hand, cannot
satisfy the algebraic constraint equations at
the acceleration level.

Constraint Equations

The revolute (pin) joint is used in this
section as an example to demonstrate the
formulation of the algebraic constraint
equations. This joint has been used in the
literature in the modeling of the track chains.
As shown in figure 2, the track chain can be
assumed to consist of links connected to
each other by a pin joint that allows for the
relative rotation between them. In general
MBS algorithms, the nonlinear algebraic
equations that define the pin joint are
expressed in terms of the absolute
coordinates of the two bodies i and j
connected by the joint. The five algebraic
constraint equations that eliminate five
degrees of freedom can be written in terms
of the absolute Cartesian coordinates of the
two bodies as [17]

  0rrvrvvvvvqqC 
T

ij
P

ij
P

iij
P

ijijiji k
TTTT

2121),(

(8)

where vi and vj are two vectors defined
along the joint axis on bodies i and j ,

respectively; 1 2, ,i i iv v v form an orthogonal

triad defined on body i ; k is a constant

[17]; and

ij i j i i i j j j
P P P P P     r r r R A u R A u (9)
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In this equation, iA and jA are the
transformation matrices that define the
orientation of bodies i and j , respectively,
and i

Pu and j
Pu are the local position vectors

of points iP and jP with respect to bodies
i and j , respectively. Points iP and jP are
defined on the axis of the pin joint on bodies
i and j , respectively. One can show that
the Jacobian matrix of the pin joint
constraints is defined as

1 1

2 2

1 1 1

2 2 2

2 2

i j

jT i iT j

jT i iT j

ijT i iT i iT j
P P P
ijT i iT i iT j
P P P

ijT i ijT j
P P P P

 
 
 

         
  

  

q q q

v H v H

v H v H
C C C r H v H v H

r H v H v H

r H r H

(10)

where iq
C and jq

C are the constraint

Jacobian matrices associated with the
coordinates of bodies i and j , respectively;
and other vectors and matrices that appear in
the preceding equation are

]~[ ii
P

ii
P

T

GuAIH  , ]
~

[ jj
P

jj
P

T

GuAIH  ,

)( 1
1

1
ii

ii

i
i vA

qq
v

H






 , )( 2

2
2

ii
ii

i
i vA

qq
v

H






 ,

 
j

j j j
j j

 
 
 

v
H A v

q q
.

Another alternate approach for formulating
the revolute joint constraints is to consider it
as a special case of the spherical joint in
which the relative rotation between the two
bodies is allowed only along the joint axis.
If point P is the joint definition point, and

iv and jv are two vectors defined along the
joint axis on bodies i and j , respectively,

the constraint equations of the revolute joint
can be written as

  1 2,
Ti j ij iT j iT j

P   C q q r v v v v 0 . The

last two equations in this equation guarantee
that the two vectors iv and jv remain
parallel, thereby eliminating the freedom of
the relative rotation between the two bodies
in two perpendicular directions.

Penalty Method

The constraint equations that describe the
connectivity between the track links can be
enforced using the penalty approach. In this
case, these algebraic equations are not
satisfied at the acceleration level. The
penalty method does not lead to elimination
of degrees of freedom, and therefore, it is
conceptually different from the case of
Lagrange multiplier technique or the
recursive approach. In order to demonstrate
the penalty approach, the violations in the
constraint equations of a revolute joint k
can be written as

1 2

Tij iT j iT j
k P   d r v v v v (11)

Using this violation kd , a restoring force

vector can then be defined as

k k k kkk c f d d , where kk , and kc are

assumed penalty stiffness and damping
coefficients, respectively, and kd is the time

derivative of the violation vector kd . The

virtual work of this restoring force kf can

then be written as ij T
k k kW  f d , which

can be written as



Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Page 12 of 22

CHAIN DYNAMIC FORMULATIONS FOR MULTIBODY SYSTEM TRACKED VEHICLES

UNCLASSIFIED

)()( 2211
jijiij

P
T
B

ij
k

TT

FFW vvvvrF  
(12)

where
ij i i i i j j j j
p B B       r R u G θ R u G θ  ,

ij ij
B k p k pk c F r r , 1 1 1( )iT j jT i iT j   v v v v v v ,

2 2 2( )i T j jT i i T j   v v v v v v ,

   1

1 1

iT j

iT j
k k

d
F k c

dt
 

v v
v v , and

   2

2 2

iT j

iT j
k k

d
F k c

dt
 

v v
v v .

Equation (12) can be used to define a set of
generalized forces acting on bodies i and j
that maintain the connectivity between the
two bodies as

jjjj
R

iiii
R

ij
k

TTTT

W   QRQQRQ 
(13)

Which can be rewritten in a compact form as
i T i j T j
B BW   Q q Q q , where

iq and
jq

are the generalized coordinates of bodies i

and j , and

1 2

1 2

i
Bi R

B iT i T iT i iT ii
B B

j
Bj R

B jT j T jT i jT ij
B B





   
         


              

FQ
Q

G u F G M G MQ

FQ
Q

G u F G M G MQ





(14)

where 1 1 1
i i jF M v v , 1 1 1

j i jFM v v ,

2 1 2
i i jF M v v , and 2 1 2

j i jFM v v .

Equation (14) defines the generalized forces
associated with the absolute Cartesian
coordinates due to the revolute joint
connection between bodies i and j . With a

proper selection of the penalty coefficients,
these forces ensure that the constraint
equations are satisfied at the position level.

COMPLIANT DISCRETE ELEMENT
JOINT FORMULATION

Figure 3: Bushing element

The compliant discrete element joint
formulation allows for introducing joint
deformations. In this approach, no algebraic
equations are enforced. In most MBS
computer codes, the compliant discrete
element joint method can be applied using
the standard MBS bushing element that
allows for introducing three force and three
moment components that can be linear or
nonlinear functions of the body coordinates.
As shown in figure 3, the position vectors

j
P1

u and j
P2

u of two points, jP1 and jP2 on

body j, can be used to define one axis of the
coordinate system of the bushing element as

 
1 2 1 2

j j j j j
p p p p  n u u u u , where jn is

one of the bushing axes defined in the body
j coordinate system. This axis can then be
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defined in the global coordinate system as
jjj nAn  , where jA is the transformation

matrix that defines the orientation of the
coordinate system of body j in the global
system. Using this axis, one can define the
directional properties of the bushing element
with the other two axes of the bushing
coordinate system being defined using the

transformation matrix 1 2
bj j j j   A t t n

where j
1t and j

2t are the two unit vectors
that complete the three orthogonal axes of
the bushing element coordinate system.
Assuming that body j is a rigid body, the
bushing coordinate system can be defined
with respect to the global coordinate system
as bjjbj AAA  . Choosing points iP and

jP1 to initially coincide; one can define the
bushing deformation and rate of deformation
vectors in the bushing coordinate system as

ijbjbij T

rAδ  , and ijbjbij T

rAδ   ,
respectively, where

1

ij i j
P P r r r is the

position vector of point 1
jP with respect to

point iP .

The rotational deformation of the bushing
element can be obtained using the
transformation matrix that defines the
orientation of the bushing coordinate system
on body i with respect to the bushing
coordinate system on body j . This matrix is

defined as bibjbij T

AAA  , where bjA is the
orientation matrix of the bushing coordinate
system on body j , while biA is the
orientation matrix of the bushing coordinate
system with respect to the coordinate system
of body i that is defined as biibi AAA  .
Assuming that the relative rotations between
bodies i and j are small, the relative

rotation matrix, bijA can be used to extract

three relative rotations defined in the
bushing coordinate system,

Tbij bij bij bij
x y zθ θ θ   θ The relative

angular velocity between the two bodies
defined in the bushing coordinate system

can also be written as ( )
Tbij bj i j ω A ω ω ,

where iω and jω are the absolute angular
velocity vectors of bodies i and j ,
respectively, defined in the global
coordinate system. The bushing stiffness and
damping coefficients are often determined
using experimental testing, and these
coefficients are defined generally in the
bushing coordinate system. Let rK and rC
be the translational stiffness and damping
matrices, respectively, defined with respect
to the bushing coordinate system; and
assume that the rotational stiffness and
damping matrices are K and C ,

respectively. In terms of translational and
rotational stiffness and damping matrices,
the force vector defined in the bushing
coordinate system can be written as












































bij

bij
r

bij

bij
r

b

b
R

ω
δ

C0

0C

θ
δ

K0

0K

M

F 



(15)

This force vector can then be defined in the
global coordinate system, and the results can
be used to define the generalized bushing
forces and moments acting on the two
bodies as previously described in this paper.
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COMPLIANT CONTINUUM-BASED
JOINT FORMULATION

Figure 4: ANCF beam element coordinates

The compliant continuum-based joint
formulation allows capturing joint strain
modes that cannot be captured using the
compliant discrete element joint method.
When ANCF finite elements are used, one
can develop new FE meshes that have linear
connectivity and constant inertia [18]. This
allows for systematically eliminating
dependent variables at a preprocessing stage,
and as a result, there is no need for the use
of joint formulations in the main processor.
This approach can be used to develop new
spatial chain models where the modes of
deformations at the definition points of the
joints that allow for rigid body rotations
between ANCF finite elements can be
captured. The displacement field of an
ANCF finite element, as the one shown in
figure 4, can be written as

( , , , ) ( , , ) ( )x y z t x y z tr s e where ,x y , and
z are the element spatial coordinates; t is
time; S is the element shape function
matrix, and e is the vector of element nodal
coordinates. Using this displacement field,

the equations of a pin joint between
elements i and j can be written using the

six scalar equations ,i j i j
  r r r r , where

 is the coordinate line that defines the
joint axis;  can be ,x y , or z or any other
coordinate line. The six scalar equations
eliminate six degrees of freedom; three
translations, two rotations, and one
deformation mode. Therefore, this joint has
five modes of deformation that include
stretch and shear modes. This ANCF
revolute joint model ensures 1C continuity
with respect to the coordinate line  and

0C continuity with respect to the other two
parameters. It follows that the Lagrangian

strain component  1 2T
    r r is

continuous at the joint definition point,
while the other five strain components can
be discontinuous. The resulting joint
constraint equations are linear, and
therefore, can be applied at a preprocessing
stage to systematically eliminate the
dependent variables. Using these equations,
one can develop a new kinematically linear
FE mesh for flexible-link chains in which
the links can have arbitrarily large relative
rotations.

The comparative numerical study presented
in the following section will be focused on
three models; the ideal constrained joint
model, the ideal penalty joint model, and the
compliant discrete element model (bushing).
The results of the ANCF joint model will be
considered in future investigations in order
to allow for presenting a more meaningful
study that compares different ANCF joint
formulations.
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SIMULATION RESULTS

Figure 5: Tracked vehicle different contact
models

Figure 6: Suspension system layout of
M113 tracked vehicle [6]

In this section, numerical results, obtained
using M113 tracked vehicle model shown in
figure 1, are used to compare the different
joint formulations presented in this
investigation. The M113 tracked vehicle is
armored personnel carrier that consists of a
chassis, idler, sprocket, 5 road-wheels, and
64 track links on each track side (right and
left). Figure 5 shows the engagement of the
track links with some of the vehicle

components, while more details about the
roller arrangement and the configuration of
the suspension system of the M113 tracked
vehicle model are shown in figure 6. Table 1
shows the inertia prosperities for all the
tracked vehicle model components used in
this simulation. More specifications of this
vehicle can be obtained from open sources
[5]. The vehicle has a suspension system
that consists of road arms placed between
the road wheels and chassis as well as shock
absorbers connected to each road arm. Table
2 shows the stiffness and the damping
coefficients of the contact models as well as
their friction coefficients.

In this study, two different simulation
scenarios, one with the suspension system
and the other without the suspension system,
will be considered to study the effect of
using the suspension system on the results.
The road arms and the sprockets are
connected to the chassis by revolute joints,
and the road arms are connected to the road-
wheels by revolute joints. The track links are
connected to each other using revolute
joints, which can be modeled using the
penalty method, bushing element, or ANCF
finite elements as previously mentioned.
Tensioners are added to the system by
connecting each idler to a tensioner with a
revolute joint and connecting the tensioner
to the chassis with a prismatic joint to ensure
only translation between them.
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Figure 7: Sprocket angular velocity

The angular velocities of the sprockets of
the vehicle model considered in this
numerical investigation are assumed to
increase linearly after 1 sec until it reaches a
constant value of 25 rad/sec after 8 seconds
as shown in figure 7. Figure 8 shows the
chassis vertical displacement using the joint
model with and without the suspension
system. The results presented in this figure
show that the model with a suspension
system has less vibration compared to the
model without suspension.

The penalty method model and bushing
element model shown in figures 9-14 each
have a stiffness coefficient of 109 N/m. In
real life applications, the stiffness coefficient
of bushing elements used in track chain
connections are much lower; they are
increased in this case for better comparisons
to the revolute joint and penalty models. The
rotational stiffness and damping coefficients
about the axis of rotation for the track links
of the bushing element model are set to zero
in this case to allow for rotation about the
lateral axis. Figures 9 and 10 show,
respectively, the chassis forward position

and velocity results obtained using different
joint models. While the results presented in
these figures show good agreement, the
computational time varies when these
different models are used. The constrained
joint model takes less computational time
compared to the penalty and the bushing
element models; the penalty model CPU
time is twice that of the constraint model
CPU time, while the bushing model CPU
time is four times that of the constraint
model CPU time. This increase in the
bushing model CPU time is attributed to the
high stiffness coefficients used in this
model.

Figure 8: Chassis vertical displacement

(--- without suspension, ── with
suspension)
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Figure 9: Chassis forward position

( Constrained joint model,
Penalty method model, Bushing element

model)

Figure 10: Chassis forward velocity

( Constrained joint model,
Penalty method model,        Bushing element

model)

Figure 11 shows the vertical displacement of
a track link in the global coordinate system
using different joint models. While the
results show good agreement the joint model
has less vibration compared to the penalty
and bushing element models. Figure 12
shows the motion trajectory of a track link in
the chassis coordinate system using the
constrained model, the penalty model, and
the bushing element model, respectively.
While the results presented in these figures
show good agreement, it is clear that the
constrained dynamics model solution
exhibits less oscillations.

Figure 11: Vertical displacement of a track
link

( Constrained joint model,
Penalty method model,        Bushing element

model)
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Figure 12: Trajectory motion of a track link
in the chassis coordinate system

(── Constrained joint model, --- Penalty
method model, ··· Bushing element model)

Figures 13 - 16 show the joint forces in the
longitudinal and the vertical directions,
respectively, obtained using the constrained
and penalty joint models. The penalty results
are obtained using a stiffness coefficient of

91 10 N/m and damping coefficient of
45 10 N.s/m. The results show good

agreement between the constrained and
penalty joint models. Figures 15 and 16
show the same results in the case of a
stiffness coefficient of 71 10 N/m and
damping coefficient of 45 10 N.s/m.

Figure 13:  Joint longitudinal forces

(── Constrained joint model, --- Penalty
method model, k = 91 10 N/m)

Figure 14: Joint vertical forces

(── Constrained joint model, --- Penalty
method model, k = 91 10 N/m)
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Figure 15: Joint Longitudinal forces

(── Constrained joint model, --- Penalty
method model, k = 71 10 N/m)

Figure 16: Joint vertical forces

(── Constrained joint model, --- Penalty
method model, k = 71 10 N/m)

The results of figures 15 and 16, which
show significant differences between the
two models, demonstrate the drawback of
the penalty method when the penalty
stiffness coefficient is reduced. Similar
results can be expected in the case of the
bushing element models where the forces
obtained also depend on the stiffness and
damping coefficient of the joint. Figure 17
shows the joint deformation predicted using
the penalty model using different stiffness
coefficients. The penalty model with a
stiffness coefficient of 91 10 N/m shows
much less deformation, less than 0.06 mm,
while the penalty model with a stiffness of

71 10 N/m has much more deformation,
over 2.5 mm, between the track links.

Figure 17: Joint deformation using penalty
model

(── k = 91 10 N/m, --- k = 71 10 N/m)
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SUMMARY AND CONCLUSIONS

In this investigation, different MBS joint
formulations are presented and compared
using detailed tracked vehicle models. Three
main joint formulations are discussed; they
are the ideal joint formulation, the compliant
discrete element joint formulation, and the
compliant continuum-based joint
formulation. The ideal joint formulation is
developed to eliminate the relative
displacement between the two bodies
connected by the joint. This can be achieved
by enforcing a set of joint algebraic
equations using a constrained dynamics
approach or by using the penalty method.
The constrained dynamics approach
eliminates degrees of freedom and ensures
that the constraint equations are satisfied at
the position, velocity, and acceleration
levels. The penalty method, on the other
hand, does not reduce the number of degrees
of freedom and ensures that the constraint
equations are satisfied at the position level
only provided that a high stiffness
coefficient is used. The compliant discrete
element formulation, which allows for joint
deformations, can be systematically applied
using a standard MBS bushing element that
allows for six degrees of freedom of relative
motion. The compliant continuum-based
approach can be used to develop new joints
that capture deformation modes that are not
captured by the compliant discrete element
joint formulation. ANCF finite elements can
be used to systematically develop new joints
with distributed elasticity and linear
connectivity conditions. As discussed in this
paper, it is important to choose the proper
stiffness and damping coefficients when the
penalty method and the bushing elements
are used.

Numerical results were presented in order to
compare between different methods. The
ideal joint formulation produces the desired
joint kinematics and accurate joint forces.
The same is true with the penalty force
based joint when large penalty stiffnesses
are used. Penalty force based joint
construction has been shown to be sensitive
to the selection of penalty stiffness with the
higher stiffness coefficients leading to better
overall results. However, higher penalty
stiffness increases CPU time significantly
due to higher frequencies. The penalty
method and bushing element models each
have much larger CPU times than the ideal
constrained model due to these high stiffness
coefficients. Bushing force based joint
formulation when used with very large
stiffnesses has been shown to not
automatically equate to the penalty force
based joint model. The ANCF joint
formulation is being implemented and will
be compared with the previous models in
future work.
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Table 1: Mass and inertia values for tracked vehicle parts

Part Mass (kg) IXX ( kg.m2) IYY ( kg.m2) IZZ ( kg.m2) IXY, IYZ, IXZ (kg.m2)

Chassis 5489.2 1786.9 10450 10721 0

Sprocket 436.67 13.868 12.216 12.216 0

Idler 429.57 14.698 12.545 12.545 0

Road Wheel 561.07 26.063 19.819 19.819 0

Road Arm 28.016 0.30241 0.16252 0.18809 0

Track Link 39.948 0.091164 0.49787 0.55977 0

Table 2: Contact Parameters

Parameters Sprocket-Track Contact Roller-Track Contact Ground-Track Contact

k 2.00×106 N/m 2.00×106 N/m 2.00×106 N/m

c 5.00×103 N·s/m 5.00×103 N·s/m 5.00×103 N·s/m

μ 0.150 0.100 0.300


