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ABSTRACT 

This paper deals with model validation of dynamic systems (with vehicle systems being of 

particular interest) that have multiple time-dependent output. First, we review several validation 

methodologies that have been reported in the literature: graphical comparison, feature-based 

techniques, PDF/CDF based techniques, Bayesian posterior estimation, classical hypothesis 

testing and Bayesian hypothesis testing. We discuss their advantages and disadvantages in terms 

of several attributes: applicability to different types of models, need for assumptions, 

computational cost, subjectivity, propensity to type-I or II errors, and others. We then proceed 

with the most important attribute: can the validation method provide a quantitative measure of the 

goodness of the model? We conclude that Bayesian-based model validation frameworks answer 

this question positively. A bootstrap method is presented that obviates the need to assume a 

statistical distribution model.  The features of the Bayesian validation framework are illustrated 

using a thermal benchmark problem developed by Sandia National Laboratories and a battery 

model developed in the Automotive Research Center, a US Army Center of Excellence for 

modeling and simulation of ground vehicle systems. 

 

 
1. INTRODUCTION 

 Modeling and simulation are indispensable tools in 

engineering design and development, in general, and vehicle 

systems, in particular. However, the efficacy of this 

computer-aided engineering paradigm depends largely on 

the validity of the utilized models. Verification, validation 

and accreditation (VV&A) deal with various aspects of this 

challenging issue. In brief, verification asks the question of 

whether the mathematical model is being solved correctly; 

validation concerns the question of whether a model 

(assuming that it is being solved correctly) is an adequate 

representation of the “real” physical system at hand; 

accreditation provides certification for a model to be 

exercised within a well-defined scope.  

In this paper, we consider the challenge of model 

validation. Typically, model validation entails the 

comparison of numerical predictions (CAE data) to 

experimental data (test data). Clearly, validation is a highly 

contextual process; e.g., a low-fidelity model may be 

adequate for a specific application, while even a high-

fidelity model may fail to capture nuances of natural 

phenomena. In addition, the decision of whether a model is 

“good enough” is almost always subjective as it is based on 

human perceptions and knowledge that may be incomplete. 

Moreover, the nature of the system being modeled and the 

type of model output considered can vary significantly. In 

this regard, there does not seem to be a “silver bullet” 

approach to model validation.  

This paper deals with model validation of dynamic 

systems (with vehicle systems being of particular interest) 

that have multiple time-dependent output. The remainder of 

this section provides a listing of attributes that are desirable 

for validation methodologies, followed by our classification 

of existing validation methodologies, along with their brief 

descriptions.  

 

1.1 Attributes of Validation Techniques 
We conducted an extensive literature review to identify 

attributes that validation techniques should possess. Over 

fifty of the most relevant publications are cited in this paper. 



Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Model Validation for Simulations of Vehicle Systems, Pan et al. 

 

Page 2 of 13 

To our knowledge, this is the first such tabulation of 

desirable validation attributes. 

Validation techniques may be applied across a wide range 

of engineering systems. We identify the following attributes 

that should be considered when assessing the utility of any 

validation technique: 

Applicable to scalar data: the suitability of a validation 

technique to be applied for comparing scalars. A scalar is a 

single numerical quantity observed/calculated in one or 

multiple repeated experiments/computations. 

Applicable to vector data: the suitability of a validation 

technique to be applied for comparing vectors. A vector is a 

finite collection of scalars. 

Applicable to scalar time series: the suitability of a 

validation technique to be applied for comparing scalar time 

series, comprising a sequence of scalars recorded at 

successive time points. Unlike scalar and vector data, time 

series data often have serial dependence, in which there is 

statistical dependence between a value observed at time 

point ti and the value observed at another time point tj.  

Applicable to vector time series: the suitability of a 

validation technique to be applied for comparing vector time 

series which are a sequence of vectors recorded at successive 

time points. Vector time series can be considered as a 

collection of multiple scalar time series; consequently, they 

too often have serial dependence.  

Consider multivariate correlation: the ability of a 

validation technique to use the correlation information of 

multivariate data. Although a validation technique suitable 

only for univariate data could be applied to each response of 

the multivariate data, the validation results for each response 

might be in conflict. 

Include objective criteria: the status of a validation 

technique to have objective criteria to accept/reject a model. 

An objective criterion is developed based on mathematical 

or statistical reasoning. 

Quantify model confidence: the ability of a validation 

technique to provide a quantitative assessment of the validity 

of the model in terms of model confidence. For example, in 

hypothesis testing, the null hypothesis is set up to support 

the fact that the computer model is accurate. Model 

confidence is the probability of this null hypothesis being 

true. 

Incorporate SME opinions: the ability of a validation 

technique to utilize information provided by Subject Matter 

Experts (SME) in the process of validating a computer 

model. 

Normality assumption independence: the independence of 

a validation technique on the use of normality assumption 

for the distribution of either test data or CAE data. More 

generally, it is desirable that a validation technique does not 

require any particular distribution model. 

Insensitivity to type-I error: the insensitivity of validation 

results to the type-I error level specified for classical 

hypothesis testing validation techniques. Type-I error level, 

or the rate of type-I error, is the probability of rejecting the 

null hypothesis when it is true. It is known that specifying 

the type-I error at different values can lead to different 

validation results (i.e. from accept to reject the model) [1]. 

Low computation cost: the time needed to execute the 

validation technique.  

Sample size independence: the insensitivity of the 

validation results to the selection of sample size. Sample size 

is the number of observations in a sample which is a subset 

of the population. Validation results should be similar if data 

of different sample sizes are used. 

 
1.2 Categorization of Validation Techniques 
Figure 1 depicts the classification of validation techniques 

that we consider in this paper. 

 

 
 

 

Graphical comparison: validation techniques that generate 

validation results from the plot of test data and CAE data. 

An intuitive approach is to plot experimental measurements 

and simulation outputs on the same graph. One decides 

whether or not to accept the model by inspecting the 

difference between the two data. No quantitative measure of 

the difference between the two quantities compared is 

involved. In [2] the authors superimposed the computer-

simulated deformation curve onto the experimental curve 

image taken by a high speed camera, qualitatively compared 

the shape of the curves and stated that the two curves have 

good correspondence. In [3] the authors plotted the test data 

as x-coordinates, and CAE data as y-coordinates. If the two 

data agree with each other, the collection of all the data 

points plotted should form a line of a unit slope (base line). 

Error bounds are formed by drawing two lines parallel to the 

base line. If two computer models are compared using this 

plot, one model would be preferred if considerably fewer 

points are outside the error bounds. Similar examples of 

graphical techniques can be found in [4, 5]. Graphical 

Figure 1: Categorization of validation techniques 
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comparison may be subjected to reader misinterpretation 

because of unknown underlying data structure [6], and can 

be biased and subjective [7]. 

The application of graphical comparison is limited to 

scalar and univariate time series as it cannot handle the 

correlation structure, although it can be applied to each 

response of multivariate data. Graphical comparison lacks 

objective rejection criteria as it is often based on subjective 

judgment (past experience, SME opinions, etc). 

Additionally, it does not quantify the model. SME opinions 

can be coupled with graphical comparison. For example, the 

acceptance region on the graph can be set up based on inputs 

from SME's. There are neither issues associated to type-I 

error nor to sample size since graphical comparison is not 

based on hypothesis testing. Computational cost is minimal. 

Graphical comparison is best used as a supplementary tool 

together with other validation techniques. 

Feature-based techniques: validation techniques that draw 

validation conclusion based on the difference between 

features, e.g., magnitude, shape and phase of a scalar time 

series. Several magnitude-only error metrics such as mean 

absolute error (MAE) and the root mean square error 

(RMSE) are discussed in [6].  

The Sprague and Geers metric (SG) [8], Knowles and 

Geer's metric (KG) [9] and Russell‟s metric (R) [10] are 

similar metrics that address the assessment of magnitude and 

phase error simultaneously. The EARTH metric [11] 

evaluates three features: phase, magnitude and topology, 

where topology is the shape or slope of a scalar time series. 

Discrepancy in phase (both global and local timing error) is 

removed by shifting the time history before analyzing the 

magnitude and topology errors. Local timing error is taken 

care of by the use of dynamic time warping (DTW). Unlike 

KG, SG and R metrics, there is no comprehensive form of 

the EARTH metric (i.e. a single number that summarizes all 

the validation results for different features). When 

evaluations from subject matter experts (SME) are available, 

a regression is performed to generate comparable ratings. 

Feature-based techniques do not require a distribution 

assumption. Their application is limited to scalar and scalar 

time series as they cannot handle the correlation structure of 

a vector or vector time series. This limitation can be 

removed by the use of dimensionality and correlation 

reduction techniques. Feature-based techniques lack 

objective rejection criteria. Model confidence is not 

quantified. SME opinions can be incorporated (see [11] for 

an example of building regression-based validation models 

using SME opinions). There are neither issues associated to 

type-I error nor to sample size since feature-based 

techniques are not based on hypothesis testing. 

Computational cost is low.  

PDF/CDF-based techniques: validation techniques that 

draw validation conclusions based on the distance between 

the probability density function/cumulative density function 

of test data and CAE data. Non-deterministic test data and 

CAE data are considered as random variables. In [12] the 

authors examined whether or not the deterministic scalar test 

data are within the highest density region (HDR) of the PDF 

of the CAE data. In [13] the authors developed a maximum 

horizontal distance between the two CDF‟s. The selection of 

a rejection criterion is subjective. Similarly, the 

Kolmogorov-Smirnov statistic measures the vertical distance 

between the two CDF‟s. If, however, the data have a very 

small variability (almost deterministic), the vertical distance 

could be very large even though the two CDFs are very close 

to each other horizontally. 

Another measure of the distance between CDF‟s was 

developed in [14], where the area between the two CDF‟s 

was suggested as a validation metric. It was argued that the 

area metric enjoys several advantages such as ease of 

interpretation, objectiveness and ability to express validation 

results in terms of physical units. The CDF of the CAE data 

is assumed to be known. The authors suggested that this 

CDF be obtained by solving the mathematical model 

analytically or by propagating a large number of replicate 

samples via Monte-Carlo simulation. The test data, on the 

other hand, is usually provided as a collection of point 

values in a data set. The empirical cumulative distribution 

function (ECDF) was used to describe the distribution of the 

test data. The authors illustrated that this area metric is better 

than those based solely on the mean or/and variance of the 

data as it was able to detect the difference when the mean 

and variance of observations are matched but the distribution 

isn't. When applied to scalar time series data, the 𝑢-pooling 

method was developed to pool all the observations together 

and use statistical tests (e.g. Kolmogorov-Smirnov test) to 

evaluate the accuracy of the model since the pooled points 

should form a uniform distribution if test data match CAE 

data. The threshold value was not provided since the authors 

consider it as the task of decision makers. In the 𝑢-pooling 

method the CAE data distribution is assumed to be known 

but in practical this is often not the case.  

In [15] the author proposed a discretized version of the 

area metric and gave the flexibility to reflect what portion of 

the ECDF to be emphasized for comparison. In [16] the 

authors used the Anderson-Darling test statistic as a measure 

of the discrepancy between two CDFs. The Anderson-

Darling test uses a weighted quadratic ECDF statistic to 

measure the distance between the two CDF‟s and penalizes 

heavily deviations from the tail portion of the CDF. It was 

shown that the Anderson-Darling test has more statistical 

power than the Kolmogorov-Smirnov test [17]. 

PDF/CDF-based techniques do not require a distribution 

assumption. Their application is limited to scalars. The only 

implementation for scalar time series is the use of the 𝑢-

pooling technique developed by [14]. PDF/CDF-based 



Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Model Validation for Simulations of Vehicle Systems, Pan et al. 

 

Page 4 of 13 

techniques cannot handle the correlation structure of 

multivariate data. Some of the PDF/CDF-based techniques 

have objective rejection criteria but require the PDF/CDF of 

the experimental SRQ to be known. Model confidence is not 

quantified by PDF/CDF based techniques as only a measure 

of the distance between the two PDF‟s/CDF‟s is calculated. 

SME opinions can be incorporated to reveal the distribution 

of either test data or CAE data. Issues related to type-I error 

do not exist since PDF/CDF-based techniques are not based 

on hypothesis testing. Computational cost is negligible.  

Bayesian posterior estimation techniques: validation 

techniques that estimate the posterior distribution of test data 

and CAE data using the Bayes theorem. Bayesian posterior 

estimation techniques can be considered as a combination of 

feature-based techniques and PDF/CDF-based techniques, in 

that a bias function is used to quantify the discrepancy in the 

magnitudes of test data and CAE data, and a Gaussian 

process is implemented to handle non-deterministic data. 

These techniques can be traced to [18], where a Gaussian 

Process was used to model the test data and CAE data 

(scalar time series) and the posterior parameters in the 

Gaussian process were inferred using Bayes' theorem. The 

authors suggested performing normality transformations if 

the data is not normal.  

Bayarri et al. (see [19]) developed tolerance bounds for 

model predictions. Their perspective of validation is not 

simply to provide answer (yes/no) to the question whether to 

accept the computer model, but rather, to evaluate the 

accuracy of computer model prediction (CAE data) for the 

intended use.  

Higdon (see [20]) developed posteriors based on non-

normal priors of parameters of the Gaussian process model. 

Chen et al. [21, 22] developed posteriors for both model bias 

and output using a more flexible beta distribution prior. 

Tolerance bounds were developed for validation purposes. 

The traditional criterion for validation is that the model is 

accepted if the interval of the model bias contains zero or if 

the interval of the true value of the system response quantity 

contains the computer model output. This criterion can be 

problematic since it tends to reject the computer model at 

regions with many physical observations (and thus 

prediction intervals are narrow) but fails to reject the 

computer model at regions with few or no physical 

observations (and thus prediction intervals are wide).  

Bayesian posterior estimation techniques are dependent on 

a normality assumption since a Gaussian process model is 

used. Sample size has a significant effect on the width of 

tolerance bounds. The technique is limited to scalar time 

series. Bayesian posterior estimation techniques do not have 

objective rejection criteria. Model confidence can be 

quantified. SME opinions are incorporated in terms of prior 

distributions of the parameters of the Gaussian process 

model. Bayesian posterior estimation techniques are not 

subject to issues related to type-I error since they are not 

based on hypothesis testing. Computational cost is high due 

to the use of the Gaussian process, MCMC and MLE.  

Classical hypothesis testing techniques: validation 

techniques that employ a defined hypothesis to evaluate. For 

non-deterministic scalar data, the 𝑡-test is used to assess the 

similarity between the means of test data and CAE data [6, 

23, 24], and the 𝐹-test to assess the similarity between the 

variances [6, 23, 24]. Extension to vector data can be 

achieved by using Hotelling's 𝑇2-test for comparing 

multivariate means [25, 26], and Wilk's 𝜦-distribution for 

comparing covariance matrices [26, 27]. Multivariate 

hypothesis tests (hypothesis test that is designed for vector) 

limit the inflation of type-I error present in multiple 

univariate tests (hypothesis test that is designed for scalars) 

[28]. Normality is assumed for both the test data and CAE 

data in all these hypothesis tests [23]. When this assumption 

is not valid, transformation to normality is suggested [24]. 

Alternatively, the bootstrap method was suggested to 

estimate the distribution of data [26]. In [24] the authors 

suggested to use univariate and multivariate tests 

collectively. The univariate tests can yield conflicting 

validation results but can identify which response in the 

multivariate data is most suspect. Multivariate tests, on the 

other hand, take into account the correlation structure.  

A method closely related to Hotelling's 𝑇2-test is the 𝑟2  

method developed by [29] (referred to as Mahalanobis 

distance later). The 𝑟2 method assumes normality and the 𝑟2 

statistic follows a 𝜒2 distribution. The critical value is 

determined as the cumulative probability of a 𝜒2 random 

variable greater than the given significance level. The 

computer model is rejected if the probability of 𝑟2 being 

greater than the critical value is less than the significance 

level. The 𝑟2 method is applicable for both scalar and vector 

data and takes into account uncertainty in the model 

parameter. This method was further developed by 

formulating confidence intervals for the 𝑟2 statistic [30]. It 

was extended to non-normal data by the use of the maximum 

likelihood estimation (MLE) [31]. The rejection criteria can 

be determined by Monte Carlo simulation.  

Classical hypothesis testing techniques depend on a 

normality assumption except for the modified 𝑟2 method in 

[31]. Classical hypothesis testing techniques are of the point-

null hypothesis testing type and validation results are 

affected by sample size [28]. Application to time series is 

not appropriate because of the serial dependence. Classical 

hypothesis testing techniques have objective rejection 

criteria. Model confidence is not quantified because classical 

hypothesis testing techniques only judge whether a computer 

model is accurate. SME opinions are not currently 

incorporated but can be useful for determining the 

distribution used in the modified 𝑟2 method [31]. Classical 
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univariate hypothesis testing is subject to accumulation of 

type-I error when applied to each response of multivariate 

data. The choice of significance level has a substantial effect 

on validation results. Computational cost is low except for 

the r
2
 method. Classical hypothesis testing technique is best 

used for validating computer model generating non-

deterministic scalar or vector outputs assuming normality. 

Bayesian hypothesis testing techniques: validation 

techniques that combine classical hypothesis testing 

techniques and Bayes theorem to update validation results 

based on available data and SME opinions. Using Bayes 

factor [23, 32, 33], the authors set up hypothesis testing to 

examine whether the Bayes factor is above or below unity 

[34]. Normality is no longer required but can be used to 

provide an explicit expression of the posterior distribution. 

In [35] the authors treated the Bayes factor as a random 

variable to address the uncertainty in model parameters. In 

[24] the authors transformed non-normal data to normal and 

showed how the transformation helps reduce the type-I error. 

In [36, 37] multiple data sets were considered by assuming 

the data in each set are independent. The overall Bayes 

factor is calculated by multiplying together the individual 

Bayes factors for each data set. In [38] the authors derived 

model confidence based on Bayes factor and claimed to be 

the first to derive explicit expression of the model 

confidence for Bayesian point-null hypothesis testing.  

A comparison between point-null and interval based 

hypothesis testing was made in [16, 39]; it was shown that 

the chance of rejecting a correct model increases as the 

sample size increases for point-null hypothesis testing. 

 To have more consistent results, a Bayesian interval-based 

hypothesis testing method (BIH) was proposed [38]. 

Bayesian hypothesis testing techniques were demonstrated 

to be superior to classical hypothesis testing because both 

hypotheses (null and alternative) are considered 

simultaneously [35]. Similarly, it was shown that the 𝑝-value 

used in classical hypothesis testing can engender misleading 

results [40]. 

Bayesian hypothesis testing techniques are not dependent 

on a normality assumption although the selection of a non-

normal distribution may increase the computational cost. 

Sample size does not have a significant effect on Bayesian 

interval-based hypothesis testing. Bayesian hypothesis 

testing techniques have objective rejection criteria based on 

model confidence. SME opinions are incorporated to 

determine parameters used in the prior distribution of the test 

statistic. Bayesian hypothesis testing techniques are not 

subject to issues related to type-I error. Computational cost 

is modest, although not as low as the previously described 

methods.  

 
 

 

 

Figure 2 summarizes the above validation techniques with 

respect to the validation attributes presented in Section 1.1, 

in which a "Yes" indicates the validation technique does 

possess the corresponding attribute. 

 
2. METHODOLOGY 

Dimensionality reduction techniques are used commonly 

for multivariate. In the context of validation, Principal 

Component Analysis (PCA) was coupled with the 𝑟2 method 

[40], and with Hotelling's 𝑇2-test [12]. However PCA lacks 

the ability to deal with non-deterministic data. BIH was 

coupled with Probabilistic Principle Component Analysis 

(PPCA) to remove correlation of data, reduce dimensionality 

and handle non-deterministic data [41-43]. This is the basis 

of the Bayesian validation framework whose process is 

shown in Figure 3. 

 

 
 

 
Figure 3: Bayesian interval-based hypothesis 

testing coupled with PPCA  

Figure 2: Attributes of validation techniques 
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First multivariate test and CAE data are obtained from 

experiments and simulations. PPCA is applied to the 

difference between test and CAE data to obtain the reduced 

difference. The PPCA transformation matrix is a function of 

the eigenvalues and eigenvectors of the covariance matrix of 

the difference data. A latent variable model is established to 

relate the difference data (observed) to a corresponding 

vector of latent (unobserved) variables. The reduced 

difference is the expectation of the latent variable. The 

dimensionality reduction is achieved by retaining only a few 

of the largest eigenvalues so that the resulting reduced 

difference data represent at least 95% of the variability 

information in the difference data. 

After PPCA, the reduced difference data is uncorrelated. 

As a result, various validation techniques can be considered 

that are only suitable for univariate data (scalar or scalar 

time series). The Bayesian hypothesis testing technique is 

selected here as it is the only technique that produces model 

confidence which provides a quantitative assessment of the 

goodness of the model. 

Bayesian interval-based hypothesis testing is performed on 

the reduced difference data. The test examines whether the 

expected value of the reduced difference is within the 

integration bounds of the integral of Eq. (2.1). The null 

hypothesis is that the expected reduced difference is within 

the integration bounds (accept the model). The prior 

distribution of the expected reduced difference is assumed to 

be Gaussian. Its posterior is obtained by applying Bayes‟ 

rule to update the prior using the observed data (reduced 

difference) and a Gaussian model with mean vector 𝛒0 and 

covariance 𝚲0. The model confidence is calculated as: 
 

𝜅 =  
1

  2𝜋 𝑝  𝚲0 
𝑒𝑥𝑝  −

1

2
 𝛍 − 𝛒0 

𝑇𝚲0
−1 𝛍 − 𝛒0  𝑑𝛍

𝜺

−𝜺

 

  (2.1)  

 

The model confidence is the probability that the expected 

reduced difference falls in the integration bounds with 

respect to its posterior probability density function. 

 

2.1 Integration Bounds 
Model confidence was shown to be sensitive to the 

selection of the integration bounds [41]. Here two methods 

of selecting the integration bounds will be explored. 

Norm-based integration bounds: As illustrated in Figure 4, 

error bounds  – 𝐞, 𝐞  are symmetrically set up around the test 

data defined as the maximum allowable deviation from the 

data: 

 

 𝐞 = 𝑏 𝐭 ∞ (2.2)  

 

where  ∙ ∞ denotes the infinity norm or maximum norm of 

the test data and  𝐞 ∈ ℝ𝑚×1; 𝐭 is the test data, 𝐭 ∈ ℝ𝑚×𝑛 , and 

𝑚 is the number of responses and 𝑛 the number of 

observations of each response. 

The magnitude of 𝐞 is chosen to be some fraction, 𝑏, of 

the 𝐿∞ norm of the test data based on intended engineering 

applications or SME opinion.  

 

 
 

 

 

     

 

The magnitude of the integration bounds used in the 

calculation of model confidence is calculated using: 

 

 𝛆 = 𝑎𝑏𝑠(𝐌−1𝐖 T𝐞) (2.3)  

 

where 𝑎𝑏𝑠 ∙  returns the absolute value. The matrix product 

𝐌−1𝐖 T  is the same transformation matrix applied to the 

difference data to obtain the reduced difference in the PPCA 

transformation. 

Variability-based integration bounds: Following the 

procedure outlined in [41], the integration bounds magnitude 

is calculated as a fraction of the standard deviations of the 

reduced test data: 

 

 𝛆 = 𝑏 𝑑𝑖𝑎𝑔 𝚺𝑡  (2.4)  

 

where 𝑑𝑖𝑎𝑔 ∙  returns the diagonal components of a matrix 

as a vector, and 𝑏 is determined iteratively by considering 

only the covariance of the reduced test data in Eq. 2.1. 𝚺𝑡  is 

the uncertainty associated with the test data.  

 

2.2 Bootstrapping 
In the methodology described in Section 2, it is assumed 

that the reduced difference follows a multivariate normal 

distribution. Oftentimes, this assumption may not 

Figure 4: Example of norm-based integration 

bounds  
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necessarily hold. To remedy this, a bootstrap-based 

technique was developed as an alternative approach to 

calculate model confidence without relying on distributions 

for the error model. 

The bootstrap method was introduced by Bradley Efron 

[44] in the 1980s; the primary objective was to calculate 

confidence intervals for parameters in situations where 

standard methods were not applicable [45]. For example, 

asymptotic results are unacceptably inaccurate when the 

number of observations is small. Since its invention, the 

bootstrap method has been applied to many engineering 

fields such as geophysics, biomedical engineering, image 

processing, environmental engineering, artificial neural 

networks, etc. 

The bootstrap-based technique developed for the research 

presented in this paper is illustrated in Figure 5. 

 

 
 

 

 

 

In most practical applications, the number of resamples 𝐵 

that need to be drawn should be of the order of a thousand 

[46]. More detailed guidelines on choosing 𝐵 are provided in 

[47]. The bootstrap method employed here is of the non-

parametric type; however, parametric bootstrapping will also 

be considered in future research since it is noted in [46] that 

parametric bootstrap methods can be more accurate than 

non-parametric ones when the sample size is small. In 

addition, the i.i.d. assumption for the samples is arguable; 

therefore, we will also consider bootstrap methods designed 

for dependent data, e.g., moving-block bootstrapping [46]. 

 

3. THERMAL BENCHMARK PROBLEM 
In this section, we illustrate the presented Bayesian 

methodology for quantifying model confidence using a 

benchmark validation problem from the literature. 

Specifically, a thermal benchmark problem [48] was 

developed for a model validation challenge workshop held at 

Sandia National Laboratories in 2006. The computational 

model to be validated is a one-dimensional heat conduction 

model that predicts temperature for a material layer of 

thickness 𝐿 subject to a specific heat flux 𝑞 (Figure 6).  

 

 
 

 

 

 

The boundary conditions are specified flux 𝑞 on the 𝑥 = 0 

face and adiabatic on the 𝑥 = 𝐿 face. The computational 

model for temperature prediction is given by: 

 

𝑇 𝑥, 𝑡 = 𝑇𝑖 +
𝑞𝐿

𝑘
  

𝑘

𝜌𝐶𝑝𝐿
2
 𝑡 +

1

3
−
𝑥

𝐿
+
1

2
 
𝑥

𝐿
 
2

−
2

𝜋2
 

1

𝑛2
𝑒
−𝑛2𝜋2 

𝑘
𝜌𝐶𝑝𝐿

2 𝑡
cos  

𝑛𝜋𝑥

𝐿
 

6

𝑛=1

  

  (3.1)  

 

The thermal properties 𝑘 and 𝜌𝐶𝑝 , and the initial condition 

for temperature 𝑇𝑖  are prescribed constants. 

Four replicate experiments were conducted for each of 

four configurations (combinations) of thickness 𝐿, and heat 

flux magnitude 𝑞, on the 𝑥 = 𝐿 face (two levels for each 

variable) to obtain test data. The values of 𝑞 and 𝐿 in each 

configuration are given in Table 1. 

 

 

 

Configuration Heat flux, 𝑞 (W/m
2
) Thickness, 𝐿 (cm) 

1 1000 1.27 

2 1000 2.54 

3 2000 1.27 

4 2000 2.54 

 

All the experimental data are provided in [48]. It is 

assumed that there is no measurement error. Graphical 

comparison of test data to CAE data is shown in Figures 7-

10. The error bars indicate the maximum and minimum 

values of the four replicate experiments. 

Figure 5: Bootstrapping technique 

Figure 6: Schematic of the heat conduction 

problem [48] 

Table 1: Values of 𝑞 and 𝐿 in each configuration [48] 
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3.1 Validation Results 
There are 7 published solutions to the benchmark problem 

[49-55]. Each of these approaches fall under one of the 

categories presented in Section 1.2 (see Figure 11). All of 

these approaches yield qualitative assessments, as 

summarized in the authors‟ own words in Table 2.  

We calculated model confidence for four variations of the 

presented Bayesian validation framework; results are 

presented in Figure 12. „Norm-based Bayesian‟ refers to the 

method that employs the norm-based integration bounds 

introduced in Section 2.1, and calculates the model 

confidence using Bayes factor. „Norm-based bootstrap‟ 

refers to the method that employs the same norm-based 

integration bounds, but calculates the model confidence 

using the bootstrap technique presented in Section 2.2. 

„Variability-based Bayesian‟ and „Variability-based 

bootstrap‟ differ from „Norm-based Bayesian‟ and „Norm-

based bootstrap‟, respectively, only in the fact that the 

variability-based integration bounds were used instead of the 

norm-based integration bounds. 

While there is a small variation in the results, it can be 

concluded that for this benchmark problem i) the normality 

assumption made in the Bayesian calculation does not have a 

significant impact on model confidence quantification; ii) 

validation results are relatively insensitive to the technique 

for determining integration bounds; and iii) the 

computational model can be accepted as adequate 

representation of reality since confidence is well above 50%.  

Figure 7: Graphical comparison of test and 

CAE data for configuration 1 

Figure 8: Graphical comparison of test and 

CAE data for configuration 2 

Figure 9: Graphical comparison of test and 

CAE data for configuration 3 

Figure 10: Graphical comparison of test and 

CAE data for configuration 4 
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Liu et al. [49] “Negligible bias” 

Ferson et al. [50] “Mismatch” 

Higdon et al. [51] “Small discrepancy” 

Hills and Dowding [52] “Poor” 

McFarland and Mahadevan [53] “Valid” 

Brandyberry [54] “Equivalent means” 

Rutherford [55] “Inadequate” 

 

 

 
 

 

 

 

 

 

3.2 Statistical Power 
Statistical power is a useful tool to assess the robustness of 

the computed model confidence. Formally, it is defined as 

the probability that the hypothesis test procedure will reject 

the null hypothesis when it is false (i.e., the probability of 

not committing a type-II error) [56].  

For the thermal benchmark problem, the statistical power 

of the Bayesian validation framework is significantly higher 

than that of classical hypothesis testing (79% vs. 11%). 

Bayesian hypothesis testing supports the null hypothesis 

directly by providing the probability of it being true, while 

the classical hypothesis testing does so by concluding that 

there is not sufficient evidence to reject the null hypothesis.  

The factors that influence statistical power are the type of 

hypothesis testing used, sample size and the distance 

between the test statistic (the expected reduced difference) 

and the integration bounds bound. Statistical power is low if 

the integration bounds are set to be too narrow, or the 

sample size is not large enough. Guidelines can be 

established to choose the ideal sample size or the integration 

bounds to achieve a certain level of statistical power. 

 

4. ONGOING AND FUTURE WORK 
The research presented in this paper is supporting the 

activities of a tri-service Energy/Power Community of 

Interest (E/P CoI) for providing best practice guidelines for 

model sharing and verification and validation. Current 

members of this CoI include the Air Force Research 

Laboratory, the U.S. Army Tank Automotive Research, 

Development and Engineering Center, the Navy Surface 

Warfare Center, Carderock Division, the Automotive 

Research Center at the University of Michigan and the 

Electric Ship Research and Development Consortium at 

Florida State University. A straw-man model [57] has been 

developed by the Air Force Research Laboratory in order to 

be used as a testbed for the CoI's activities, and an electro-

thermal battery model, developed at the Automotive 

Research Center at the University of Michigan [58] has been 

integrated in the straw-man model (Figure 13).  

As a first step towards validating the straw-man model, 

the Bayesian validation framework was used to quantify 

model confidence for the electro-thermal battery model. The 

model confidence is 99%, indicating good match between 

test data and CAE data, which is consistent with the 

graphical comparison shown in Figures 14 and 15. 

Fragments of data are presented for clarity. 

 

Figure 11: Categorization of solutions to the 

thermal benchmark problem 

Figure 12: Comparison of validation results 

Table 2:  Summary of validation results from the published 

solutions to the thermal benchmark problem 
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5. SUMMARY 
There exist various validation techniques developed for 

different purposes and applications. However, there are no 

clear formal guidelines for using these techniques. 

Categorization of existing validation methods is thus 

essential to compare them systematically in order to 

establish suitable application domains for each category. We 

have presented such a categorization in this paper based on 

several attributes that highlight their advantages and 

disadvantages. The Bayesian validation framework was 

found to be the only validation technique that yields 

quantitative (as opposed to qualitative) assessment of the 

goodness of a model. Based on this finding, we implemented 

a Bayesian validation method and: i) developed alternative 

techniques for determining the integration bounds used for 

computing model confidence and ii) incorporated a 

bootstrap-based technique to eliminate the need to assume 

any distribution model for the data. We also used statistical 

power to assess the robustness of model confidence, 

showing that Bayesian hypothesis testing is superior to 

classical hypothesis testing.   
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